JPS62136535A - Method for recovering zinc from iron making dust - Google Patents

Method for recovering zinc from iron making dust

Info

Publication number
JPS62136535A
JPS62136535A JP60276234A JP27623485A JPS62136535A JP S62136535 A JPS62136535 A JP S62136535A JP 60276234 A JP60276234 A JP 60276234A JP 27623485 A JP27623485 A JP 27623485A JP S62136535 A JPS62136535 A JP S62136535A
Authority
JP
Japan
Prior art keywords
zinc
dust
iron
phase
solid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60276234A
Other languages
Japanese (ja)
Inventor
Shunichi Toyama
遠山 俊一
Rikuo Tateyama
立山 陸雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP60276234A priority Critical patent/JPS62136535A/en
Publication of JPS62136535A publication Critical patent/JPS62136535A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Abstract

PURPOSE:To recover zinc from making dust at a high removal rate by subjecting zinc-contg. dust to a leaching treatment in a hydrochloric acid soln. to classify the dust to a zinc rich phase and zinc lean phase and extracting and separating zinc from the zinc rich phase. CONSTITUTION:The zinc-contg. iron making dust is stirred for a specified period at <=0.5pH in the hydrochloric acid soln. and is classified to the zinc rich phase in which the zinc is segregated and (<100mu) and the zinc lean phase (>100mu) in which the zinc concn. is low by a classifier. The zinc rich phase is added to a hydrochloric acid of about 10-30% concn. to a mixing ratio of about 1 (solid): 9-19 (liquid) and is extracted for about one hour at about 40 deg.C temp. A solid-liquid sepn. is executed after the extraction. The separated zinc-contg. aq. soln. is neutralized to about 8.5-10.5pH and the zinc is recovered in the form of precipitate. The solid content separated from the zinc-contg. aq. soln. and the zinc lean phase are subjected to a neutralizing treatment and are reused as an iron source. The zinc is thereby efficiently recovered from the iron making dust and the residue after the zinc extraction is made usable as a iron source for a blast furnace.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は製鉄ダストから亜鉛を回収する方法に関し、さ
らに詳しくは、鉄および鉛等を含む亜鉛含有ダストから
亜鉛をZn(OH)2またはZnOの形で高濃度の亜鉛
を製鉄ダストから回収する方法に関する。
Detailed Description of the Invention [Field of Industrial Application] The present invention relates to a method for recovering zinc from iron-making dust, and more specifically, the present invention relates to a method for recovering zinc from iron-making dust. This invention relates to a method for recovering high concentrations of zinc from steel dust in the form of

[従来技術] 高炉ダストにはT、Fe50〜40wL%および亜鉛1
〜4u+L%、その他船等を含有しているため、そのま
ま高炉の鉄源として再利用すると、ダストが亜鉛を含有
しているため高炉内において、炉内壁に亜鉛が残留して
ガスの通風が不均一になり、また、炉頂より装入される
原料が不均一に落下し、さらに炉壁が悪化するという亜
鉛アタック問題が発生するので、その対策としては予め
ダストから亜鉛分を分離除去する必要がある。
[Prior art] Blast furnace dust contains T, Fe50-40wL% and zinc 1
~4u+L% and other ships, etc., so if the dust is reused as an iron source for a blast furnace, the dust will remain on the inner wall of the furnace and the gas will not be ventilated because the dust contains zinc. In addition, the raw material charged from the top of the furnace falls unevenly, causing a zinc attack problem that further deteriorates the furnace wall, so as a countermeasure, it is necessary to separate and remove zinc from the dust in advance. There is.

一般的に、含亜鉛副生物から亜鉛を分離する方法として
は従来がら以下説明する方法が知られている。
Generally, the following method is known as a method for separating zinc from zinc-containing by-products.

(1)湿式サイクロンによる方法 この方法は選鉱的で水中における固体粒子の粒度分布が
、分離に適している場合にのみ行なわれる方法であって
、どのような亜鉛含有副生物に適用できるものではない
(1) Wet cyclone method This method is a beneficiation method that is used only when the particle size distribution of solid particles in water is suitable for separation, and cannot be applied to any type of zinc-containing by-product. .

(2)ロータリーキルンによる方法 ロータリーキルンを使用して亜鉛化合物を還元して亜鉛
を揮発防去する方法であるが、この方法は設4a管、熱
エネルギーの消費が大きく不経済であり、かつ、回収さ
れた亜鉛純度が約50%程度で用途が限定される。
(2) Method using a rotary kiln This method uses a rotary kiln to reduce zinc compounds and volatilize zinc, but this method requires a large amount of heat energy and is uneconomical, and is not recoverable. The purity of zinc is about 50%, which limits its use.

(3)塩化焙焼法 この方法は広く各種の副生物に適用可能であるが、処理
コストが高くつく。
(3) Chloride roasting method This method is widely applicable to various byproducts, but the processing cost is high.

(4)酸またはアルカリによる抽出法 硫酸水溶液および苛性ソーダ水溶液により亜鉛含有副生
物を処理する方法であるが、ランニングコストが萬み、
さらに、亜鉛除去後の残渣を高炉原料として再使用する
際に酸お上りアルが残留しているためその除去処理が困
難であり、また、該副生物に鉄分が共存すると鉄と一部
が溶解するので鉄と亜鉛の分離が困難になる。
(4) Extraction method with acid or alkali This method involves treating zinc-containing by-products with an aqueous sulfuric acid solution and an aqueous caustic soda solution, but the running cost is high;
Furthermore, when the residue after zinc removal is reused as blast furnace raw material, it is difficult to remove the residual acid residue, and if iron coexists with the by-product, some of the iron will dissolve. This makes it difficult to separate iron and zinc.

[発明が解決しようとする問題点1 本発明は上記に説明したように、従来における含亜鉛副
生物から亜鉛を抽出する際の種々の方法においての問題
点に鑑みなされたものであり、本発明者が鋭意研究を行
なった結果、含亜鉛副生物、特に、製鉄ダストから効率
よく鉄分と亜鉛とを分離することができ、かつ、亜鉛を
高純度で回収でき、また、分離された鉄分も直ちに高炉
に再使用することができるという、処理コストも低廉で
ある製鉄ダストから亜鉛を回収する方法を開発したので
ある。
[Problems to be Solved by the Invention 1] As explained above, the present invention was made in view of the problems in various conventional methods for extracting zinc from zinc-containing by-products, and the present invention As a result of intensive research conducted by researchers, it has become possible to efficiently separate iron and zinc from zinc-containing by-products, especially iron-making dust, recover zinc with high purity, and immediately recover the separated iron. They developed a method for recovering zinc from steelmaking dust that can be reused in blast furnaces and is inexpensive to process.

[問題点を解決するための手段1 本発明に係る製鉄ダストから亜鉛を回収する方法の特徴
とするところは、亜鉛含有ダストを塩酸溶液により浸出
処理を行なった後亜鉛濃縮相と亜鉛希薄相とに分級し、
次いで、亜鉛濃縮相から亜鉛を抽出して固液分離を行な
い、分離された固形分および亜鉛希薄相を共に中和処理
して鉄源とし、一方、亜鉛含有水溶液は中和処理を行な
って亜鉛を沈澱物とした後脱水処理後回収することにあ
る。
[Means for Solving the Problems 1] The method for recovering zinc from ironmaking dust according to the present invention is characterized by leaching zinc-containing dust with a hydrochloric acid solution and then forming a zinc-concentrated phase and a zinc-dilute phase. Classified into
Next, zinc is extracted from the zinc concentrated phase and subjected to solid-liquid separation, and the separated solid content and the zinc diluted phase are both neutralized and used as an iron source.Meanwhile, the zinc-containing aqueous solution is neutralized to produce zinc. The purpose is to collect the precipitate after dehydration treatment.

本発明に係る製鉄ダストから亜鉛を回収する方法につい
て以下詳細に説明する。
The method for recovering zinc from ironmaking dust according to the present invention will be described in detail below.

即ち、本発明に係る製鉄ダストから亜鉛を回収する方法
を具体的に説明すると、亜鉛含有ダストとしての製鉄ダ
ストを水素イオン濃度0.5以下の条件下で塩酸溶液と
混合して浸出処理を行ない、100μ分級磯により分級
して亜鉛の偏析している亜鉛濃縮相(< 100μ)と
亜鉛濃度の低い亜鉛希薄相(>100μ)とに分離し、
そして、特に亜鉛の偏析している亜鉛濃縮相(<100
μ)をPH>0.5で、かつ、スラリー濃度5〜10%
の条件で亜鉛の抽出を行ない、固液分離後亜鉛含有水溶
液をPH8,5〜10.5の範囲で中和処理し、亜鉛を
沈澱物の形としてから脱水処理後回収し、また一方、亜
鉛希薄相(>100)および鉄分を含有している亜鉛回
収後の固形分(>100)は酸中和洗浄後鉄源として有
効に利用するのである。
That is, to specifically explain the method for recovering zinc from ironmaking dust according to the present invention, ironmaking dust as zinc-containing dust is mixed with a hydrochloric acid solution under conditions where the hydrogen ion concentration is 0.5 or less and leaching treatment is performed. , separated into a zinc concentrated phase (<100μ) in which zinc is segregated and a zinc dilute phase (>100μ) with a low zinc concentration by classification using a 100μ classification rock.
In particular, the zinc-enriched phase (<100
μ) with pH > 0.5 and slurry concentration 5-10%
Zinc was extracted under the following conditions, and after solid-liquid separation, the zinc-containing aqueous solution was neutralized in the pH range of 8.5 to 10.5, and the zinc was turned into a precipitate, which was then recovered after dehydration. The dilute phase (>100) and the iron-containing solid content (>100) after zinc recovery are effectively used as an iron source after acid neutralization and washing.

次に、本発明に係る製鉄ダストから亜鉛を回収する方法
を、第1図を参照して説明する。
Next, a method for recovering zinc from ironmaking dust according to the present invention will be explained with reference to FIG.

製鉄ダストは、例えば、 T、Fe 30−40wt%、ZnO1−4u+t%、
Mn00.5−1.5wt%、5iO21−3u+t%
、CaO2−4u+t%、C2O−30u+t%、A1
□032〜3u+L%、水分20〜25iut%の化学
組成のものを使用する。
Steel dust, for example, contains T, Fe 30-40wt%, ZnO1-4u+t%,
Mn00.5-1.5wt%, 5iO21-3u+t%
, CaO2-4u+t%, C2O-30u+t%, A1
□ Use one with a chemical composition of 032~3u+L% and moisture 20~25iut%.

第1図において、亜鉛含有製鉄ダスト1を撹拌槽4に入
れ、これに濃度10〜30%の塩酸2およびH2O3を
添加しくなお、この場合、亜鉛含有ダスト1のPHより
(HCI/徘液H20)装入混合量を制御する。)、固
液混合比を1(固体):9〜19(液体)の範囲に設定
し、PH≦0.5の条件で一定時間撹拌する。次に分級
W15でダスト粒子(<100μ)6と(> 100μ
)7とに分級し、(<100μ)のダスト粒子6は抽出
槽8に送り、濃度10〜30%塩酸、1(固体):9〜
19(液体)の混合比で抽出塩度40℃、抽出時間1時
間の条件で抽出を行なう。
In Fig. 1, zinc-containing steelmaking dust 1 is placed in a stirring tank 4, and hydrochloric acid 2 and H2O3 with a concentration of 10 to 30% are added to it. ) Control the amount of charge mixture. ), the solid-liquid mixing ratio is set in the range of 1 (solid):9 to 19 (liquid), and the mixture is stirred for a certain period of time under the condition of PH≦0.5. Next, dust particles (<100μ) 6 and (>100μ) are classified by classification W15.
) and 7, and the (<100 μ) dust particles 6 are sent to an extraction tank 8 and treated with hydrochloric acid at a concentration of 10-30%, 1 (solid): 9-
Extraction was performed at a mixing ratio of 19 (liquid), an extraction salinity of 40°C, and an extraction time of 1 hour.

その後、亜鉛抽出ダストを遠心分離[9により固液分離
を行ない、分離された亜鉛含有水溶液10を反応槽12
において、中和剤13および凝集剤14を添加してPH
8,5〜10.5の範囲内で撹拌中和する。続いて、滞
留槽15において上澄液16と亜鉛沈澱物17に仕分け
てから、亜鉛沈澱物17は脱水機18で亜鉛濃縮固形物
20として回収し、亜鉛ケーキホッパー21に貯鉱して
必要に応じて亜鉛源として使用する。この場合、亜鉛含
有ダスト1からの亜鉛抽出実験結果は第2図に示す通り
約90%の亜鉛除去率(残留Zn濃度は< 0.15u
+t%)であることを確認した。
After that, the zinc extraction dust is centrifuged [9] to perform solid-liquid separation, and the separated zinc-containing aqueous solution 10 is transferred to a reaction tank 12.
In the step, neutralizing agent 13 and flocculant 14 are added to adjust the pH.
Stir and neutralize within the range of 8.5 to 10.5. Subsequently, after being sorted into a supernatant liquid 16 and a zinc precipitate 17 in a retention tank 15, the zinc precipitate 17 is recovered as a zinc concentrated solid material 20 in a dehydrator 18, and stored in a zinc cake hopper 21 to be used as needed. Use as a source of zinc as required. In this case, the results of the zinc extraction experiment from zinc-containing dust 1 are as shown in Figure 2, with a zinc removal rate of approximately 90% (residual Zn concentration < 0.15u).
+t%).

一方、滞留槽15″C分離された上澄液16および脱水
8!18より発生した排液19は共に中和槽22で中和
剤23(スラグ浸出高PH水および消石灰または苛性ソ
ーダ等)を使用し、環境基準に適合する範囲内、所謂、
PI3程度に中和処理し、排水24は中和洗浄槽25の
水源として全量再利用する。
On the other hand, the supernatant liquid 16 separated from the retention tank 15''C and the waste liquid 19 generated from the dehydration 8! However, within the scope of compliance with environmental standards, so-called
The wastewater 24 is neutralized to about PI3, and the entire amount of the wastewater 24 is reused as a water source for the neutralization cleaning tank 25.

他方、遠心分離fi9で固液分離された残渣11および
分級機15で分級された低亜鉛含有ダスト(>100μ
は全体比約10%程度)7は何れも塩酸溶液が付着して
いるため中和洗浄槽25にベルトコンベアで搬入し、中
和剤26(スラグ浸出高PH水および消石灰または苛性
ソーダ等)並びにPH調整後の排水24を適宜添加し、
撹拌の上環境基準に適合する範囲内のPI3程度に中和
処理を行なう。その後、中和処理後のスラリー28およ
び槽からのオーバーフロー排水27は全量遠心分離8!
29に循還し固液分離を行なう。固形分は第1表に示す
通りT、Fe30u+t%前後含有したものであり、ベ
ルトコンベアで製品ビン30へ移送・貯鉱し、適宜鉄源
として再利用をする。また、遠心分離磯29で固液分離
した排液32は所定場所へ排水する。
On the other hand, the residue 11 separated into solid and liquid by centrifugation fi9 and the low zinc-containing dust (>100μ) classified by classifier 15
(approximately 10% of the total ratio) 7 have hydrochloric acid solution attached to them, so they are transported to the neutralization cleaning tank 25 by a belt conveyor, and the neutralizing agent 26 (slag leaching high pH water and slaked lime or caustic soda, etc.) and pH Add the adjusted wastewater 24 as appropriate,
After stirring, neutralize the mixture to about PI3, which is within the range that meets environmental standards. After that, the slurry 28 after the neutralization treatment and the overflow waste water 27 from the tank are completely centrifuged 8!
29 for solid-liquid separation. As shown in Table 1, the solid content is approximately 30u+t% of T and Fe, and is transferred and stored in the product bin 30 by a belt conveyor and reused as an iron source as appropriate. Further, the waste liquid 32 separated into solid and liquid by the centrifugal separation rock 29 is drained to a predetermined location.

杭1舟     (wt%) [発明の効果] 以上説明したように、本発明に係る製鉄ダストから亜鉛
を回収する方法は上記の構成であるから、製鉄ダストか
らの亜鉛の除去率が高くなると共に回収亜鉛を有効に活
用することができ、さらに、亜鉛抽出後の残渣を高炉鉄
源として全量再利用することができ、かつ、回収プロセ
スとしても極めて効率がよいという優れた効果を有して
いる。
Pile 1 boat (wt%) [Effects of the invention] As explained above, since the method for recovering zinc from ironmaking dust according to the present invention has the above configuration, the removal rate of zinc from ironmaking dust is high and The recovered zinc can be used effectively, the residue after zinc extraction can be reused in its entirety as a source of blast furnace iron, and the recovery process has the excellent effect of being extremely efficient. .

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係る製鉄ダストから亜鉛を回収する方
法の説明図、第2図は本発明に係る製鉄ダストから回収
する方法における亜鉛の抽出率を示す図である。
FIG. 1 is an explanatory diagram of the method of recovering zinc from iron-making dust according to the present invention, and FIG. 2 is a diagram showing the extraction rate of zinc in the method of recovering zinc from iron-making dust according to the present invention.

Claims (1)

【特許請求の範囲】[Claims] 亜鉛含有ダストを塩酸溶液により浸出処理を行なった後
、亜鉛濃縮相と亜鉛希薄相とに分級し、次いで、亜鉛濃
縮相から亜鉛を抽出して固液分離を行ない、固形分およ
び亜鉛希薄相は共に中和処理して鉄源とし、一方、亜鉛
含有水溶液は中和処理を行なって亜鉛を沈澱物とした後
脱水処理後回収することを特徴とする製鉄ダストから亜
鉛を回収する方法。
After leaching the zinc-containing dust with a hydrochloric acid solution, it is classified into a zinc-concentrated phase and a zinc-dilute phase, and then zinc is extracted from the zinc-concentrated phase and subjected to solid-liquid separation, and the solid content and zinc-dilute phase are separated. A method for recovering zinc from iron-making dust, characterized in that both are neutralized and used as iron sources, while the zinc-containing aqueous solution is neutralized to form zinc as a precipitate and then recovered after dehydration.
JP60276234A 1985-12-09 1985-12-09 Method for recovering zinc from iron making dust Pending JPS62136535A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60276234A JPS62136535A (en) 1985-12-09 1985-12-09 Method for recovering zinc from iron making dust

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60276234A JPS62136535A (en) 1985-12-09 1985-12-09 Method for recovering zinc from iron making dust

Publications (1)

Publication Number Publication Date
JPS62136535A true JPS62136535A (en) 1987-06-19

Family

ID=17566563

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60276234A Pending JPS62136535A (en) 1985-12-09 1985-12-09 Method for recovering zinc from iron making dust

Country Status (1)

Country Link
JP (1) JPS62136535A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1880030A1 (en) * 2005-05-10 2008-01-23 George Puvvada A process for the treatment of electric and other furnace dusts and residues containing zinc oxides and zinc ferrites

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1880030A1 (en) * 2005-05-10 2008-01-23 George Puvvada A process for the treatment of electric and other furnace dusts and residues containing zinc oxides and zinc ferrites
EP1880030A4 (en) * 2005-05-10 2010-03-03 George Puvvada A process for the treatment of electric and other furnace dusts and residues containing zinc oxides and zinc ferrites

Similar Documents

Publication Publication Date Title
CA2437549C (en) Production of zinc oxide from complex sulfide concentrates using chloride processing
CN109355514B (en) Method for extracting vanadium from vanadium slag by low-calcium roasting-countercurrent acid leaching
DK201700067A1 (en) System and process for selective rare earth extraction with sulfur recovery
AU710302B2 (en) Method for recovering metal and chemical values
JPH0242886B2 (en)
CN110172538B (en) Efficient red mud resource utilization system and process
CN114737066A (en) Method for extracting lithium from lithium ore leaching slag
JP2002511527A (en) Steel mill dust treatment method by wet processing
US3883345A (en) Process for the recovery of antimony
RU2627835C2 (en) Method of complex processing of pyritic raw materials
CN106882839B (en) Method for comprehensively utilizing titanium white waste acid
CN101704593A (en) Method for separating and recycling zinc, iron, manganese in acidic mine waste water
EP0244910B1 (en) Separation of non-ferrous metals from iron-containing powdery material
US20030010156A1 (en) Method for upgrading steel plant dust
JP7311683B1 (en) Method and system for combining copper slag recycling and CO2 mineralization with solid industrial waste
JPH0797638A (en) Treatment of dust kinds produced in iron works
JPS62136535A (en) Method for recovering zinc from iron making dust
AU2010217184A1 (en) Zinc oxide purification
JP2005246226A (en) Treating method for fly ash
JP5084272B2 (en) Method for treating heavy metals containing zinc and substances containing chlorine
JP2002285255A (en) Method for manufacturing zinc oxide calcine or zinc oxide briquette
CN115747509A (en) Method for treating iron-containing sludge
CN111017974A (en) Mineral processing technology for resource utilization of low-grade celestite
JP2010001524A (en) Method of making zinc content in dust in iron manufacturing low
JPS5928618B2 (en) Method for recovering valuable metals from steelmaking furnace dust, etc.