JPS62137435A - Piston for hydraulic cylinder - Google Patents

Piston for hydraulic cylinder

Info

Publication number
JPS62137435A
JPS62137435A JP60275158A JP27515885A JPS62137435A JP S62137435 A JPS62137435 A JP S62137435A JP 60275158 A JP60275158 A JP 60275158A JP 27515885 A JP27515885 A JP 27515885A JP S62137435 A JPS62137435 A JP S62137435A
Authority
JP
Japan
Prior art keywords
phenol
piston
resin
fibers
molding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60275158A
Other languages
Japanese (ja)
Other versions
JPH0554591B2 (en
Inventor
Koji Kaneko
金子 光二
Kiyoto Miyazaki
宮崎 清人
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissin Kogyo Co Ltd
Sumitomo Bakelite Co Ltd
Original Assignee
Nissin Kogyo Co Ltd
Sumitomo Bakelite Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissin Kogyo Co Ltd, Sumitomo Bakelite Co Ltd filed Critical Nissin Kogyo Co Ltd
Priority to JP60275158A priority Critical patent/JPS62137435A/en
Publication of JPS62137435A publication Critical patent/JPS62137435A/en
Publication of JPH0554591B2 publication Critical patent/JPH0554591B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D65/00Parts or details
    • F16D65/14Actuating mechanisms for brakes; Means for initiating operation at a predetermined position
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2125/00Components of actuators
    • F16D2125/02Fluid-pressure mechanisms
    • F16D2125/06Pistons

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Pistons, Piston Rings, And Cylinders (AREA)
  • Braking Arrangements (AREA)

Abstract

PURPOSE:To obtain a piston for hydraulic cylinder consisting of a phenol resin molding excellent in heat resistance by mixing a resol type phenol resin having a different structure with a resin system, and using a filler such as reinforced fibers. CONSTITUTION:All the phenol resins used in the piston 1 are solid resol type phenol resins, whose composition is such that the weight ratio of the solid resol type phenol resin, in which the free phenol exceptional number average molecular weight is 800-1,200 and the dimethylene ether group constituent ratio in a phenol nucleus combining function group is 40-60% in mol, and the resin, in which the free phenol exceptional number average molecular weight is 600-1,000 and the dimethylene ether group constituent ratio in the phenol nucleus combining function group is 0-20% in mol, is 3:7-7:3. The fillers are made of inorganic fibers such as glass fibers, carbon fibers, graphite fibers, or the like, and glass powder, clay, mica, graphite powder, or the like may be partially used in combination. By using these materials, molding is carried out by means of an injection molding machine, and after molding post cure is carried out to enhance the heat resistance and dimensional stability.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は耐熱性に優れたフェノール樹脂成形体よ構成
る、ディスクブレーキのキャリノZ−ピストン、ドラム
ブレーキのホイールシリンダピストン、クラッチのオR
レーションシリンダピストン等の液圧シリンダ用ピスト
ンに関するものでaる0 〔従来技術〕 以下、主としてディスクブレーキのキャリノミ−ピスト
ンについて述べる。
[Detailed Description of the Invention] [Field of Industrial Application] This invention is applicable to carino Z-pistons for disc brakes, wheel cylinder pistons for drum brakes, and O-R pistons for clutches, which are made of a phenolic resin molding with excellent heat resistance.
This invention relates to a piston for a hydraulic cylinder such as a ration cylinder piston. [Prior Art] The following will mainly describe the carriage chimney piston of a disc brake.

最近の自動車においては、制動性能の向上を目的として
、ディスクブレーキの採用が一般化してきている。これ
はディスクブレーキが制動性能、特に瞬間制動力、連続
制動力の確保に他方式と比較して容易であるからである
。第1図はディスクブレーキの構成を示す断面図である
。(1)はキャリノぞ一ピストン、(2)はシール、(
3)はディスクプレーキノぞラド、(4)はディスク、
(5)はブレーキ液である。
In recent automobiles, the use of disc brakes has become commonplace for the purpose of improving braking performance. This is because disc brakes are easier to maintain braking performance, especially instantaneous braking force and continuous braking force, than other systems. FIG. 1 is a sectional view showing the configuration of a disc brake. (1) is a carino piston, (2) is a seal, (
3) is a disk play kinozorad, (4) is a disk,
(5) is brake fluid.

キャリ/1°−ピストン(1)は従来クロムメッキした
鋼材が多く用いられる。ディスクブレーキは制動時に摩
擦熱が発生する。その発熱量は運動エネルギーが熱エネ
ルギーに変換されるのであるから、制動開始時の車速か
速いほど又車体重量が重いほど大きい。この熱はプレー
キノぞソド、キャリノーピストンを伝い、ブレーキ液を
昇温させる。急制動の繰り返しや、長い下り坂での連続
制動によりブレーキ液が沸騰する、いわゆるペーパーロ
ック現像の発生によシ、ブレーキの効きが悪くなること
はよく知られている。制動性能の向上には熱対策、即ち
空気中への放熱とブレーキ液への断熱が必要になってく
る。最近の傾向としてプレーキノζラドが摩擦特性を向
上する目的のために以前から使用されている主配合材に
石綿を使い、フェノール樹脂などをバインダーとした成
形体から、主配合材にスチールウールなどを用いた成形
体に大きくかわりつつある。更に焼結ノεツドと呼ばれ
る銅を主体とした各種金属粉末の焼結成形体の採用も一
部の車種で見られるようになってきた。この傾向は従来
の設計のままではブレーキ液への伝熱量を増ヤシ、ペー
パぐ一ロック現像を発生しゃすくさせている。この問題
を解決するために、キャリノミ−ピストンを樹脂化し、
断熱することがブレーキ液昇温防止に有効であシ、キャ
リ・ξ−ピストン乞フェノール樹脂で構造し、一部実用
化している。キャリ・ε−ピストンは制動時、局部的に
は200℃以上に達することから、熱時での強度、小さ
い熱膨張係数、広い温度範囲での寸法変化が小さいこと
などが要求され、ブレーキ液との共存下で寸法、強度が
大巾に変化しないことが必要である。フェノール樹脂製
キャリノぐ−ピストンは上記の諸要求、特に200℃以
上の耐熱性及び広い温度範囲で寸法変化率が小さいこと
を両立させることが困難であり、その適用が制動時の発
熱量が小さい車種に限定されていたと云える。しかしな
がら、ポリイミド等特殊な耐熱性樹脂を除いては、フェ
ノール樹脂がその耐熱性においてキヤIJ /ε−ピス
トン用樹脂として実用性が高く、キャリ・ぐ−ピストン
としての適用を拡大することから、何らかの方法での耐
熱性向上が強く望まれてきた。ドラムブレーキのホイー
ルシリンダピストンやクラッチのオペレーションシリン
ダピストン等においても、耐熱性、寸法安定性の改良が
望壕れていた。
Conventionally, chrome-plated steel is often used for the carry/1° piston (1). Disc brakes generate frictional heat when braking. Since kinetic energy is converted into thermal energy, the amount of heat generated increases as the vehicle speed at the start of braking increases and as the vehicle weight increases. This heat travels through the brake pedal and the brake piston, raising the temperature of the brake fluid. It is well known that repeated sudden braking or continuous braking on long downhill slopes can cause the brake fluid to boil, a so-called paper lock phenomenon, which can reduce the effectiveness of the brakes. Improving braking performance requires heat countermeasures, that is, heat radiation into the air and insulation into the brake fluid. Recent trends include the use of asbestos as the main compounding material and molded products with binders such as phenolic resin, which have been used for a long time for the purpose of improving friction properties, and the use of steel wool and other materials as the main compounding material. The molded bodies used are undergoing major changes. Furthermore, the use of sintered bodies made of various metal powders, mainly copper, called sintered molds, has begun to be seen in some car models. This tendency increases the amount of heat transferred to the brake fluid and increases the likelihood of paper lock development if the conventional design is used. In order to solve this problem, the carry chisel piston was made of resin,
Insulating the brake fluid is effective in preventing the temperature of the brake fluid from rising, and the carrier piston is constructed of phenolic resin and has been put into practical use to some extent. Since the carry ε-piston locally reaches over 200°C during braking, it is required to have strength when hot, a small coefficient of thermal expansion, and small dimensional change over a wide temperature range. It is necessary that the dimensions and strength do not change significantly in the coexistence of It is difficult for phenolic resin carrying pistons to meet the above requirements, especially heat resistance above 200℃ and small dimensional change rate over a wide temperature range, and its application is limited to low heat generation during braking. It can be said that it was limited to certain car models. However, with the exception of special heat-resistant resins such as polyimide, phenolic resin has high heat resistance and is highly practical as a resin for carry IJ/ε-pistons, and its application as a carry-go piston will be expanded. There has been a strong desire to improve heat resistance by this method. Improvements in heat resistance and dimensional stability were also desired for drum brake wheel cylinder pistons and clutch operation cylinder pistons.

〔発明の目的〕[Purpose of the invention]

本発明は以上の背景から樹脂系に構造の異なるレゾール
型フェノール樹脂を混合して用い、強化繊維等の充填材
を用いることによシ耐熱性が向上するとの知見を得、更
にこの知見に基づき種々研究を進めて、本発明を完成す
るに至ったものである。その目的は耐熱性に優れたフェ
ノール樹脂成形体より成るディスクブレーキのキャリノ
−ピストン等の液圧シリンダ用ピストンを提供するKあ
る。
Based on the above background, the present invention has obtained the knowledge that heat resistance can be improved by mixing resol type phenolic resins with different structures in the resin system and using fillers such as reinforcing fibers, and based on this knowledge. The present invention has been completed through various studies. The purpose is to provide a piston for a hydraulic cylinder such as a carino piston for a disc brake, which is made of a phenolic resin molding having excellent heat resistance.

〔発明の構成〕[Structure of the invention]

本発明は、フリーフェノール除外数平均分子!(以下、
岳という)が800〜1200.フェノール核結合官能
基のジメチルエーテル基構成比率が40〜60モルチで
ある固形レゾール型フェノール樹脂と、フリーフェノー
ル除外数平均分子量(M)が600〜1000、フェノ
ール核結合官能基のジメチレンエーテル基構成比率が0
〜20モルチである固形レゾール型フェノール樹脂との
混合比率CMu比)が3ニア〜7:3であるフェノール
樹脂100重量部と充填材100〜250重量部である
組成物の成形体から成ることを特徴とする液圧シリンダ
用ピストンに関するものである。
The present invention is free phenol excluded number average molecule! (below,
800-1200. A solid resol-type phenol resin with a dimethyl ether group composition ratio of phenol core-binding functional groups of 40 to 60 moles, and a number average molecular weight (M) excluding free phenol of 600 to 1000, and a dimethylene ether group composition ratio of phenol core-binding functional groups. is 0
A molded body of a composition comprising 100 parts by weight of a phenolic resin whose mixing ratio (CMu ratio) with a solid resol type phenolic resin of ~20 molar ratio is 3 to 7:3 and 100 to 250 parts by weight of a filler. The present invention relates to a characteristic piston for a hydraulic cylinder.

なお官能基の比率は、樹脂をアセチル化したのち、NM
R測定により求めた。本発明の液圧シリンダ用ピストン
はスクリュ一式射出成形機にて射出成形するか、スクリ
ュ一式押出機にて成形材料を可塑化し、所定の金型内で
可塑化物を加熱圧縮成形して得られる。従ってこの発明
の組成物はスクリューによる可塑化が可能な構成でなけ
ればならない。
Note that the ratio of functional groups is NM after acetylating the resin.
It was determined by R measurement. The piston for a hydraulic cylinder of the present invention can be obtained by injection molding using a screw injection molding machine or by plasticizing a molding material using a screw extruder and heating and compression molding the plasticized material in a predetermined mold. Therefore, the composition of the present invention must have a structure that allows plasticization using a screw.

なぜならば粉末あるいは粉末を予備成形したものを高周
波、赤外線などで可塑化して後に、金型内で加熱圧縮成
形した成形体は耐熱性、特に熱衝撃性が劣るからである
This is because a molded product obtained by plasticizing powder or a preformed powder using high frequency, infrared rays, etc. and then heating and compression molding in a mold has poor heat resistance, particularly thermal shock resistance.

以下本発明について詳しく説明する。本発明に使用され
るフェノール樹脂はいずれも固形レゾール型フェノール
樹脂である。液状では成形材料化の工程が煩雑であり、
工業的に不利となる。また、ヘキサメチレンテトラミン
あるいはノξラホルムアルデヒド等を硬化剤とするノボ
ラック型フェノール樹脂は、その反応機構上、架橋密度
が上がらない、少量残存する硬化剤からガスを発生する
等の理由から高耐熱性は得られないこと、レゾール型と
比較して耐薬品性に劣り、ブレーキ液等に侵されやすい
こと等の欠点があり、液圧シリング用のピストン用とし
ては好ましくない。
The present invention will be explained in detail below. All of the phenolic resins used in the present invention are solid resol type phenolic resins. In liquid form, the process of turning it into a molding material is complicated;
Industrially disadvantageous. In addition, novolak-type phenolic resins that use hexamethylenetetramine or noraformaldehyde as a curing agent have high heat resistance because, due to their reaction mechanism, the crosslinking density does not increase, and gas is generated from a small amount of remaining curing agent. It has drawbacks such as not being able to obtain the desired chemical resistance, being inferior in chemical resistance compared to the resol type, and easily being attacked by brake fluid, etc., and is therefore not suitable for use in pistons for hydraulic silling.

固形レゾール型フェノール樹脂の組成は、Mが800〜
1200、フェノール核結合官能基のジメチレンエーテ
ル基構成比率が40〜60モルチである固形レゾール型
フェノール樹脂(以下ジメチレンエーテル型レゾールと
呼ぶ)と、Mが600〜1000、フェノール核結合官
能基のジメチレンエーテル基構成比率が0〜20モル襲
である固形レゾール型フェノール樹脂(以下メチロール
型レゾールと呼ぶ)との比率(重量比)が3=7〜7.
3のものである。ジメチレンエーテル型レゾールは活性
化エネルギーが約30 kcal/ molと大きく、
比較的低温では反応が進行しにくく、高温域では逆に反
応が進行しやすいため、射出成形に適するのに対し、メ
チロール型レゾールは活性化エネルギーが約10 kc
at/motと小さく、比較的低温で反応が進行するた
め、成形時スクリューでの予備可塑化物の熱安定性が悪
い。
The composition of the solid resol type phenolic resin is that M is 800~
1200, a solid resol type phenol resin (hereinafter referred to as dimethylene ether type resol) in which the dimethylene ether group composition ratio of the phenol core-binding functional group is 40 to 60 moles, and The ratio (weight ratio) to a solid resol type phenol resin (hereinafter referred to as methylol type resol) having a dimethylene ether group composition ratio of 0 to 20 moles is 3 = 7 to 7.
3. Dimethylene ether type resol has a large activation energy of approximately 30 kcal/mol.
The reaction is difficult to proceed at relatively low temperatures, and on the contrary, the reaction proceeds easily at high temperatures, making it suitable for injection molding, whereas methylol-type resols have an activation energy of approximately 10 kc.
Since the at/mot is small and the reaction proceeds at a relatively low temperature, the thermal stability of the preplasticized product in the screw during molding is poor.

ジメチレンエーテル型レゾールの硬化物はその硬化機構
からジメチレンエーテル基が相当量残存し、またフェノ
ール核間の距離が比較的長いだめ、メチロール型レゾー
ル硬化物よりも架橋密度が上がりにくく、耐熱性が劣る
。従って高耐熱性を有し、スクリューでの予備可塑物の
熱安定にも優れた樹脂組成を得るには、ジメチレンエー
テル型レゾールとメチロール型レゾールの配合比率を3
ニア〜7:3とする。3ニアよりジメチレン型レゾール
の比率が少ない場合にはスクリューでの予備可塑化が困
難となり、逆に7:3よりもメチロール型レゾールの比
率が少ない場合には耐熱性が不充分となる。本発明に使
用する充填材は無機系を主体とするのが適当である。木
粉、・ξルプ等有機系のものは耐熱性が劣る。液圧シリ
ンダ用ピストンとして耐熱性を得るKは、熱時の歪みに
対する強度が強く、熱膨張係数が小さいことが必要であ
る。この目的のために望ましい充填材は無機系強化繊維
、即ちガラス繊維、カーボン繊維、黒鉛繊維などであり
、ガラス粉末、クレー、マイカ、黒鉛粉末等を一部併用
することは任意である。
Cured products of dimethylene ether type resols have a considerable amount of remaining dimethylene ether groups due to their curing mechanism, and because the distance between phenol nuclei is relatively long, crosslinking density is less likely to increase than cured products of methylol type resols, making them more heat resistant. is inferior. Therefore, in order to obtain a resin composition that has high heat resistance and excellent thermal stability of the pre-plasticized material in the screw, the blending ratio of dimethylene ether type resol and methylol type resol is 3.
Near to 7:3. If the ratio of dimethylene type resol is less than 3:3, preplasticization with a screw becomes difficult, and conversely, if the ratio of methylol type resol is less than 7:3, heat resistance becomes insufficient. It is appropriate that the filler used in the present invention is mainly inorganic. Organic materials such as wood flour and lubricant have poor heat resistance. In order to obtain heat resistance as a piston for a hydraulic cylinder, K needs to have high strength against distortion during heating and a small coefficient of thermal expansion. Desirable fillers for this purpose are inorganic reinforcing fibers, such as glass fibers, carbon fibers, graphite fibers, etc., and it is optional to partially use glass powder, clay, mica, graphite powder, etc. in combination.

本発明において使用される充填材はフェノール樹脂10
0重量部に対して100〜250重量部の範囲であり、
100itt部以下では耐熱性、強度、寸法安定性等の
特性面で劣シ、また、250重量部以上では成形時の流
動性が劣るなどの問題が生じる。一般には、これらの組
成物に硬化助剤、離型剤、顔料等を加え混合した後、加
熱混線により成形材料を得る。本発明の液圧シリンダ用
ピストンは前記成形材料全スクリュ一式射出成形機にて
射出成形するか、スクリュ一式押出機にて成形材料全可
塑化し、所定の金型内で可塑化物を加熱圧縮成形して得
られる。成形後にダストキュアを行うことが耐熱性、寸
法安定性を向上させるために望ましい。
The filler used in the present invention is phenolic resin 10
The range is 100 to 250 parts by weight relative to 0 parts by weight,
If it is less than 100 itt parts, the properties such as heat resistance, strength, and dimensional stability will be poor, and if it is more than 250 parts by weight, problems such as poor fluidity during molding will occur. Generally, a curing aid, a mold release agent, a pigment, etc. are added and mixed to these compositions, and then a molding material is obtained by heating and mixing. The piston for a hydraulic cylinder of the present invention is produced by injection molding the molding material using a complete screw set injection molding machine, or by fully plasticizing the molding material using a screw set extruder, and then heating and compression molding the plasticized product in a predetermined mold. can be obtained. It is desirable to perform dust curing after molding in order to improve heat resistance and dimensional stability.

〔発明の効果〕〔Effect of the invention〕

本発明の液圧シリンダ用ピストンは樹脂組成から成形体
の架橋密度が向上するので、高い温度条件下において重
音減少率が小さい、強度低下が小さい等、優れた耐熱性
を有したものである。
Since the piston for a hydraulic cylinder of the present invention has an improved crosslinking density of the molded product due to the resin composition, it has excellent heat resistance, such as a small reduction rate of heavy sound and a small decrease in strength under high temperature conditions.

〔実施例〕〔Example〕

Mn カ1000 、ジメチレンニーデル基の構成比率
が41モルチであるジメチレンエーテル型レゾールと、
Mnが800、ジメチレンエーテル基の構成比率が20
モルチであるメチロール型レゾールとの比率が1:1で
あるフェノール樹脂に表−1に示すように組成でガラス
繊維他を混合後、熱ロールで混練し成形材料を得た。
A dimethylene ether type resol having an Mn of 1000 and a composition ratio of dimethylene needle groups of 41 moles;
Mn is 800, composition ratio of dimethylene ether group is 20
A phenol resin having a ratio of 1:1 to a methylol type resol, which is a mortar, was mixed with glass fiber and others in the composition shown in Table 1, and then kneaded with hot rolls to obtain a molding material.

比較例1 ジメチレンエーテル型レゾールのみk 84脂成分とし
て、表−1に示した組成でガラス繊維他を混合後、熱ロ
ールで混練し成形材料を得た。
Comparative Example 1 Dimethylene ether type resol only k84 After mixing glass fiber and others with the composition shown in Table 1 as a fat component, the mixture was kneaded with hot rolls to obtain a molding material.

比較例2 メチロール型レゾールのみtmm酸成分して、表−1に
示した組成でガラスIa、 、?a他全混合後、熱ロー
ルで混練し成形材料を得た。
Comparative Example 2 Glass Ia, ? After mixing everything including a, the mixture was kneaded with hot rolls to obtain a molding material.

これらの成形材料につい−C以下の物性全比較試験を行
った。+11比重、(2)表面強度(ロノクウエルMス
ケール) 、+3+曲げ強さ、(4)曲げ弾性率、(5
)圧縮強さ、(6)線膨張係数、(7)耐熱衝撃性、(
8)寸法安定性 (1)〜(6)項はテストピースを射出成形により得、
JISK6911に準じて測定した。(7)及び(8)
項は第2図に示したキャリノぐ−ピストンモデル(6)
を射出成形により得、以下の方法で評価した。
A complete comparison test of physical properties of -C and below was conducted for these molding materials. +11 specific gravity, (2) surface strength (Ronokuwell M scale), +3+ bending strength, (4) bending modulus, (5
) compressive strength, (6) coefficient of linear expansion, (7) thermal shock resistance, (
8) Dimensional stability For items (1) to (6), test pieces were obtained by injection molding,
Measured according to JISK6911. (7) and (8)
The term is the carino-piston model (6) shown in Figure 2.
was obtained by injection molding and evaluated by the following method.

耐熱衝撃性:キャIJ /F−ピストンモデルを約30
0℃聾で加熱したのち、水冷させる。
Thermal shock resistance: Approximately 30
After heating at 0°C, cool with water.

これを繰返し耐熱衝撃性を評価した。This was repeated to evaluate thermal shock resistance.

寸法安定性:キャリノミ−ピストンモデルをブレーキ液
、空気、グリース等へ150℃ 400時間浸漬してその寸法安定性 を評価した。
Dimensional stability: A carry chisel piston model was immersed in brake fluid, air, grease, etc. at 150°C for 400 hours to evaluate its dimensional stability.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はディスクブレーキの構成を示す断面図である。 第2図は実施例のキャリ・ξ−ピストンモデルの一部断
面正面図である。
FIG. 1 is a sectional view showing the configuration of a disc brake. FIG. 2 is a partially sectional front view of the carry/ξ-piston model of the embodiment.

Claims (1)

【特許請求の範囲】[Claims] フリーフェノール除外数平均分子量が800〜1200
、フェノール核結合官能基のジメチレンエーテル基構成
比率が40〜60モル%である固形レゾール型フェノー
ル樹脂と、フリーフェノール除外数平均分子量が600
〜1000、フェノール核結合官能基のジメチレンエー
テル基構成比率が0〜20モル%である固形レゾール型
フェノール樹脂との混合比率(重量比)が3:7〜7:
3であるフェノール樹脂100重量部と充填材100〜
250重量部である組成物の成形体から成ることを特徴
とする液圧シリンダ用ピストン。
Free phenol excluded number average molecular weight is 800-1200
, a solid resol type phenol resin in which the dimethylene ether group composition ratio of the phenol core-binding functional group is 40 to 60 mol%, and a number average molecular weight excluding free phenol of 600.
~1000, and the mixing ratio (weight ratio) of the solid resol type phenol resin in which the dimethylene ether group composition ratio of the phenol core-binding functional group is 0 to 20 mol% is 3:7 to 7:
100 parts by weight of phenolic resin and 100 parts by weight of filler
A piston for a hydraulic cylinder, characterized in that it is made of a molded body of a composition having a weight of 250 parts.
JP60275158A 1985-12-09 1985-12-09 Piston for hydraulic cylinder Granted JPS62137435A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60275158A JPS62137435A (en) 1985-12-09 1985-12-09 Piston for hydraulic cylinder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60275158A JPS62137435A (en) 1985-12-09 1985-12-09 Piston for hydraulic cylinder

Publications (2)

Publication Number Publication Date
JPS62137435A true JPS62137435A (en) 1987-06-20
JPH0554591B2 JPH0554591B2 (en) 1993-08-12

Family

ID=17551480

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60275158A Granted JPS62137435A (en) 1985-12-09 1985-12-09 Piston for hydraulic cylinder

Country Status (1)

Country Link
JP (1) JPS62137435A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0419949U (en) * 1990-06-12 1992-02-19
US6443049B2 (en) 2000-03-28 2002-09-03 Aisin Seiki Kabushiki Kaisha Hydraulic piston

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5786640A (en) * 1980-10-31 1982-05-29 Hooker Chemicals Plastics Corp Piston for disc brake

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5786640A (en) * 1980-10-31 1982-05-29 Hooker Chemicals Plastics Corp Piston for disc brake

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0419949U (en) * 1990-06-12 1992-02-19
US6443049B2 (en) 2000-03-28 2002-09-03 Aisin Seiki Kabushiki Kaisha Hydraulic piston

Also Published As

Publication number Publication date
JPH0554591B2 (en) 1993-08-12

Similar Documents

Publication Publication Date Title
US4775705A (en) Friction materials and their manufacture
CN105111532B (en) A kind of calcium carbonate crystal whisker enhancing Rubber base friction material and preparation method thereof
CN101831273B (en) Ceramic-based friction material and method for preparing same
US4476256A (en) Friction material for brake linings and the like
CN102134397B (en) Synthetic brake shoe for urban railway vehicle and preparation method thereof
US3730920A (en) Compositions containing microspheres and friction elements produced therefrom
CN105884252A (en) Manufacturing process and method of abrasion-resisting lining part
GB2085019A (en) Friction material
JP3138751B2 (en) Composition for friction element
US3972394A (en) Friction material
JPS594455B2 (en) Friction material with excellent wear resistance and its manufacturing method
JPS62137435A (en) Piston for hydraulic cylinder
US6080230A (en) Friction material composition
JP5011557B2 (en) Composite friction modifier for friction material
JP4959263B2 (en) Friction material manufacturing method
JPH03167248A (en) Phenol resin molding material
JPH05320622A (en) Friction material
JPH0788501B2 (en) Resin composition for friction material
JP4634479B2 (en) Friction material and manufacturing method thereof
JPH0828617A (en) Phenol resin composite for friction material
JP5850739B2 (en) Friction material manufacturing method
CN105299081B (en) A kind of friction material for being suitable for high-pressure heavy-load clutch disc
JP2000219750A (en) Friction material for brake
JPH0214223A (en) Production of friction material
JPS6179070A (en) Caliper piston

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees