JPS6213782B2 - - Google Patents

Info

Publication number
JPS6213782B2
JPS6213782B2 JP53027648A JP2764878A JPS6213782B2 JP S6213782 B2 JPS6213782 B2 JP S6213782B2 JP 53027648 A JP53027648 A JP 53027648A JP 2764878 A JP2764878 A JP 2764878A JP S6213782 B2 JPS6213782 B2 JP S6213782B2
Authority
JP
Japan
Prior art keywords
substrate
light shielding
phosphor
layer
phosphor layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP53027648A
Other languages
Japanese (ja)
Other versions
JPS54120575A (en
Inventor
Tomya Sonoda
Hiroshi Washida
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP2764878A priority Critical patent/JPS54120575A/en
Publication of JPS54120575A publication Critical patent/JPS54120575A/en
Publication of JPS6213782B2 publication Critical patent/JPS6213782B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Formation Of Various Coating Films On Cathode Ray Tubes And Lamps (AREA)

Description

【発明の詳細な説明】 本発明はX線、γ線等の放射線像及び電子線像
を可視像に変換する螢光面の製造方法の改良に関
する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an improvement in a method for manufacturing a fluorescent surface that converts radiation images such as X-rays and γ-rays and electron beam images into visible images.

X線、γ線等の高エネルギー放射線像及び電子
線像を光像に変換する螢光面は、例えばX線螢光
増倍管の入力面、出力面や螢光板、暗視管の電子
増倍型撮像管の出力面等に使用される。このよう
な螢光面の主要な特性として解像度と変換効率が
ある。
Fluorescent surfaces that convert high-energy radiation images such as X-rays and γ-rays and electron beam images into light images are used, for example, on the input surface and output surface of an X-ray fluorescence multiplier tube, the fluorescent plate, and the electron multiplier of a night vision tube. Used for the output surface of double-type image pickup tubes, etc. The main characteristics of such fluorescent surfaces are resolution and conversion efficiency.

第1図は従来螢光面の1使用例であるX線螢光
増倍管の入力面の断面図を示すものですなわちX
線螢光増倍管の入力面は図に於いてアルミニウム
基板1の上に沃化セシウムからなる螢光体層2を
積層し、さらに前記螢光体層2の上表面に光電面
3を形成している。この入力面にX線4を照射す
るとX線4は基板1を透過し螢光体を発光させ
る。螢光体層2の1点Pで発光した光は全ての方
向に放射される。それゆえ1点Pで発光した光が
螢光体層2の上表面に達した時には“ぼけ”が生
じる。このぼけは螢光体層上表面から点Pまでの
距離が大きい程大きくなる。すなわち螢光体層2
の厚さが大きくなる程ぼけが大きくなり解像度が
低下する。一方螢光面の変換効率は螢光体層2の
厚さが大きくなる程良くなり、解像度と変換効率
は両立しがたい。
Figure 1 shows a cross-sectional view of the input surface of an X-ray fluorescence multiplier tube, which is an example of the use of a conventional fluorescent surface.
In the figure, the input surface of the linear fluorophore multiplier tube is made by laminating a phosphor layer 2 made of cesium iodide on an aluminum substrate 1, and further forming a photocathode 3 on the upper surface of the phosphor layer 2. are doing. When this input surface is irradiated with X-rays 4, the X-rays 4 pass through the substrate 1 and cause the phosphor to emit light. Light emitted at one point P of the phosphor layer 2 is emitted in all directions. Therefore, when the light emitted at one point P reaches the upper surface of the phosphor layer 2, "blur" occurs. This blur increases as the distance from the upper surface of the phosphor layer to point P increases. That is, the phosphor layer 2
As the thickness increases, the blur increases and the resolution decreases. On the other hand, the conversion efficiency of the phosphor surface improves as the thickness of the phosphor layer 2 increases, and it is difficult to achieve both resolution and conversion efficiency.

上述の従来の欠点を改良した高解像度像増倍管
用スクリーンとして第2図に示すような構造の入
力スクリーンが提案されている。即ち、アルミニ
ウム基板11の一表面に形成され、アルミニウム
基板11から垂直方向に突出した光遮蔽壁12に
よつて区画される多数の小室13がある。この光
遮蔽壁12は薄く、小室13に充填される螢光体
14が発する光に対して不透明である。小室13
の中には例えば沃化セシウムからなる螢光体が蒸
着法等によつて充填され螢光体層14を形成して
いる。螢光体層14の上表面には光電面15が形
成されている。このような構造を有する入力面に
X線16を照射するとX線16はアルミニウム基
板11を透過し、螢光体層14を発光させる。螢
光体層の1点Qで発光した光はあらゆる方向に放
射される。しかし横方向へ放射された光は光遮蔽
壁12で反射され小室13の上表面にのみとりだ
される。このように光の横方向への拡散が制限さ
れるため解像度の良い入力面を提供することがで
きる。また螢光体層14を厚くして変換効率を良
くしても解像度の低下を招かない。
An input screen having a structure as shown in FIG. 2 has been proposed as a high-resolution image intensifier screen that improves the above-mentioned conventional drawbacks. That is, there are a large number of small chambers 13 that are formed on one surface of the aluminum substrate 11 and partitioned by light shielding walls 12 that protrude from the aluminum substrate 11 in the vertical direction. This light shielding wall 12 is thin and opaque to the light emitted by the phosphor 14 filled in the small chamber 13. Small room 13
A phosphor made of, for example, cesium iodide is filled inside the phosphor layer 14 by vapor deposition or the like to form a phosphor layer 14. A photocathode 15 is formed on the upper surface of the phosphor layer 14. When the input surface having such a structure is irradiated with X-rays 16, the X-rays 16 pass through the aluminum substrate 11 and cause the phosphor layer 14 to emit light. Light emitted at one point Q on the phosphor layer is emitted in all directions. However, the light emitted laterally is reflected by the light shielding wall 12 and extracted only onto the upper surface of the small chamber 13. Since the lateral diffusion of light is thus restricted, an input surface with good resolution can be provided. Further, even if the phosphor layer 14 is thickened to improve conversion efficiency, the resolution does not deteriorate.

所で上述した構造の入力面、特に螢光面の製造
方法については本出願人は先に特願昭52−102571
として提案している。すなわち、上記製造方法は
基板の表面にモザイクパターンを形成する工程
と、前記モザイクパターンを区画する溝部に光遮
蔽物質を充填する工程と、前記充填物質を残して
モザイク部分を除去し基板表面に充填した物質で
光遮蔽壁を形成する工程と、前記基板上に螢光体
層を形成する工程とからなるものである。
By the way, regarding the manufacturing method of the input surface of the above-mentioned structure, especially the fluorescent surface, the present applicant previously published Japanese Patent Application No. 52-102571.
It is proposed as. That is, the above manufacturing method includes a step of forming a mosaic pattern on the surface of a substrate, a step of filling a light-shielding material into the grooves that partition the mosaic pattern, and a step of removing the mosaic portion leaving the filling material and filling the surface of the substrate. The method consists of a step of forming a light-shielding wall with a material made of the same material, and a step of forming a phosphor layer on the substrate.

しかして本発明は上記特願昭52−102571の発明
を更に改良したもので、第2図で示した構造の入
力面、特に螢光面を容易、且つ再現性よく製造し
得るようにした螢光面の製造方法を提供するもの
である。
Therefore, the present invention is a further improvement of the invention of the above-mentioned Japanese Patent Application No. 52-102571, and includes a fluorescent input surface, particularly a fluorescent surface, having the structure shown in FIG. 2, which can be manufactured easily and with good reproducibility. A method of manufacturing a light surface is provided.

即ち、本発明による螢光面の製造方法は、光遮
蔽壁を形成するに際し、基板の表面に電気化学的
手法特にメツキ法によりモザイク構造の補助層を
形成し、次いで前記モザイク構造を区画する溝部
に光遮へい物質を充填し、前記充填物質を残して
モザイク部分を除去し、基板表面に充填した物質
が光遮へい壁として基板上に残るようにした後、
螢光体層を形成するものである。ここで螢光体層
の形成は、アルカリハライド螢光体を蒸着する方
法がよく知られており、本発明にも適用出来る。
しかし、本発明はアルカリハライド螢光体に限定
されるものではない。
That is, in the method for manufacturing a fluorescent surface according to the present invention, when forming a light shielding wall, an auxiliary layer of a mosaic structure is formed on the surface of a substrate by an electrochemical method, particularly a plating method, and then a groove section is formed to partition the mosaic structure. After filling the substrate with a light shielding material and removing the mosaic portion while leaving the filling material so that the material filled on the substrate surface remains on the substrate as a light shielding wall,
This forms a phosphor layer. For forming the phosphor layer, a well-known method of vapor depositing an alkali halide phosphor is applicable to the present invention.
However, the invention is not limited to alkali halide phosphors.

以下、本発明の実施例について、第3図〜第6
図を参照しながら説明する。
Embodiments of the present invention will be described below in Figures 3 to 6.
This will be explained with reference to the figures.

実施例 1 厚さ0.5mmのアルミニウム基板21を脱脂及び
エツチングして表面を清浄化したのち螢光体層を
形成する面に補助層22として、次の条件でクロ
ムをアルミニウム基板21上にメツキする。三酸
化クロム200〜500g/、硫酸0.5〜2g/か
らなるメツキ浴中で温度30〜70℃に保持し、電流
密度10〜50A/dm2で約50μの厚さクロムを被着
する。形成されたクロム層は微細なクラツク(図
示せず)によつてモザイク状となり補助層22を
形成する。十分洗浄したのち前記基板を200〜500
℃で熱処理を行なうと、補助層22はさらにクラ
ツクによつてモザイクが微細化し、同時にモザイ
ク状のクロム表面23が酸化されて不活性化され
る。次いで苛性ソーダにより基板21のクロムに
よつて覆われていない部分、即ち微細な溝20の
底表面の被膜(図示せず)を除去する。この結果
第3図に示す様に基板上には、モザイクの大きさ
が20〜50μ、厚さが50μ、クラツクによつて形成
された溝巾が1〜2μであるような補助層22が
形成される。次いで前記処理を施した基板に金属
メツキ例えば金メツキを施すと金の折出は微細な
溝部20に優先的に行われて光遮蔽物質24が補
助層22を区画する。光遮蔽物質24の高さは、
補助層と同程度かやゝ高いところまで容易に折出
させる事が出来る(第4図)。次いで上記処理を
終えた基板は燐酸500〜1000cc/、トリエタノ
ールアミン100〜500cc/の組成からなる浴の中
で浴の温度65〜95℃で陽極電解を行ない補助層2
2として被着したクロムの除去を行なう。補助層
を除去したあと十分水洗をする。こゝまでの工程
を終了した基板は、アルミニウム21の上に約50
μの高さの光遮蔽壁25が形成され、光遮蔽壁2
5によつて囲まれる小室26の大きさが20〜50μ
で、高さが約50μとなる(第5図)。このような
表面構造を有する基板上に沃化セシウム螢光体を
基板温度80〜150℃、蒸着速度0.5μ/分以上で
150μの厚さを蒸着する。このような条件で形成
された沃化セシウム螢光体層27は、光遮蔽壁2
5によつて囲まれた小室26内に充填される。螢
光体層27の厚さは、光遮蔽壁25より高くする
事が好ましい。次に保護層28として酸化アルミ
ニウム薄膜を0.01〜1μ例えば0.05μの厚さに形
成する。保護層28上には光電面29が形成され
て入力スクリーンとなる(第6図)。
Example 1 After cleaning the surface of an aluminum substrate 21 with a thickness of 0.5 mm by degreasing and etching, chromium is plated on the aluminum substrate 21 as an auxiliary layer 22 on the surface on which the phosphor layer is to be formed under the following conditions. . The temperature is maintained at 30 to 70°C in a plating bath consisting of 200 to 500 g of chromium trioxide and 0.5 to 2 g of sulfuric acid, and chromium is deposited to a thickness of about 50 μm at a current density of 10 to 50 A/dm 2 . The formed chromium layer forms a mosaic with fine cracks (not shown) to form an auxiliary layer 22. After thoroughly cleaning the substrate,
When heat-treated at .degree. C., the mosaic of the auxiliary layer 22 is further refined by cracks, and at the same time, the mosaic chromium surface 23 is oxidized and inactivated. Next, the portions of the substrate 21 not covered with chromium, that is, the coating (not shown) on the bottom surface of the fine grooves 20, is removed using caustic soda. As a result, as shown in FIG. 3, an auxiliary layer 22 is formed on the substrate in which the mosaic size is 20 to 50 μm, the thickness is 50 μm, and the groove width formed by the cracks is 1 to 2 μm. be done. Next, when the substrate subjected to the above treatment is plated with metal, for example, gold plating, the gold is preferentially deposited in the fine grooves 20, and the light shielding material 24 defines the auxiliary layer 22. The height of the light shielding material 24 is
It can be easily precipitated to the same level or slightly higher than the auxiliary layer (Figure 4). After the above treatment, the substrate is subjected to anodic electrolysis in a bath containing 500 to 1000 cc of phosphoric acid and 100 to 500 cc of triethanolamine at a bath temperature of 65 to 95°C to form the auxiliary layer 2.
Step 2 is to remove the deposited chromium. After removing the auxiliary layer, rinse thoroughly with water. After completing the steps up to this point, the board is made of aluminum 21 with approximately 50
A light shielding wall 25 with a height of μ is formed, and the light shielding wall 25 is
The size of the small chamber 26 surrounded by 5 is 20 to 50μ
The height is approximately 50μ (Figure 5). A cesium iodide phosphor is deposited on a substrate with such a surface structure at a substrate temperature of 80 to 150°C and a deposition rate of 0.5 μ/min or more.
Deposit a thickness of 150μ. The cesium iodide phosphor layer 27 formed under these conditions covers the light shielding wall 2.
The small chamber 26 surrounded by 5 is filled. It is preferable that the thickness of the phosphor layer 27 is higher than that of the light shielding wall 25. Next, a thin aluminum oxide film is formed as a protective layer 28 to a thickness of 0.01 to 1 μm, for example, 0.05 μm. A photocathode 29 is formed on the protective layer 28 and serves as an input screen (FIG. 6).

上述した製造法によつて形成される入力スクリ
ーンは補助層22を介して、光遮蔽壁25によつ
て区画される微細な小室26の形成が容易であり
小室26内に充填された螢光体層27は、光遮蔽
壁25によつて、発光の横方向への拡散が防止さ
れ、解像度の向上がもたらされた。
In the input screen formed by the manufacturing method described above, it is easy to form fine chambers 26 separated by light shielding walls 25 through the auxiliary layer 22, and the phosphor filled in the chambers 26 can be easily formed. In the layer 27, the light shielding wall 25 prevents the emitted light from spreading in the lateral direction, resulting in improved resolution.

上記実施例ではクロムを被着した場合について
述べたが他にニツケル、マンガン等を被着してモ
ザイク構造を有する補助層22を形成した後、補
助層の溝部20に他の金属24を充填し、更に上
記補助層22を除去して光遮蔽壁25を形成する
ことが可能である。またクロムを被着する前に予
めアルミニウムの上にジルコン等を被着した場合
クロムの被着は一そう容易になる。
In the above embodiment, the case was described in which chromium was deposited, but after the auxiliary layer 22 having a mosaic structure was formed by depositing nickel, manganese, etc., the grooves 20 of the auxiliary layer were filled with another metal 24. Furthermore, it is possible to form a light shielding wall 25 by removing the auxiliary layer 22. Furthermore, if zircon or the like is previously deposited on the aluminum before depositing chromium, the deposition of chromium becomes much easier.

以上述べたように本発明の螢光面の製造方法は
製法が容易であり、且つ光遮蔽壁の高さは任意の
ものが得られ、しかもきわめてせまい巾の光遮蔽
壁が再現性よく形成でき、光遮蔽壁によつて区画
される小室の大きさは20〜100μときわめて小さ
いので、これに対応して形成される螢光体層のブ
ロツクも小さく解像度の高い入力スクリーンを提
供することができる。
As described above, the method for manufacturing a fluorescent surface of the present invention is easy to manufacture, allows the height of the light shielding wall to be set at any desired height, and can form extremely narrow light shielding walls with good reproducibility. Since the size of the small chamber divided by the light-shielding wall is extremely small, 20 to 100 μm, the blocks of the phosphor layer formed correspondingly are also small, making it possible to provide a high-resolution input screen. .

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来のX線螢光増倍管の入力螢光面を
示す断面図、第2図は本出願人による既出願の螢
光面の一部を示す断面図、第3図、第4図及び第
5図は本発明による製造方法を説明する為の断面
図、第6図は本発明による螢光面をX線螢光増倍
管の入力螢光面に応用した例を示す図である。 21…基板、27…螢光体層、22…補助層、
29…光電面、25…光遮蔽壁。
FIG. 1 is a sectional view showing the input phosphor surface of a conventional X-ray fluorescence multiplier tube, FIG. 4 and 5 are cross-sectional views for explaining the manufacturing method according to the present invention, and FIG. 6 is a diagram showing an example in which the fluorescent surface according to the present invention is applied to the input fluorescent surface of an X-ray fluorescence multiplier tube. It is. 21... Substrate, 27... Fluorescent layer, 22... Auxiliary layer,
29...Photocathode, 25...Light shielding wall.

Claims (1)

【特許請求の範囲】[Claims] 1 基板の表面にモザイク構造の補助層を形成す
る工程と、前記モザイク構造を区画する溝部に光
遮へい物質を充填する工程と、前記充填物質を残
してモザイク部分を除去し、基板表面に充填した
物質で光遮へい壁を形成する工程と、上記基板上
に螢光体層を形成することを特徴とする螢光面の
製造方法に於いて、前記基板の表面のモザイク構
造の補助層がメツキ法によつて形成される事を特
徴とする螢光面の製造方法。
1. A step of forming an auxiliary layer of a mosaic structure on the surface of the substrate, a step of filling a light shielding material into the grooves that partition the mosaic structure, and a step of removing the mosaic portion leaving the filling material and filling the surface of the substrate. A method for manufacturing a phosphor surface, comprising the steps of forming a light shielding wall with a substance, and forming a phosphor layer on the substrate, wherein the auxiliary layer of the mosaic structure on the surface of the substrate is formed by a plating method. A method for manufacturing a fluorescent surface, characterized in that it is formed by.
JP2764878A 1978-03-13 1978-03-13 Manufacture of fluorescent screen Granted JPS54120575A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2764878A JPS54120575A (en) 1978-03-13 1978-03-13 Manufacture of fluorescent screen

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2764878A JPS54120575A (en) 1978-03-13 1978-03-13 Manufacture of fluorescent screen

Publications (2)

Publication Number Publication Date
JPS54120575A JPS54120575A (en) 1979-09-19
JPS6213782B2 true JPS6213782B2 (en) 1987-03-28

Family

ID=12226729

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2764878A Granted JPS54120575A (en) 1978-03-13 1978-03-13 Manufacture of fluorescent screen

Country Status (1)

Country Link
JP (1) JPS54120575A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5913133A (en) * 1982-06-28 1984-01-23 ボルグ・ワ−ナ−・コ−ポレ−シヨン Wet clutch assembly

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5913133A (en) * 1982-06-28 1984-01-23 ボルグ・ワ−ナ−・コ−ポレ−シヨン Wet clutch assembly

Also Published As

Publication number Publication date
JPS54120575A (en) 1979-09-19

Similar Documents

Publication Publication Date Title
US4236077A (en) Image intensifier
JP3084713B2 (en) Method for producing scintillator and scintillator obtained by the method
US3525679A (en) Method of electrodepositing luminescent material on insulating substrate
EP0187860B1 (en) Cathode ray tube
US4209705A (en) Image intensifier whose input screen phosphor layer is divided into light guiding mosaic blocks by metal protrusions
JPH0241861B2 (en)
US4371806A (en) Luminescent screen with grid structure for X-ray image intensifier
DE2064466A1 (en) X-ray or gamma-ray scintillator, as well as detector screens and image intensifier tubes manufactured using such a scintillator
US2047369A (en) Photoelectric device
DE69304394T2 (en) Reflective photoelectric surface and photomultiplier
JPS6213782B2 (en)
DE2202217C3 (en) Method of Making an Electron Source Containing Device RCA Corp., New York, N.Y. (V.St.A.)
JP2514952B2 (en) X-ray image tube
JPS5871536A (en) Input surface of x-ray-image amplifier tube and its manufacture
US2401786A (en) Television transmitting apparatus
US4862006A (en) Method of fabrication of an x-ray image intensifier and an x-ray image intensifier thus obtained
US4362933A (en) Multistage vacuum x-ray image intensifier
JPS585498B2 (en) Method for manufacturing an input screen for an X-ray fluorescence multiplier tube
US2380505A (en) Method of manufacturing mosaic electrodes
GB1586141A (en) Image intensifier
DE2307026C2 (en) X-ray image intensifier input screen
JPS6356666B2 (en)
US3232781A (en) Electron image intensifying devices
JPS6135653B2 (en)
JPS586260B2 (en) X-ray fluorescence multiplier tube and its manufacturing method