JPS62136242A - Uranium adsorbent - Google Patents

Uranium adsorbent

Info

Publication number
JPS62136242A
JPS62136242A JP27944085A JP27944085A JPS62136242A JP S62136242 A JPS62136242 A JP S62136242A JP 27944085 A JP27944085 A JP 27944085A JP 27944085 A JP27944085 A JP 27944085A JP S62136242 A JPS62136242 A JP S62136242A
Authority
JP
Japan
Prior art keywords
uranium
hydrogen
lower alkyl
derivative
calix
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP27944085A
Other languages
Japanese (ja)
Other versions
JPH0675673B2 (en
Inventor
Seiji Shinkai
征治 新海
Osamu Manabe
真鍋 修
Yoshikazu Kondo
義和 近藤
Toshihiro Yamamoto
俊博 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanebo Ltd
Original Assignee
Kanebo Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanebo Ltd filed Critical Kanebo Ltd
Priority to JP27944085A priority Critical patent/JPH0675673B2/en
Publication of JPS62136242A publication Critical patent/JPS62136242A/en
Publication of JPH0675673B2 publication Critical patent/JPH0675673B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Treatment Of Liquids With Adsorbents In General (AREA)
  • Water Treatment By Sorption (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

PURPOSE:To make it possible to effectively recover uranium in seawater or waste water by adsorption, by using a calyxarene derivative. CONSTITUTION:A calyxarene derivative represented by formula (wherein M is hydrogen or a metal ion, R is hydrogen, a lower alkyl group or lower alkyl carboxylic acid, x and y are hydrogen or an alkyl and n is an integer) is obtained by a method wherein p-tert-butyl calyx [n] allene is debutylated in toluene using anhydrous aluminum chloride to obtain calyx [n] allene and conc. sulfuric acid is added thereto to perform heating. When n in the formula is 4-10, said derivative is water-soluble and has a cavity just good for collecting an uranyl ion. The uranyl ion has a pseudo-plane hexadentate structure in seawater unlike the other metal ion and the aforementioned calyxarene derivative has extremely excellent selectivity in the adsorption of uranium and large adsorbing power.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は新規なウラン吸着剤に関する。[Detailed description of the invention] (Industrial application field) The present invention relates to a novel uranium adsorbent.

(従来の技術) 石油に代るエネルギーとして原子力、水力、風力、潮力
等各種のエネルギー利用が検討されているが、その技術
的完成度、コスト及び出力等の点で原子力よりすぐれる
ものはない。
(Conventional technology) Nuclear power, hydropower, wind power, tidal power, and other energy sources are being considered as alternatives to oil, but none are superior to nuclear power in terms of technological perfection, cost, output, etc. do not have.

一方、原子力エネルギーの燃料となるウランの陸上埋蔵
量は600万トンと推定されているが、これも将来の需
用を十分に充すものではない。ところが、海水中には、
数ppbと極めて希薄な濃度であるが、総量42億トン
という膨大な量のウランが存在している。海水中からの
ウラン回収技術は極めて重要な技術として鋭意検討され
ているが、未だ十分な吸着剤は見い出されていない。
On the other hand, onshore reserves of uranium, which is used as fuel for nuclear energy, are estimated at 6 million tons, but this is not enough to meet future demand. However, in seawater,
The concentration of uranium is extremely dilute, only a few ppb, but a huge amount of uranium exists, totaling 4.2 billion tons. Although the technology for recovering uranium from seawater is being actively studied as an extremely important technology, a sufficient adsorbent has not yet been found.

ウラン吸着剤の必要条件としては、ウランとの会合定数
が大きい事及び他の金属イオンに対してつランの選択吸
着性に優れる事が上げられる。
Requirements for a uranium adsorbent include a large association constant with uranium and excellent selective adsorption of uranium to other metal ions.

これ迄多くのウラン吸着剤の提案がなされており、その
代表的なものは、チタン酸カリウム、アミドオキシム樹
脂及びクラウンエーテル化合物等があるが、尚上述した
必要条件を満足していない事やコスト、吸着剤の再生・
再使用性、取扱い等の点で問題があるものであった。又
、1941年のZinkeらの報告(Ber、 dts
ch、 Chem、  Ges、。
Many uranium adsorbents have been proposed so far, and the representative ones include potassium titanate, amidoxime resin, and crown ether compounds, but they do not satisfy the above-mentioned requirements and are expensive. , adsorbent regeneration/
There were problems in terms of reusability, handling, etc. Also, the report by Zinke et al. in 1941 (Ber, dts
ch, Chem, Ges,.

工4 1729(1941))を初めとしてCornf
orthら(Br1t、 J、 Pharmacol 
、、 107 B(1955) ) 、 、Kamme
rerら(Makromol 、 Chem、 。
Cornf 4 1729 (1941))
orth et al. (Brlt, J, Pharmacol
, , 107 B (1955) ) , , Kamme
(Makromol, Chem.

162 179 (1972)) 、Munch(Ma
kromol。
162 179 (1972)), Munch (Ma
kromol.

Chem、 、  178 、69 (1977) )
及びGutscheら(J、 Am、 Chem、 S
oc、 1088782(1981))等により、ベン
ゼン環よりなる筒状化合物である各種カリキサレン誘導
体の合成が示されている。
Chem, 178, 69 (1977))
and Gutsche et al. (J, Am, Chem, S.
oc, 1088782 (1981)) etc., the synthesis of various calixarene derivatives, which are cylindrical compounds consisting of a benzene ring, has been described.

しかしながら、得られたカリキサレン誘導体はいずれも
水溶性がないか、水溶性に乏しいという問題点がある(
勿論、海水からのウラン吸着についての記載は全くない
)。
However, all of the obtained calixsalene derivatives have the problem that they are not water soluble or have poor water solubility (
Of course, there is no mention of uranium adsorption from seawater).

(発明が解決しようとする問題点) 本発明者らは従来技術の欠点を十分に検討し、かつ、海
水中でのウランの存在形態の十分な分析を行ない、本発
明を完成するに到った。即ち、海水中でのウランは、U
O2(COs )s  という錯体の形で安定に存在し
、かつ、ウラニルイオンtyo2ノ配位構造は、擬平面
六配位構造を有しており、これが他の金属イオンの平面
四配位構造や四面体構造と大きく異なる点である。この
事を利用すれば、ウランに対する選択性及び会合定数と
もにすぐれたウラン吸着剤を製造する事は可能となる。
(Problems to be Solved by the Invention) The present inventors have fully investigated the shortcomings of the prior art and conducted a thorough analysis of the existence form of uranium in seawater, and have completed the present invention. Ta. That is, uranium in seawater is
It exists stably in the form of a complex called O2(COs)s, and the uranyl ion tyo2 coordination structure has a pseudo-planar hexacoordination structure, which is similar to the planar four-coordination structure of other metal ions and This is significantly different from the tetrahedral structure. By utilizing this fact, it becomes possible to produce a uranium adsorbent with excellent selectivity and association constant for uranium.

本発明の目的は、従来のウラン吸着剤にない全く新しい
構造を有し、又すぐれた選択吸着性と水溶性を有するウ
ラン吸着剤を提案するにある。
An object of the present invention is to propose a uranium adsorbent having a completely new structure not found in conventional uranium adsorbents, and having excellent selective adsorption properties and water solubility.

(問題点を解決するための手段) 本発明は、下記(I)式で示されるカリキサレン誘導体
よりなるウラン吸着剤である。
(Means for Solving the Problems) The present invention is a uranium adsorbent made of a calixarene derivative represented by the following formula (I).

但し、n:4〜10 M:水素、アンモニウムイオン、低級アルキルアンモニ
ウムイオン、金属イオン R:水素、低級アルキル基、低級アルキルのカルボン酸
又はその塩、不飽和アル キル基又は芳香族炭化水素 x+ Y ’水素、アルキル基、芳香族炭化水素。
However, n: 4 to 10 M: hydrogen, ammonium ion, lower alkyl ammonium ion, metal ion R: hydrogen, lower alkyl group, lower alkyl carboxylic acid or salt thereof, unsaturated alkyl group or aromatic hydrocarbon x+ Y' Hydrogen, alkyl groups, aromatic hydrocarbons.

本発明のウラン吸着剤においては、上記(I)式で示し
たカリキレン誘導体が水溶性を有し、且つウラニルイオ
ン(UO2)  を捕捉するのに丁度よいキャビティー
を有する事が重要である。従って、C11式においてn
は4〜lOの範囲であり、nが3以下では合成が極めて
困難であり、且つウラン吸着性が乏しく、使用しえない
。又、nが10を越えると合成が困難な上、フェニルメ
チル基という剛直なユニットの環状化合物であるカリキ
サレン誘導体においても水溶液中での柔軟性が増大し、
2+ UO2に対する吸着選択性の低下がおこり使用できない
In the uranium adsorbent of the present invention, it is important that the kalikylene derivative represented by the above formula (I) has water solubility and has a cavity suitable for trapping uranyl ions (UO2). Therefore, in formula C11, n
is in the range of 4 to 1O, and if n is less than 3, synthesis is extremely difficult and the uranium adsorption property is poor, making it unusable. In addition, when n exceeds 10, it is difficult to synthesize, and even in calixsalene derivatives, which are cyclic compounds with a rigid unit called phenylmethyl group, flexibility in an aqueous solution increases,
2+ The adsorption selectivity for UO2 decreases and it cannot be used.

又、上記(I1式1こおけるMはS08の対イオンであ
り、水素、アンモニウムイオン、低級アルキルアンモニ
ウムイオン又は金属イオン等を取りつるが、水素又は金
属イオンが好ましい。
Further, M in the above (I1 formula 1) is a counter ion of S08, and includes hydrogen, ammonium ion, lower alkyl ammonium ion, metal ion, etc., and hydrogen or metal ion is preferable.

Rは、水素、低級アルキル基、低級アルキルのカルボン
酸又はその塩、不飽和アルキル基又は芳香族炭化水素で
あるが、ウラニルイオンに対する会合定数の大きく、良
好なウラン吸着のホストとなる為には、水素、メチル基
、カルボキシメチル基等の比較的短かい官能基が好まし
い。特にカルボキシメチル基は選択性、吸着性に非常に
すぐれている。
R is hydrogen, a lower alkyl group, a lower alkyl carboxylic acid or a salt thereof, an unsaturated alkyl group, or an aromatic hydrocarbon. Relatively short functional groups such as , hydrogen, methyl group, and carboxymethyl group are preferred. In particular, carboxymethyl groups have excellent selectivity and adsorption properties.

x、yについては、上記(IJ式におけるOR及びSO
aMの親水性の強さ及びnの数により、前述したカリキ
サレン誘導体の水溶性、ウラン吸着剤としての性能等の
低下がない限り、特に限定されないO 前記CI)式で示したカリックス[nlアレン誘導体は
、nが大きくなれば環溝造も大きくなり、−CH2−で
の回転も出来やすくなる1、従って、該カリツクス[n
lアレン誘導体の立体配置の変化も観察する事が出来る
が、nが6未満で、R=Hでは、OHによる水′1g績
自が強く作用し、OR<又はSOBM)は一定の方向に
向いた構造(”cone”構造)の確率が高い。又、R
が水素でないか又はn≧6では、溶剤と該カリックス[
nlアレン誘導体との相互作用も考慮する必要があるが
、必ずしもcone  構造は取らずOR(又は508
M )の向きが交互になった構造(” alterat
e ”構造)も取りつる。UO2とカリックス[nlア
レン誘導体とのホスト−ゲスト型錯形成反応に詔いて、
Rが低級アルキル基のカルボン酸の場合はカリックス同
アレンの8個のカルボキシレートが配位すれば十分であ
り、上述したコンホメーシ璽ンのいかんによらず良好な
ウラン吸着剤となるが、それ以外の置換基の場合はco
ne構造である事が好ましい。
For x and y, use the above (OR and SO in the IJ formula)
Depending on the strength of hydrophilicity of aM and the number of n, there is no particular limitation as long as there is no deterioration in the water solubility of the calixarene derivative, its performance as a uranium adsorbent, etc. As n becomes larger, the annular groove structure also becomes larger, and rotation at -CH2- becomes easier1. Therefore, the calix [n
It is also possible to observe changes in the steric configuration of l-arene derivatives, but when n is less than 6 and R=H, the effect of water due to OH is strong, and OR<or SOBM) is directed in a certain direction. The probability of the structure (“cone” structure) is high. Also, R
is not hydrogen or n≧6, the solvent and the calix [
It is also necessary to consider the interaction with nl arene derivatives, but the cone structure is not necessarily required, and the OR (or 508
A structure in which the orientation of M) is alternated ("alterat
e” structure) is also included.The host-guest type complex formation reaction between UO2 and calix [nl arene derivatives] is also included.
When R is a lower alkyl carboxylic acid, coordination of eight carboxylates of calix arene is sufficient, and it becomes a good uranium adsorbent regardless of the above-mentioned conformity rule. If the substituent is co
The ne structure is preferable.

次に本発明のウラン吸着剤の製法の一例を述べ、本発明
を更に詳しく説明する。
Next, an example of the method for manufacturing the uranium adsorbent of the present invention will be described to explain the present invention in more detail.

本発明のウラン吸着剤の製法における出発物質としては
、カリックス[nlアレン及び濃硫酸である。
The starting materials in the method for producing the uranium adsorbent of the present invention are calix [nl arene and concentrated sulfuric acid.

カリックス[nlアレンは、例えばC,D、 Guts
che(Accounts of Chemical 
Re5earch 、 198 B (16)161〜
170)の方法により作ったp−tert−プチルカリ
ックス[nlアレンを、トルエン中で無水塩化アルミニ
ウム等の脱アルキル化剤を用いて脱ブチル化する事によ
り作る事が出来る。
Calix [nl Allen, e.g. C, D, Guts
che (Accounts of Chemical
Re5search, 198 B (16) 161~
It can be prepared by debutylating p-tert-butyl calix [nl arene prepared by the method of 170) in toluene using a dealkylating agent such as anhydrous aluminum chloride.

還流冷却管の付いたフラスコ中でカリツクス[nlアレ
ン1〜20f好ましくは5〜15fを90%以上、好ま
しくは95%以上、更に好ましくは98%以上の濃硫酸
10〜150 ml好ましくは40〜100 mlに添
加し、加熱(好ましくは80°C以上に)、溶解させ、
通常1時間以上、好ましくは2時間以上、更に好ましく
は8〜5時間、60〜100℃好ましくは70〜90℃
で反応させる。反応終了後、内容物を冷却し、析出した
p−スルホン酸カリックス[nlアレンをF別・洗浄す
る事により、前記(I)式におけるR=H,M=Hの化
合物を得る事が出来る。又、Rが低級アルキル基のもの
は、p−スルホン酸カリックス(nlアレンと適当なア
ルキル化剤、例えば)10ゲン化アルキルとをアルキル
化剤を溶解させるような溶剤、例えば水、メタノール、
エタノール、THF等に溶解し、OHの部位にアルキル
基を置換する事が出来る。又、Rが低級アルキル基のカ
ルボン酸のものは、ハロゲン化アルキルカルボン酸を用
いる事により前述の一般式のOHの部位に低級アルキル
のカルボン酸を置換する事が出来る。MがH以外の化合
物は各種イオンとイオン交換により得る事が出来る。
In a flask equipped with a reflux condenser, add 10 to 150 ml of concentrated sulfuric acid, preferably 40 to 100 ml of concentrated sulfuric acid of 90% or more, preferably 95% or more, more preferably 98% or more. ml, heat (preferably above 80°C) and dissolve,
Usually 1 hour or more, preferably 2 hours or more, more preferably 8 to 5 hours, 60 to 100°C, preferably 70 to 90°C
React with. After the reaction is completed, the contents are cooled and the precipitated p-sulfonic acid calix [nl arene is separated from F and washed to obtain a compound of R=H, M=H in the formula (I). In addition, when R is a lower alkyl group, p-sulfonic acid calix (nl arene and a suitable alkylating agent, such as an alkyl 10 genide) can be mixed with a solvent that dissolves the alkylating agent, such as water, methanol,
It can be dissolved in ethanol, THF, etc., and an alkyl group can be substituted at the OH site. Further, when R is a lower alkyl carboxylic acid, the lower alkyl carboxylic acid can be substituted at the OH position in the above general formula by using a halogenated alkyl carboxylic acid. Compounds in which M is other than H can be obtained by ion exchange with various ions.

(発明の効果) 本発明のウラン吸着剤は、(I)式で示されるカリキサ
レン誘導体よりなるが水溶解性に富み、目的とするウラ
ニルイオンと最もよく配位化合物を形成するホストとし
てのキャビティーの設計及び官能基の導入が自由にでき
かつその骨格がクラウンエーテルを初めとする他の環状
配位子等のような柔軟性がない為にウラニルイオンに対
して高い選択性を示し、それ以外の金属イオンの吸着性
が少ないという特徴を有する。従って、海水中に存在す
るウランの吸着には、極めて選択性がよくかつ、吸着力
も大きいものである。又、本発明のウラン吸着剤が、ク
ラウンエーテルのように毒性の高いものでも、又価格の
高いものでもない。従って、本発明のウラン吸着剤を使
用すれば、海水中或いは廃水中のウランを極めて効率的
に吸着でき、又他の金属の吸着を抑える為に吸着ウラン
の純度が高く、精製工程を大巾に短縮する事が出来るな
ど極めて工業的に意義がある。
(Effects of the Invention) The uranium adsorbent of the present invention is made of a calixarene derivative represented by the formula (I), has high water solubility, and has a cavity as a host that best forms a coordination compound with the target uranyl ion. Because it can be freely designed and introduced with functional groups, and its skeleton is not as flexible as other cyclic ligands such as crown ether, it exhibits high selectivity for uranyl ions, and other It is characterized by low adsorption of metal ions. Therefore, it has extremely good selectivity and large adsorption power for adsorbing uranium present in seawater. Further, the uranium adsorbent of the present invention is neither highly toxic nor expensive like crown ether. Therefore, if the uranium adsorbent of the present invention is used, uranium in seawater or wastewater can be adsorbed extremely efficiently, and the purity of the adsorbed uranium is high in order to suppress the adsorption of other metals, making it possible to greatly reduce the purification process. This is extremely industrially significant as it can be shortened to .

以下、実施例を示して本発明を更に詳細に説明する。Hereinafter, the present invention will be explained in more detail by showing examples.

A、p−スルホン酸ナトリウムカリックス〔6)アレン
の調製 撹拌機と冷却管を具えたフラスコにカリックス[6Jア
レン7、781を98%の濃硫酸50m1に添加し、撹
拌しながら80°Cで8時間撹拌を続けた。
A, Sodium p-sulfonate calix [6] Preparation of allene In a flask equipped with a stirrer and a cooling tube, calix [6J allene 7, 781 was added to 50 ml of 98% concentrated sulfuric acid and heated at 80 °C with stirring. Stirring was continued for an hour.

反応の終点は水不溶性物質がなくなった時点とする。The end point of the reaction is the point at which no water-insoluble substances are present.

次いで室温まで冷却し、析出した結晶をP別し、98%
の濃硫酸で洗浄し、p−スルホン酸カリックス[61ア
レンの結晶を得た。得られた結晶を水に溶解し、炭酸バ
リウムにより中和し、生成した硫酸バリウムの沈澱をF
別する。P液に炭酸ナトリウムを添加し、p−スルホン
酸ナトリウムカリックス[6]アレン水溶液とする。溶
液のpHが8〜9になるまで炭酸ナトリウムを添加する
Next, it was cooled to room temperature, the precipitated crystals were separated from P, and 98%
was washed with concentrated sulfuric acid to obtain crystals of p-sulfonic acid calix [61 arene]. The obtained crystals were dissolved in water, neutralized with barium carbonate, and the resulting barium sulfate precipitate was dissolved in F.
Separate. Sodium carbonate is added to the P solution to obtain a sodium p-sulfonate calix[6]arene aqueous solution. Add sodium carbonate until the pH of the solution is 8-9.

水溶液を活性炭で処理後、減圧乾燥する。残留物を水に
溶解し、不溶物をP別・分離する。P液を再度、活性炭
で処理し、活性炭を除去後、残液を濃縮する。濃縮液に
エタノールを添加し、次いで分別・結晶化して得た反応
生成物は、後記第1表に示す分析結果により、p−スル
ホン酸ナトリウムカリックス[6]アレンである事を確
認した(試料1)。
After treating the aqueous solution with activated carbon, it is dried under reduced pressure. Dissolve the residue in water and separate the insoluble matter by P. The P solution is treated with activated carbon again, and after removing the activated carbon, the remaining liquid is concentrated. The reaction product obtained by adding ethanol to the concentrated solution and then fractionating and crystallizing it was confirmed to be sodium p-sulfonate calix[6]arene based on the analysis results shown in Table 1 below (Sample 1). ).

尚、出発物質のカリックス[6]アレンは、Gutsc
heらの方法(C,D、 Gutscheら、 J、 
Am、 Chem。
In addition, the starting material calix[6]arene is Gutsc
The method of he et al. (C, D, Gutsche et al., J.
Am, Chem.

Soc、 、  108 8782 (1982) )
の方法で得たp −tert−プチルカリックス[6]
アレンをトルエン中でklcjh等の脱アルキル化剤に
よって脱ブチル化して得た。
Soc, 108 8782 (1982))
p-tert-butylcalix obtained by the method [6]
Allene was obtained by debutylation with a dealkylating agent such as klcjh in toluene.

B、O−メチル−p−スルホン酸ナトリウム力すックス
(6]アレンの調製 撹拌機、冷却管を具えたフラスコ中で実施例1の方法で
得たp−スルホン酸ナトリウムカリックス〔6)アレン
を811ジメチルスルホキシドを6゜−1水ヲ15 d
、沃化メチに’fe 8.4 Of 、 NaOHを2
.85Nを60℃で24時間加熱した。
B, Preparation of sodium p-sulfonate calix(6)arene obtained by the method of Example 1 in a flask equipped with a stirrer and a cooling tube. 811 dimethyl sulfoxide to 6°-1 water to 15 d
, 'fe 8.4 Of methi iodide, NaOH 2
.. 85N was heated at 60° C. for 24 hours.

冷却後、生成物をメタノール中に析出させた。After cooling, the product was precipitated into methanol.

沈澱をP別し、10g/の水に溶解した。水不溶解分を
炉別・除去後、F液にエタノールを添加していき沈澱を
生成させた。副生物のNalを除去する為にこの操作を
くり返した。生成物は第1表に示す分析により、0−メ
チル−p−スルホン酸ナトリウムカリックス〔61アレ
ンである事を確認した(試料2)。
The precipitate was separated from P and dissolved in 10 g/water. After removing the water-insoluble matter by furnace, ethanol was added to the F solution to form a precipitate. This operation was repeated to remove the by-product Nal. The product was confirmed to be sodium 0-methyl-p-sulfonate calix [61 arene] by the analysis shown in Table 1 (Sample 2).

C,0−n−へキシル−p−スルホン酸ナトリウムカリ
ックス[6)アレン及び0−n−ドデシル−p−スルホ
ン酸ナトリウムカリックス[6]アレンの調製 沃化メチルの代りに、n−ヘキシルブロマイド或いはn
−ドデシルブロマイドを用いて、同様の操作で 及び を得た。
Preparation of C, 0-n-hexyl-p-sulfonate sodium calix [6] arene and 0-n-dodecyl-p-sulfonate sodium calix [6] arene. Instead of methyl iodide, n-hexyl bromide or n
and were obtained in the same manner using -dodecyl bromide.

D、0−カルボキシメチル−p−スルホン酸ナトリウム
カリックス(6]アレンの調製 撹拌機、冷却管を具えたフラスコにi暴−士ミ愈念曇嚇
*p−スルホン酸ナトリウムカリックス[61アレンを
1 f/、 NaOHを29.  モノ臭化酢酸を8.
69.水を10gt添加し、80°Cで24時間加熱・
反応させた。
D, Preparation of sodium 0-carboxymethyl-p-sulfonate calix (6) allene In a flask equipped with a stirrer and a condenser, add 1 part of sodium calix (61 allene) to 0-carboxymethyl-p-sulfonate. f/, NaOH 29. Monobromic acetic acid 8.
69. Add 10gt of water and heat at 80°C for 24 hours.
Made it react.

反応終了後室温まで冷却し、反応液を減圧乾燥させ、残
留物をQ、l N、 NaOH水溶液11)+/に溶解
し80’04時間加熱した。次いで減圧乾燥後、残留物
をエタノールで十分に洗浄した。得られた固形物は第1
表に示す分析により、0−カルボキシメチル−p−スル
ホン酸ナトリウムカリツクス[6]アレンである事を確
認した(試料5)。
After the reaction was completed, it was cooled to room temperature, the reaction solution was dried under reduced pressure, and the residue was dissolved in Q, IN, NaOH aqueous solution 11)+/ and heated for 80'04 hours. After drying under reduced pressure, the residue was thoroughly washed with ethanol. The obtained solid is the first
The analysis shown in the table confirmed that it was sodium 0-carboxymethyl-p-sulfonate calix[6]arene (Sample 5).

第1表 生成物の分析結果 尚 PC:ペーパークロマトグラフィー、展開溶媒 イ
ソプロピルアルコール/水= 2/1(V/V) IR:赤外吸収スペクトル、KBr錠剤法NMR: ’
H−NMR,D20溶液20°C但し、試料−8では一
50gNaを一5O8Hとし、D20溶液85°Cで測
定。
Table 1 Product analysis results PC: paper chromatography, developing solvent isopropyl alcohol/water = 2/1 (V/V) IR: infrared absorption spectrum, KBr tablet method NMR: '
H-NMR, D20 solution at 20°C However, in sample-8, 150g of Na was used as 15O8H, and measurement was performed at 85°C in D20 solution.

又、上記表中の分析とは別に元素分析も行った。In addition to the analysis in the table above, elemental analysis was also conducted.

試料−8では一50gNaを一8Q3 (NH4)とし
て元素分析は行った。
For sample-8, elemental analysis was performed using 150 g of Na as 18Q3 (NH4).

実施例1 試料1.2.5の各希薄水溶液をNa4 UO2(CO
8)8の希薄水溶液に添加し、UO2・ カリックス(
nlアレン誘導体の錯体形成を449 nmの電子スペ
クトルの吸光度の変化にて追跡した。吸収強度の変化が
つよくなった時点で各試料とウラニルイオンとの錯形成
の安定度定数を求めた。これを第2表に示す。尚、比較
例1.2の値は下図に示す化合物比較例1      
  比較例2 の結果である(但し、J、 Ame、 Chem、 S
oc、 1025947(1980)ibid  10
6 2481ラーー−一一一一−−−−−−−−− (1984)より引用)。
Example 1 Each dilute aqueous solution of Sample 1.2.5 was dissolved in Na4 UO2 (CO
8) Add to the dilute aqueous solution of step 8 and add UO2・Calix (
Complex formation of the nl arene derivative was monitored by changes in absorbance in the electronic spectrum at 449 nm. The stability constant of complex formation between each sample and uranyl ions was determined at the point when the change in absorption intensity became strong. This is shown in Table 2. In addition, the values of Comparative Example 1.2 are shown in the figure below.
These are the results of Comparative Example 2 (However, J, Ame, Chem, S
oc, 1025947 (1980) ibid 10
6 2481 Ra-1111 (1984)).

第2表 ウラニルイオンに対する安定度定数実施例2 実施例1で用いた試料−1,5及び比較例1のものにつ
きウランの選択吸着性のテストを行った。
Table 2 Stability Constant for Uranyl Ion Example 2 Samples 1 and 5 used in Example 1 and Comparative Example 1 were tested for selective adsorption of uranium.

この選択吸着性は、上記試料のウラニルイオンとの錯体
形成溶液に他の金属イオンを添加し、ウラニルイオン錯
体の吸収スペクトルの変化より求められる。第8表に他
の金属イオンとの安定度定数(KM)とウラニルイオン
との安定度定数(K)の比を示す。即ち、ウラニルイオ
ンに対する選択性は、試料−5が最もすぐれている事を
示し、比較例1は他の金属イオンの妨害が大きい事が判
る。
This selective adsorption property is determined by adding other metal ions to a solution forming a complex with the uranyl ion of the sample and determining the change in the absorption spectrum of the uranyl ion complex. Table 8 shows the ratio of stability constants (KM) with other metal ions and stability constants (K) with uranyl ions. That is, it can be seen that Sample-5 has the best selectivity to uranyl ions, and Comparative Example 1 has greater interference with other metal ions.

第8表  K/KMTable 8 K/KM

Claims (1)

【特許請求の範囲】[Claims] (1)下記( I )式で示されるカリキサレン誘導体よ
りなるウラン吸着剤。 ▲数式、化学式、表等があります▼・・・・・・( I
) 但し、n:4〜10 M:水素、アンモニウムイオン、低級 アルキルアンモニウムイオン、金 属イオン R:水素、低級アルキル基、低級アル キルのカルボン酸又はその塩、不 飽和アルキル基又は芳香族炭化水 素 x、y:水素、アルキル基、芳香族炭 化水素。
(1) A uranium adsorbent made of a calixarene derivative represented by the following formula (I). ▲There are mathematical formulas, chemical formulas, tables, etc.▼・・・・・・( I
) However, n: 4 to 10 M: hydrogen, ammonium ion, lower alkyl ammonium ion, metal ion R: hydrogen, lower alkyl group, lower alkyl carboxylic acid or salt thereof, unsaturated alkyl group or aromatic hydrocarbon x, y: hydrogen, alkyl group, aromatic hydrocarbon.
JP27944085A 1985-12-11 1985-12-11 Uranium adsorbent Expired - Lifetime JPH0675673B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27944085A JPH0675673B2 (en) 1985-12-11 1985-12-11 Uranium adsorbent

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27944085A JPH0675673B2 (en) 1985-12-11 1985-12-11 Uranium adsorbent

Publications (2)

Publication Number Publication Date
JPS62136242A true JPS62136242A (en) 1987-06-19
JPH0675673B2 JPH0675673B2 (en) 1994-09-28

Family

ID=17611097

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27944085A Expired - Lifetime JPH0675673B2 (en) 1985-12-11 1985-12-11 Uranium adsorbent

Country Status (1)

Country Link
JP (1) JPH0675673B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5049467A (en) * 1989-01-30 1991-09-17 Orient Chemical Industries, Ltd. Toner for use in the development of electrostatic latent images
US5210216A (en) * 1985-03-28 1993-05-11 Loctite (Ireland) Limited Calixarene and oxacalixarene derivatives and use thereof of sequestration metals
DE10238957B4 (en) * 2002-08-24 2005-12-01 Forschungszentrum Rossendorf Ev Method for reducing uranium (VI) concentration in flowing waters
JP2012512232A (en) * 2008-12-17 2012-05-31 アンスティテュート デュ ラジオプロテクシオン エ デュ スロテ ヌークレア Cosmetic and pharmaceutical formulations of calixarene molecules
CN112915982A (en) * 2021-01-29 2021-06-08 兰州大学 Synthetic method and application of cobalt-containing polymer uranyl ion adsorbent

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5210216A (en) * 1985-03-28 1993-05-11 Loctite (Ireland) Limited Calixarene and oxacalixarene derivatives and use thereof of sequestration metals
US5049467A (en) * 1989-01-30 1991-09-17 Orient Chemical Industries, Ltd. Toner for use in the development of electrostatic latent images
DE10238957B4 (en) * 2002-08-24 2005-12-01 Forschungszentrum Rossendorf Ev Method for reducing uranium (VI) concentration in flowing waters
JP2012512232A (en) * 2008-12-17 2012-05-31 アンスティテュート デュ ラジオプロテクシオン エ デュ スロテ ヌークレア Cosmetic and pharmaceutical formulations of calixarene molecules
CN112915982A (en) * 2021-01-29 2021-06-08 兰州大学 Synthetic method and application of cobalt-containing polymer uranyl ion adsorbent
CN112915982B (en) * 2021-01-29 2022-04-29 兰州大学 Synthetic method and application of cobalt-containing polymer uranyl ion adsorbent

Also Published As

Publication number Publication date
JPH0675673B2 (en) 1994-09-28

Similar Documents

Publication Publication Date Title
CN108976430B (en) Acylhydrazone-linked covalent organic framework material and preparation method and application thereof
JP2009078200A (en) Catalyst and method for decomposing formic acid, method for producing hydrogen, apparatus for producing and decomposing formic acid and method for absorbing and generating hydrogen
US3932494A (en) Thiohumic acid, a process for preparing same, and its use for absorbing heavy metal ions
Li et al. Achieving Multifunctional Detection of Th4+ and UO22+ in the Post‐Synthetically Modified Metal–Organic Framework and Application of Functional MOF Membrane
Lande et al. Cobalt (III) acetate from the ozonation of cobaltous acetate
CN112322282A (en) MOFs material for fluorescent recognition of pertechnetate or perrhenate, preparation method and application thereof
Wei et al. A series of iodoargentates directed by solvated metal cations featuring uptake and photocatalytic degradation of organic dye pollutants
JP2002204953A (en) Production method and use method for gas adsorbent
CN105085332A (en) Method for selectively reducing and preparing arylamine through aromatic nitro compounds when ferric oxide/Fe(II) coexists
Song et al. Five isomorphic lanthanide metal-organic frameworks constructed from 5-(3-carboxy-phenyl)-pyridine-2-carboxylic acid and oxalate: synthesis, crystal structures and selective fluorescence sensing for aniline
Lu et al. Determination of trace tellurium by photochemical vapor generation-atomic fluorescence spectrometry using bifunctional Co-MOF-74 for preconcentration and sensitization
JP2010083730A (en) Method for producing at least either deuterium (d2) or hydrogen deuteride (hd) and catalyst for formic acid decomposition used therefor
JPS62136242A (en) Uranium adsorbent
WO2017010771A1 (en) Method for regenerating metal-organic framework
CN114479109B (en) Preparation and application of N, S-containing metal organic framework material
Cui et al. Syntheses, structure and luminescent sensing for Cr (VI)/Fe (III) of a Zn (II) coordination polymer
Joshi et al. Synthesis and structure of Anderson cluster based organic–inorganic hybrid solid,{Cu (2-pzc)(H _ 2 O) _ 2\} _ 2 {H _ 7 AlMo _ 6 O _ 24\} ⋅ 17 H _ 2 O Cu (2-pzc)(H 2 O) 2 2 H 7 AlMo 6 O 24· 17 H 2 O and its dye adsorption properties
Dengel et al. Studies on transition-metal oxo and nitrido complexes. Part 11. New oxo complexes of ruthenium as aerobically assisted oxidants, and the X-ray crystal structure of [Ru 2 O 6 (py) 4]· 3.5 H 2 O
CN110314667A (en) A kind of preparation and its application of metal organic polymer material
Kronenberg et al. Photoreactions of aromatic compounds XIII: Photosubstitution of 4‐nitroveratrole with methylamine; a convenient synthesis of N‐methyl‐4‐nitro‐o‐anisidine
JPS63197544A (en) Adsorbent of uranium
WO2022082324A1 (en) Solid-liquid extraction process for recovering ions of interest from solid materials
Moeller et al. Partial resolution of the tris-(oxalato)-germanate (IV) ion
JPS637837A (en) Uranium adsorption material
JPS63277240A (en) Uranium adsorbent