JPS6213649B2 - - Google Patents

Info

Publication number
JPS6213649B2
JPS6213649B2 JP53089353A JP8935378A JPS6213649B2 JP S6213649 B2 JPS6213649 B2 JP S6213649B2 JP 53089353 A JP53089353 A JP 53089353A JP 8935378 A JP8935378 A JP 8935378A JP S6213649 B2 JPS6213649 B2 JP S6213649B2
Authority
JP
Japan
Prior art keywords
lens
group
lenses
positive
negative
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP53089353A
Other languages
Japanese (ja)
Other versions
JPS5517129A (en
Inventor
Toshiko Shimokura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Inc
Original Assignee
Konica Minolta Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Inc filed Critical Konica Minolta Inc
Priority to JP8935378A priority Critical patent/JPS5517129A/en
Publication of JPS5517129A publication Critical patent/JPS5517129A/en
Publication of JPS6213649B2 publication Critical patent/JPS6213649B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Lenses (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、レトロフオーカス型広角レンズの改
良に関し、その目的とするところは、構成が簡易
でコンパクトな形状にも拘わらず、各収差が良好
に補正されたレトロフオーカス型の超広角レンズ
を提供せんとするにある。 周知の如く、近年レトロフオーカス型の広角レ
ンズの大口径化、あるいは超広角化についての改
良開発が行なわれ、その進歩発展は日進月歩の観
を呈するも、小型化という点からみるときは、未
だ充分の域に達していない状況あつた。現今のも
ので、大口径、超広角、小型化の三要素を併せも
つものは皆無でないとしても、それらはレンズ系
の構成枚数が多く、それが製作なり調整なりに少
なからざる問題点が残つている。 本発明は、上述の如き現状に鑑み、従来より公
知に属するレンズ系の前群を正、負、負、負の4
群、後群を正、負、正、正の計8群よりなるレト
ロ型広角レンズの改良に着手し、8群9枚の簡易
な構成にも拘わらず、1.6f以上のバツクフオーカ
スfBを有し、FNo.が2.8程度の口径と画角も92
゜程度を具備し、かつ極めてコンパクトな上、性
能も良好な超広角レンズの提供を可能ならしめた
もので、以下本発明を図示の実施例によつて詳細
に説明することとする。 先ず、本発明に係るレトロフオーカス型広角レ
ンズは、その基本的構成を示した第1図および第
3図より明らかな如く、物界側より順にみて、第
1群L1には物界側に曲率大なる凸面を向けた正
のメニスカス単レンズl1、第2群L2と第3群L3
それに第4群L4にはそれぞれ像界側に曲率大な
る凹面を向けた負のメニスカス単レンズl2,l3
l4を配して前群となし、第5群L5には物界側に曲
率大なる凸面を向けた両凸の正の単レンズl5、第
6群L6には像界側に曲率大なる凸面を向けた正
レンズl6と両凹の負レンズl7とにより接合、また
は分割された全体として負レンズ、第7群L7
第8群L8にはそれぞれ物界側に凹面を向けた正
のメニスカス単レンズl8,l9を配して後群となし
た8群9枚構成のレンズ系にして、しかも (1) 1.8f< Σd <2.05f (2) (イ) 0.30f<d4+d6+d8<0.42f (ロ) 0.6f<|f1,2,3,4| <0.7f,f1,2,3,4<0 (3) 1.68<n+n+n/3<1.74 (4) 0.8f< f5 <1.2f (5) 1.3f< r13 <2.2f (6) 1.67<n+n/2<1.73 (7) (イ) 43<ν+ν+ν/3<53 (ロ) 53< ν <65 但し、f;レンズ系全系の合成焦点距離 Σd;各レンズの軸上厚み、または軸上空
気間隔の合計 d4,d6,d8;レンズl2とl3、レンズl3とl4
レンズl4とl5の各軸上空気間隔 f1,2,3,4;レンズl1,l2,l3,l4の合成焦点
距離 f5;第5群L5におけるレンズl5の単体焦点
距離 r13;第6群L6におけるレンズl7の像界側の
面の曲率半径 n2,n3,n4,n8,n9;各レンズl2,l3,l4
l8,l9の組成ガラスのd線に対する屈折
率 ν,ν,ν,ν;各レンズl2
l3,l4,l6の組成ガラスのアツベ数 なる諸条件を同時に満足し、かつ、バツクフオー
カスが1.6f以上、Fナンバーが約2.8、画角が約
92゜であるところに特徴を有するレトロフオーカ
ス型広角レンズにある。 以下、本発明の意図を達成せしめ得た上記各条
件のもつ技術的背景、ならびにそれらの諸条件に
ついての技術的意義を詳述することとする。 本発明においては、先ず、条件の(1)として示し
たところから明らかな如く、本発明が意図した
FNo.が2.8と92゜の画角をもつレンズ系として
は、極めて短い全長を設定したことを前提条件と
している。したがつて、この条件(1)を満足せしめ
得た時に、レンズ系の長さ方向をはじめとして径
方向、殊に前玉径についてのコンパクト化も達成
し得られることとなる。 よつて、この条件(1)の上限は、本発明における
当初の意図を達成し得るための限界値ということ
ができる。しかしながら、その下限を超えてΣd
の小さくなることは、各単体レンズの屈折力をそ
れぞれ増大させる結果を招くが故に、FNo.が2.8
の口径を維持することは不可能となる。 条件の(2)は、超コンパクトな形状となす基本的
な条件にして、条件(イ)の如く、長いバツクフオー
カスfBを維持するため、前群における第2群
L2、第3群L3および第4群L4の各負の単レンズ
l2,l3,l4の直後の空気間隔の計は極めて短く設
定し、この短い空気間隔によつても、本発明の意
図した長いバツクフオーカスfBが得られるよう
に、前群レトロ系の合成屈折力には可成り強い負
の値をもたせたものが条件(ロ)である。 したがつて、条件(イ)の上限は、本発明が当初か
ら意図したコンパクト化達成のため、上記負の各
単レンズl2,l3,l4の直後の空気間隔の長大化を
抑えるものであり、条件(ロ)の上限は、条件(イ)の上
限とも関連して前記前群空気間隔を大きくしなく
とも、所要のバツクフオーカスfBが得られる負
の屈折力の限界値である。 しかし、条件の(イ),(ロ)の双方共、下限を超えて
形状は小さくなつたとしても、各単体レンズの屈
折力の増大によつてレトロ系全般で発生する正に
過剰な球面収差、負に過剰な歪曲収差の残存は後
群の各レンズによつても補正不可能となる。 条件の(3)は、条件の(2)による前群中の第2群
L2、第3群L3、第4群L4の各単レンズl2,l3,l4
の強い負の屈折力をもつ各単体のレンズl2,l3
l4にできるだけ大きな屈折率を与え、これら各単
体のレンズl2,l3,l4の像界側に向いた凹面の曲
率半径を大きくすることを計り、これら各面によ
る正に働く球面収差、負に働くコマ収差、歪曲収
差等の高次収差の過剰を抑えようとするものであ
る。 したがつて、この条件(3)の下限は、上述の如き
効果を得るための限界値であり、上限を超えて、
それらの負レンズの屈折率が大きくなり過ぎて
も、それら各負レンズl2,l3,l4のペツヴアル和
ΣPの増大による像面湾曲の負への劣化を招き、
この条件(3)に続く各条件を始めとし、他の個所に
よつても補正は不可能となる。 条件の(4)は、第5群L5の正の単レンズl5に可成
強い正の屈折力を与え、前述の条件(2)による前群
における負の屈折力によつて発生した諸収差の補
正を強力に行なわせるものであり、その上限は、
それらの効果を得るための限界値である。この条
件(4)の下限を超えて第5群の正の単レンズl5の屈
折力が強くなり過ぎると、高次球面収差の負への
倒れが過剰となり、他の収差とのバランスを計つ
た上での補正は他の個所をもつても不可能とな
る。 条件の(5)は、上記条件(4)による補正不足気味の
球面収差を正常になし、かつレンズ系の後方部分
における歪曲収差の正への補正作用を適正に行な
わせるよう、第6群L6における負のレンズl7の像
界側の面の曲率半径を比較的強く与えたものであ
る。 したがつて、その上限は、上記の作用効果を得
るための限界値であると共に、長くなり過ぎるこ
とによるバツクフオーカスfBの損失を防止する
ためのものであり、また下限を超えてレンズl7
像界側の面の曲率半径r13が強くなり過ぎると、
正の高次球面収差の発生によりFNo.2.8程度の口
径を得ることが困難となる。 条件は(6)は、レンズ系の後方部分における球面
収差、メリデイオナル像面湾曲の負への劣化を最
大限に防止するため、最後部になる第7群L7
第8群L8の正レンズ群には可能な限り大きな屈
折率を与えることが望ましく、下限はその効力の
限界である。またレンズ系後方部分の色消条件を
満すためには、第7レンズ群L7、第8レンズ群
L8のアツベ数は大きいほうが望ましい。しかし
ながら色消条件を満すようなアツベ数が大きく、
かつ、屈折率の大きい使用可能なガラスは限られ
ており、上限は前述の使用可能なガラスの限界値
である。従つて、(6)の上限より大きい屈折率をも
つ使用可能なガラスでは、色消条件を満すような
アツベ数を有しておらず色収差が補正できなくな
る。 条件の(7)は、前述の(1)から(6)までの各条件を満
足させ、かつ助長するのに必要な色収差補正上の
条件である。 そして、この条件(7)における(イ)なる条件は、倍
率の色収差の補正を伴いながら、レンズ系全系の
色収差補正をなす場合の前群の負レンズ群に適正
なアツベ数の規制値である。 この(イ)の上限を超えて前群の負レンズ群のアツ
ベ数が大きくなり過ぎて軸上の色補正不足がおき
た場合、これを第1群L1の正レンズl1で補わねば
ならなくなる。しかし、この第1群L1の正レン
ズl1は該レンズl1の屈折率との関連よりアツベ数
を大にすることへの限界がある関係上、倍率の色
補正をも考慮した全体としての色補正を不可能と
する。 一方、上述とは逆に、下限を超えて軸上の色が
補正過剰となり、正レンズl1のアツベ数を小にし
て補おうとした場合、該レンズl1による高次の倍
率の色収差の劣化が大きくなり好ましくない。 また、(ロ)なる条件は、レンズ系の後方部分にお
ける正成分の色補正を強力に行なわせるため、第
6群L6の正レンズl6アツベ数を極力大きく与えた
ものであり、さらに上記(6)なる条件を助長して、
第7群L7と第8群L8正のレンズl8,l9の屈折率を
大ならしめる役割をもつている。 条件(ロ)の下限は、上記効果を確保するため限界
値である。 レンズ系後方部分における球面収差、メリデイ
オナル像面湾曲の負への劣化を防止するために
は、l6の屈折率は大きいほど望ましい。しかしな
がらl6により前記の球面収差、メリデイオナル像
面湾曲の劣化を防止できるような屈折率が大き
く、かつ、アツベ数の大きい使用可能なガラスは
限られており、上限は前述の使用可能なガラスの
限界値である。従つて(ロ)の上限より大きいアツベ
数をもつ使用可能なガラスでは、球面収差、メリ
デイオナル像面湾曲の負への劣化を防止するため
に必要な大きな屈折率を有しておらず、球面収
差、メリデイオナル像面湾曲の負への劣化を防止
できない。 次に、第1図に示した本発明に係る基本的構成
を備えたレトロフオーカス型広角レンズの具体的
実施例を第1実施例、第2実施例とし、第3図に
示した本発明に係る基本的構成を備えたレトロフ
オーカス型広角レンズの具体的実施例を第3実施
例として示す。
The present invention relates to the improvement of a retrofocus type wide-angle lens, and its purpose is to provide a retrofocus type ultra-wide-angle lens in which each aberration is well corrected despite its simple configuration and compact shape. It is not intended to be provided. As is well known, improvements and developments have been made in recent years to make retrofocus wide-angle lenses larger in diameter or ultra-wide-angle, and although the progress and development seems to be progressing rapidly, when viewed from the point of view of miniaturization, there is still little progress. The situation was far from satisfactory. Although there are currently no lenses that combine the three elements of large aperture, ultra-wide angle, and compact size, they still have a large number of lens components, and this leaves considerable problems in manufacturing and adjustment. There is. In view of the above-mentioned current situation, the present invention has been proposed to provide four front groups of a conventionally known lens system: positive, negative, negative, and negative.
We started improving the retro-type wide-angle lens, which has a total of 8 groups: positive, negative, positive, and rear groups, and despite its simple configuration of 9 elements in 8 groups, it has a back focus f B of 1.6 f or more. However, the aperture and angle of view with an FNo. of about 2.8 is 92
This makes it possible to provide an ultra-wide-angle lens that is extremely compact and has good performance.The present invention will be explained in detail below with reference to the illustrated embodiments. First, as is clear from FIGS. 1 and 3, which show the basic configuration of the retrofocus type wide-angle lens according to the present invention, when viewed from the object world side, the first group L 1 includes a A positive meniscus single lens l 1 with a convex surface with a large curvature facing toward the direction, a second group L 2 and a third group L 3 ,
In addition, the fourth group L4 includes negative meniscus single lenses l2 , l3 , each having a concave surface with a large curvature facing the image field side.
L 4 is placed as the front group, the fifth group L 5 is a biconvex positive single lens L 5 with a convex surface with a large curvature facing the object world side, and the sixth group L 6 is a positive single lens L 5 with a convex surface with a large curvature facing the object field side. The overall negative lens is cemented or divided by a positive lens L6 with a convex surface with a large curvature and a biconcave negative lens L7 . The lens system consists of 9 elements in 8 groups, with positive meniscus single lenses l 8 and l 9 with concave surfaces facing each other as the rear group, and (1) 1.8f < Σd < 2.05f (2) (I) ) 0.30f<d 4 +d 6 +d 8 <0.42f (b) 0.6f<|f 1 , 2 , 3 , 4 | <0.7f, f 1 , 2 , 3 , 4 <0 (3) 1.68<n 2 +n 3 +n 4 /3<1.74 (4) 0.8f< f 5 <1.2f (5) 1.3f< r 13 <2.2f (6) 1.67<n 8 +n 9 /2<1.73 (7) (a) 43 <ν 234 /3<53 (b) 53< ν 6 <65 However, f: Combined focal length of the entire lens system Σd: Total axial thickness of each lens or axial air spacing d 4 , d 6 , d 8 ; lenses l 2 and l 3 , lenses l 3 and l 4 ,
Air distance on each axis of lenses l 4 and l 5 f 1 , 2 , 3 , 4 ; Combined focal length of lenses l 1 , l 2 , l 3 , l 4 f 5 ; Lens l 5 in the fifth group L 5 Single focal length r 13 ; Radius of curvature of the image field side surface of lens l 7 in sixth group L 6 n 2 , n 3 , n 4 , n 8 , n 9 ; Each lens l 2 , l 3 , l 4 ,
Refractive index for the d-line of the glass with composition l 8 , l 9 ν 2 , ν 3 , ν 4 , ν 6 ; Each lens l 2 ,
It simultaneously satisfies the conditions such as the Abbe number of the composition glass of l 3 , l 4 , and l 6 , and the back focus is 1.6 f or more, the F number is approximately 2.8, and the angle of view is approximately
It is a retrofocus wide-angle lens that is unique in that it has an angle of 92 degrees. Hereinafter, the technical background of each of the above-mentioned conditions that enabled the purpose of the present invention to be achieved and the technical significance of these conditions will be explained in detail. In the present invention, first, as is clear from the condition (1),
For a lens system with an FNo. of 2.8 and an angle of view of 92 degrees, the prerequisite is that it has an extremely short overall length. Therefore, when this condition (1) is satisfied, compactness of the lens system can be achieved not only in the length direction but also in the radial direction, particularly in the diameter of the front lens. Therefore, the upper limit of this condition (1) can be said to be the limit value for achieving the original intention of the present invention. However, beyond that lower limit Σd
A decrease in FNo. of 2.8 results in an increase in the refractive power of each single lens.
It becomes impossible to maintain the caliber of Condition (2) is a basic condition for creating an ultra-compact shape, and as in condition (a), in order to maintain a long back focus f B , the second group in the front group is
L 2 , each negative single lens of the third group L 3 and the fourth group L 4
The air intervals immediately after l 2 , l 3 , and l 4 are set extremely short, and the front group retro system is designed so that even with this short air interval, the long back focus f B intended by the present invention can be obtained. Condition (b) is that the composite refractive power has a fairly strong negative value. Therefore, the upper limit of condition (a) is the one that suppresses the air gap immediately after each of the above-mentioned negative single lenses l 2 , l 3 , and l 4 from increasing in order to achieve the compactness that the present invention intended from the beginning. The upper limit of condition (b) is also related to the upper limit of condition (a) and is the limit value of negative refractive power at which the required back focus f B can be obtained without increasing the front group air gap. However, for both conditions (a) and (b), even if the shape becomes smaller beyond the lower limit, the increase in the refractive power of each single lens will cause excessive spherical aberration, which occurs in the retro system in general. , residual excessive negative distortion cannot be corrected by each lens in the rear group. Condition (3) is the second group in the previous group according to condition (2).
Each single lens l 2 , l 3 , l 4 of L 2 , third group L 3 , and fourth group L 4
Each single lens with strong negative refractive power l 2 , l 3 ,
By giving l 4 as large a refractive index as possible and increasing the radius of curvature of the concave surfaces facing the image field side of each of these single lenses l 2 , l 3 , and l 4 , positively acting spherical aberration due to each of these surfaces was calculated. , and attempts to suppress excessive high-order aberrations such as coma aberration and distortion aberration, which act negatively. Therefore, the lower limit of this condition (3) is the limit value for obtaining the above effect, and exceeding the upper limit,
Even if the refractive index of these negative lenses becomes too large, the Petzval sum ΣP of each of these negative lenses l 2 , l 3 , l 4 increases, causing the curvature of field to become negative,
In addition to the conditions following condition (3), corrections are not possible due to other conditions. Condition (4) gives a fairly strong positive refractive power to the positive single lens l5 of the fifth group L5 , and eliminates the various effects caused by the negative refractive power in the front group according to condition (2) above. It strongly corrects aberrations, and its upper limit is
This is the limit value for obtaining those effects. If the refractive power of the positive single lens l5 in the fifth group becomes too strong, exceeding the lower limit of condition (4), the higher-order spherical aberration will become excessively negative, and it will be difficult to balance it with other aberrations. Correction on the vine is impossible even in other places. Condition (5) is to correct the spherical aberration that is slightly under-corrected due to condition (4) above, and to properly correct the distortion aberration in the rear part of the lens system. The radius of curvature of the image field side surface of negative lens l 7 in 6 is given relatively strong. Therefore, the upper limit is the limit value for obtaining the above-mentioned effects, and is also for preventing loss of back focus f B due to excessive length . If the radius of curvature r 13 of the surface on the image field side becomes too strong,
Due to the occurrence of positive higher-order spherical aberration, it becomes difficult to obtain an aperture of approximately FNo. 2.8. Condition (6) is that the seventh lens group L 7 , which is located at the rearmost part of the lens system, should be placed at the rear of the lens system in order to maximize the prevention of negative deterioration of spherical aberration and meridional curvature of field in the rear part of the lens system.
It is desirable to give the positive lens group of the eighth group L8 as large a refractive index as possible, and the lower limit is the limit of its effectiveness. In addition, in order to satisfy the achromatic condition for the rear part of the lens system, the seventh lens group L 7 and the eighth lens group
The larger the Atsbe number of L8 , the better. However, the Atsube number that satisfies the achromatic condition is large,
Moreover, usable glass having a high refractive index is limited, and the upper limit is the above-mentioned limit value of usable glass. Therefore, a usable glass having a refractive index larger than the upper limit of (6) does not have an Abbe number that satisfies the achromatic condition, and chromatic aberration cannot be corrected. Condition (7) is a chromatic aberration correction condition necessary to satisfy and promote each of the conditions (1) to (6) above. Condition (a) in condition (7) is the appropriate regulation value for the Atsube number for the negative lens group in the front group when correcting the chromatic aberration of the entire lens system while also correcting the chromatic aberration of magnification. be. If the upper limit of (a) is exceeded and the Atsube number of the negative lens group in the front group becomes too large, resulting in insufficient axial color correction, this must be compensated for by the positive lens l1 in the first group L1 . It disappears. However, since there is a limit to increasing the Atsube number of the positive lens l 1 of the first group L 1 due to the relationship with the refractive index of the lens l 1 , the overall color correction becomes impossible. On the other hand, contrary to the above, if the lower limit is exceeded and the axial color becomes overcorrected, and an attempt is made to compensate by reducing the Atsube number of the positive lens l 1 , the chromatic aberration of higher order magnification due to the lens l 1 will deteriorate. becomes large, which is not desirable. In addition, the condition (b) is that the positive lens l6 Abbe number of the sixth group L6 is given as large as possible in order to strongly correct the color of the positive component in the rear part of the lens system. (6)Fostering the conditions for
It has the role of increasing the refractive index of the seventh group L7 and the eighth group L8 positive lenses l8 and l9 . The lower limit of condition (b) is a limit value to ensure the above effect. In order to prevent negative deterioration of spherical aberration and meridional curvature of field in the rear portion of the lens system, it is desirable that the refractive index of l 6 be as large as possible. However, there are a limited number of usable glasses that have a large refractive index and a large Abbe number that can prevent the deterioration of the spherical aberration and meridional curvature of field due to l 6 , and the upper limit is the above-mentioned usable glasses. This is the limit value. Therefore, a usable glass with an Abbe number larger than the upper limit of (b) does not have the large refractive index necessary to prevent spherical aberration and meridional curvature of field from deteriorating to negative, and the spherical aberration , it is not possible to prevent negative deterioration of meridional field curvature. Next, specific examples of a retrofocus type wide-angle lens having the basic configuration according to the present invention shown in FIG. 1 will be referred to as a first example and a second example, and the present invention shown in FIG. A specific example of a retrofocus type wide-angle lens having the basic configuration according to the above will be described as a third example.

【表】【table】

【表】【table】

【表】【table】

【表】【table】

【表】【table】

【表】【table】 【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係るレトロフオーカス型広角
レンズの基本的構成図にして、第2図は第1図に
示した基本構成を備えたレトロフオーカス型広角
レンズで、イは第1実施例、ロは第2実施例の各
収差曲線図、第3図は本発明に係るレトロフオー
カス型広角レンズの他の基本的構成図で、第4図
は第3図に示した基本構成を備えたレトロフオー
カス型広角レンズである第3実施例の各収差曲線
図である。 第1図と第3図において、 L1,L2,…,L8…レンズ系を構成する第1
群、第2群、…、第8群、l1,l2,…,l9…レン
ズ系の各群を構成するレンズ、 第1図において、 r1,r2,…,r17…物界側より順にみた各レンズ
l1,l2,…,l9の曲率半径、d1,d2,…,d16…物
界側より順にみた各レンズl1,l2,…,l9の軸上
厚み、または軸上空気間隔、 第3図において、 r1,r2,…,r′11,…,r17…物界側より順にみ
た各レンズl1,l2,…,l9の曲率半径、d1,d2
…,d17…物界側より順にみた各レンズl1,l2
…,l9の軸上厚み、または軸上空気間隔。
FIG. 1 is a basic configuration diagram of a retrofocus type wide-angle lens according to the present invention, FIG. 2 is a retrofocus type wide-angle lens having the basic configuration shown in FIG. For example, B is each aberration curve diagram of the second embodiment, FIG. 3 is another basic configuration diagram of the retrofocus type wide-angle lens according to the present invention, and FIG. 4 is the basic configuration shown in FIG. 3. FIG. 7 is a diagram showing aberration curves of a third embodiment of the retrofocus wide-angle lens provided with the lens. In Figures 1 and 3, L 1 , L 2 , ..., L 8 ...the first lens constituting the lens system
group, second group, ..., eighth group, l 1 , l 2 , ..., l 9 ...lenses constituting each group of the lens system, in Fig. 1, r 1 , r 2 , ..., r 17 ... objects Each lens viewed from the field side
Radius of curvature of l 1 , l 2 , ..., l 9 , d 1 , d 2 , ..., d 16 ... On-axis thickness of each lens l 1 , l 2 , ..., l 9 viewed from the object world side, or axis Upper air distance, In Fig. 3, r 1 , r 2 ,..., r' 11 ,..., r 17 ... radius of curvature of each lens l 1 , l 2 ,..., l 9 viewed in order from the object world side, d 1 ,d 2 ,
…, d 17 … Each lens l 1 , l 2 , viewed from the object world side,
..., l 9 axial thickness or axial air spacing.

Claims (1)

【特許請求の範囲】 1 物界側より順にみて、第1群L1には物界側
に曲率大なる凸面を向けた正のメニスカス単レン
ズl1、第2群L2と第3群L3、それに第4群L4には
それぞれ像界側に曲率大なる凹面を向けた負のメ
ニスカス単レンズl2,l3,l4を配して前群とな
し、第5群L5には物界側に曲率大なる凸面を向
けた両凸の正の単レンズl5、第6群L6には像界側
に曲率大なる凸面を向けた正レンズl6と両凹の負
のレンズl7とにより接合、または分割された全体
として負レンズ、第7群L7と第8群L8にはそれ
ぞれ物界側に凹面を向けた正のメニスカス単レン
ズl8,l9を配して後群となした8群9枚構成にし
て、 (1) 1.8f<Σd<2.05f (2) (イ) 0.30f<d4+d6+d8<0.42f (ロ) 0.6f<|f1,2,3,4| <0.7f,f1,2,3,4<0 (3) 1.68<n+n+n/3<1.74 (4) 0.8f<f5<1.2f (5) 1.3f<r13<2.2f (6) 1.67<n+n/2<1.73 (7) (イ) 43<y+y+y/3<53 (ロ) 53<y6<65 但し、f;レンズ系全系の合成焦点距離 Σd;各レンズの軸上厚み、または軸上空
気間隔の合計 d4,d6,d8;レンズl2とl3.、レンズl3とl4
レンズl4とl5の各軸上空気間隔 f1,2,3,4;レンズl1,l2,l3,l4の合成焦点
距離 f5;第5群L5におけるレンズl5の単体焦点
距離 r13;第6群L6におけるレンズl7の像界側の
面の曲率半径 n2,n3,n4,n8,n9;各レンズl2,l3,l4
l8,l9の組成ガラスのd線に対する屈折
率 y2,y3,y6;各レンズl2,l3,l4,l6
組成ガラスのアツベ数 なる諸条件を同時に満足し、かつバツクフオーカ
スが1.6f以上、Fナンバーが約2.8、画角が約92
゜であることを特徴とするレトロフオーカス型広
角レンズ。
[Claims] 1. Viewed in order from the object world side, the first group L 1 includes a positive meniscus single lens l 1 with a convex surface with a large curvature facing the object world side, the second group L 2 and the third group L 3 , and the fourth group L4 has negative meniscus single lenses l2 , l3 , and l4 , each with a concave surface with a large curvature facing the image field side, to form the front group, and the fifth group L5 has is a biconvex positive single lens l 5 with a convex surface with a large curvature facing the object world side, and the sixth group L 6 has a positive lens l 6 with a convex surface with a large curvature facing the image field side and a biconcave negative lens. The seventh group L7 and the eighth group L8 each have positive meniscus single lenses l8 and l9 with their concave surfaces facing the object world side. (1) 1.8f<Σd<2.05f (2) (A) 0.30f<d 4 +d 6 +d 8 <0.42f (B) 0.6f<| f 1 , 2 , 3 , 4 | <0.7f, f 1 , 2 , 3 , 4 <0 (3) 1.68<n 2 +n 3 +n 4 /3<1.74 (4) 0.8f<f 5 <1.2f ( 5) 1.3f<r 13 <2.2f (6) 1.67<n 8 +n 9 /2<1.73 (7) (a) 43<y 2 +y 3 +y 4 / 3 <53 (b) 53<y 6 <65 However, f: composite focal length of the entire lens system Σd: axial thickness of each lens or total axial air spacing d 4 , d 6 , d 8 ; lenses l 2 and l 3 ., lenses l 3 and l Four ,
Air distance on each axis of lenses l 4 and l 5 f 1 , 2 , 3 , 4 ; Combined focal length of lenses l 1 , l 2 , l 3 , l 4 f 5 ; Lens l 5 in the fifth group L 5 Single focal length r 13 ; Radius of curvature of the image field side surface of lens l 7 in sixth group L 6 n 2 , n 3 , n 4 , n 8 , n 9 ; Each lens l 2 , l 3 , l 4 ,
The refractive index for the d-line of the glasses with the compositions l 8 and l 9 is y 2 , y 3 , 4 , y 6 ; the conditions of the Abbe number of the glasses with the compositions l 2 , l 3 , l 4 , and l 6 of each lens are simultaneously satisfied. And the back focus is 1.6f or more, the F number is about 2.8, and the angle of view is about 92
A retrofocus wide-angle lens that is characterized by its .
JP8935378A 1978-07-24 1978-07-24 Retrofocus type wide angle lens Granted JPS5517129A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8935378A JPS5517129A (en) 1978-07-24 1978-07-24 Retrofocus type wide angle lens

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8935378A JPS5517129A (en) 1978-07-24 1978-07-24 Retrofocus type wide angle lens

Publications (2)

Publication Number Publication Date
JPS5517129A JPS5517129A (en) 1980-02-06
JPS6213649B2 true JPS6213649B2 (en) 1987-03-27

Family

ID=13968335

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8935378A Granted JPS5517129A (en) 1978-07-24 1978-07-24 Retrofocus type wide angle lens

Country Status (1)

Country Link
JP (1) JPS5517129A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59226315A (en) * 1983-06-08 1984-12-19 Olympus Optical Co Ltd Endoscope objective lens
JP4667269B2 (en) * 2006-02-24 2011-04-06 Hoya株式会社 Wide-angle lens system

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4898825A (en) * 1972-03-29 1973-12-14
JPS4912821A (en) * 1972-05-10 1974-02-04
JPS49121527A (en) * 1973-03-20 1974-11-20
JPS5124223A (en) * 1974-08-23 1976-02-27 Asahi Optical Co Ltd Kogatadeakarui retorofuookasugatakokakurenzu
JPS5126534A (en) * 1974-08-29 1976-03-04 Asahi Optical Co Ltd Akaruichokokakurenzu

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4898825A (en) * 1972-03-29 1973-12-14
JPS4912821A (en) * 1972-05-10 1974-02-04
JPS49121527A (en) * 1973-03-20 1974-11-20
JPS5124223A (en) * 1974-08-23 1976-02-27 Asahi Optical Co Ltd Kogatadeakarui retorofuookasugatakokakurenzu
JPS5126534A (en) * 1974-08-29 1976-03-04 Asahi Optical Co Ltd Akaruichokokakurenzu

Also Published As

Publication number Publication date
JPS5517129A (en) 1980-02-06

Similar Documents

Publication Publication Date Title
JPS6119008B2 (en)
JPS6134125B2 (en)
JPH0412448B2 (en)
JPH06308384A (en) Large-diameter wide-angle photographic lens
JPH0664232B2 (en) Telephoto objective lens
JPS635737B2 (en)
JPS6128972B2 (en)
JPS6153695B2 (en)
JPH0420161B2 (en)
JPS6128973B2 (en)
JP4337314B2 (en) Fisheye lens
JP3026241B2 (en) Photographic lens
JPH0251115A (en) Retrofocus type wide-angle lens
JPS6139647B2 (en)
JPS6213649B2 (en)
JPS6358324B2 (en)
JP3038974B2 (en) Small wide-angle lens
JPS6213651B2 (en)
JPS6145207B2 (en)
JPH0469611A (en) Fisheye lens system
JPH0119123B2 (en)
US3958865A (en) Retrofocus type lens system
JPH0574806B2 (en)
JPS6126044B2 (en)
JP2900487B2 (en) Compact zoom lens