JP2002204953A - Production method and use method for gas adsorbent - Google Patents

Production method and use method for gas adsorbent

Info

Publication number
JP2002204953A
JP2002204953A JP2001002868A JP2001002868A JP2002204953A JP 2002204953 A JP2002204953 A JP 2002204953A JP 2001002868 A JP2001002868 A JP 2001002868A JP 2001002868 A JP2001002868 A JP 2001002868A JP 2002204953 A JP2002204953 A JP 2002204953A
Authority
JP
Japan
Prior art keywords
gas
complex
adsorbent
carbon dioxide
methane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001002868A
Other languages
Japanese (ja)
Other versions
JP3566655B2 (en
Inventor
Takayoshi Adachi
貴義 足立
Makoto Uchino
誠 内野
Shinichi Ando
紳一 安藤
Takashi Sekiya
隆 関矢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiyo Toyo Sanso Co Ltd
Original Assignee
Taiyo Toyo Sanso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyo Toyo Sanso Co Ltd filed Critical Taiyo Toyo Sanso Co Ltd
Priority to JP2001002868A priority Critical patent/JP3566655B2/en
Publication of JP2002204953A publication Critical patent/JP2002204953A/en
Application granted granted Critical
Publication of JP3566655B2 publication Critical patent/JP3566655B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2

Landscapes

  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Separation Of Gases By Adsorption (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for industrially advantageously producing a porous complex synthesized from copper ions and trimesic acids or their derivatives; and a method for separating and recovering and a method for storing a gas (especially, a methane or carbon dioxide gas) using the complex. SOLUTION: An adsorbent comprising a porous complex is produced by reacting copper ions with trimesic acids or their derivatives in a reaction solvent comprising a mixture of an alcohol and water. This adsorbent can be used for separating and recovering a methane or carbon dioxide gas from a gas mixture containing a methane or carbon dioxide gas by PSA or TSA and for storing a methane or carbon dioxide gas.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、銅イオンとトリメ
シン酸類とから合成されるガス吸着剤の製造法に関する
ものである。また、そのようにして得たガス吸着剤を用
いたガスの分離回収方法およびガスの貯蔵方法に関する
ものである。
The present invention relates to a method for producing a gas adsorbent synthesized from copper ions and trimesic acids. The present invention also relates to a method for separating and recovering gas using the gas adsorbent thus obtained and a method for storing gas.

【0002】[0002]

【従来の技術】〈ゼオライト、分子ふるい活性炭〉PS
A用の吸着剤として、従来、ゼオライトや分子ふるい活
性炭が汎用されている。
[Prior Art] <Zeolite, molecular sieve activated carbon> PS
As the adsorbent for A, zeolite and activated carbon having molecular sieve have been widely used.

【0003】〈ベンゼントリカルボン酸の錯体〉トリメ
シン酸を含むベンゼントリカルボン酸の金属錯体につい
て、いくつかの研究がなされている。以下、本発明で用
いる錯体に近い錯体につき記載のある2,3の文献を関
連文献としてあげる。
<Complex of benzenetricarboxylic acid> Several studies have been made on metal complexes of benzenetricarboxylic acid including trimesic acid. Hereinafter, a few documents describing complexes close to the complexes used in the present invention are listed as related documents.

【0004】(文献1)ポーランド化学雑誌である「PO
LISH JOURNAL OF CHEMISTRY (FORMERLY ROCZNIKI CHEMI
I), 60, 697 (1986)」(文献1)には、「銅(II)のベン
ゼントリカルボン酸との錯体の製造と特性」と題する論
文が掲載されている。この論文によれば、銅(II)のヘミ
メリト酸塩、トリメシン酸塩およびトリメリト酸塩を、
金属対配位子の比率で3:2である水和塩として得てい
る。ガス吸着に関する記載や多孔質錯体であることの記
載は見当たらない。
(Literature 1) Polish chemical journal "PO
LISH JOURNAL OF CHEMISTRY (FORMERLY ROCZNIKI CHEMI
I), 60, 697 (1986) "(Reference 1) discloses a paper entitled" Production and properties of a complex of copper (II) with benzenetricarboxylic acid ". According to this article, copper (II) hemimellitate, trimesate and trimellitate are
Obtained as a hydrate salt with a metal to ligand ratio of 3: 2. There is no description about gas adsorption or description of a porous complex.

【0005】実験では、銅(II)とヘミメリト酸、トリメ
シン酸またはトリメリト酸との錯体を、トリカルボン酸
のアンモニウム塩の熱溶液(pH5〜 5.5)に当量の硝
酸第二銅の 0.1Mの溶液を加えることにより得、形成さ
れた沈殿を母液中で333〜343K(60〜70℃)
に 0.5時間加熱し、ろ過し、蒸留水で洗ってNH4 +イオ
ンを除き、303K(30℃)で恒量になるまで乾燥す
ることにより得ている。
In an experiment, a complex of copper (II) and hemimellitic acid, trimesic acid or trimellitic acid was prepared by adding an equivalent of a 0.1 M solution of cupric nitrate to a hot solution of an ammonium salt of tricarboxylic acid (pH 5 to 5.5). 333-343K (60-70 ° C) in the mother liquor
The mixture is heated for 0.5 hours, filtered, washed with distilled water to remove NH 4 + ions, and dried at 303 K (30 ° C.) until a constant weight is obtained.

【0006】得られた錯体についての赤外線吸収スペク
トル、粉末X線回折パターンも示されている。この錯体
は、加熱により脱水し、加熱速度に応じて、直接CuO
にまたはCu2Oの中間体形成と共に分解される。
The infrared absorption spectrum and powder X-ray diffraction pattern of the complex obtained are also shown. This complex is dehydrated by heating and, depending on the heating rate, is directly CuO
Or with the intermediate formation of Cu 2 O.

【0007】(文献2,2’)「J. Am. Chem. Soc., 1
996, 118, 9096-9101 」(文献2)には、「1,3,5
−ベンゼントリカルボン酸の水素結合金属錯体からの多
孔質固体の構築」と題する論文が掲載されている。ここ
では、M(II)(M=Co、Ni、Zn)アセテートハイ
ドレートと1,3,5−ベンゼントリカルボン酸(BT
C)との水性混合物を炉に入れ、140℃に昇温してこ
の温度で24時間反応させることにより、M3(BTC)2・12
H2O としてフォーミュレートされる物質を得ており、そ
の詳しい解析がなされている。得られた金属錯体は、水
やアンモニアを吸脱着する。ただし、この文献にはCu
の錯体については記載がない。
(References 2, 2 ') "J. Am. Chem. Soc., 1
996, 118, 9096-9101 ”(Reference 2) includes“ 1, 3, 5
-Construction of Porous Solid from Hydrogen-Bonded Metal Complex of Benzenetricarboxylic Acid ". Here, M (II) (M = Co, Ni, Zn) acetate hydrate and 1,3,5-benzenetricarboxylic acid (BT
The aqueous mixture with (C) was placed in a furnace, heated to 140 ° C. and reacted at this temperature for 24 hours to obtain M 3 (BTC) 2・ 12
A substance that has been formulated as H 2 O has been obtained and has been analyzed in detail. The obtained metal complex adsorbs and desorbs water and ammonia. However, in this document, Cu
There is no description of the complex of

【0008】この文献2(およびその関連文献)につい
ては、「科学と工業, 71(10), 434-448 (1997)」(文献
2’)の「分子性ゼオライト−有機・無機複合ゼオライ
トの合成−」と題する解説記事においても言及があり、
この錯体は、酸素、窒素、一酸化炭素などとは交換を行
わないが、水やアンモニアなどを可逆的に吸脱着するこ
とができるとある。
[0008] Regarding this document 2 (and related documents), see "Synthesis of molecular zeolite-organic / inorganic hybrid zeolite" in "Science and Industry, 71 (10), 434-448 (1997)" (reference 2 '). The commentary titled "-" also mentions
This complex does not exchange with oxygen, nitrogen, carbon monoxide, and the like, but can reversibly adsorb and desorb water, ammonia, and the like.

【0009】(先の出願)本出願人は、特願平11−1
38328号(特開2000−327628号公報)と
して、銅イオンとトリメシン酸類とから合成される錯体
であって、[Cu3(C 9H3O6)2]n を基本単位とする構造式を
有し、かつ粉末X線回折におけるメインの面間隔dが実
質的に7.60Åである多孔質錯体につき出願を行ってい
る。この錯体は、N2 ガスやO2 ガスを吸着することが
できる。この錯体の比表面積は、その実施例によれば、
398、586、399m2/gである。
(Previous Application) The applicant of the present invention has filed Japanese Patent Application No. Hei 11-1.
No. 38328 (JP-A-2000-327628) and
Complex synthesized from copper ions and trimesic acids
And [CuThree(C 9HThreeO6)Two]n A structural formula with the basic unit as
And the main spacing d in powder X-ray diffraction is
Filed an application for a porous complex qualitatively 7.60Å
You. This complex has NTwo Gas or OTwo Can adsorb gas
it can. The specific surface area of this complex, according to its example,
398, 586, 399mTwo/ g.

【0010】[0010]

【発明が解決しようとする課題】従来よりPSA用の吸
着剤として汎用されているゼオライトや分子ふるい活性
炭は、その合成に際して高温高圧で行うための特殊な装
置(オートクレーブ等)が用いられているが、合成のた
めの装置としては不利であることを否めない。
Conventionally, zeolite and molecular sieve activated carbon which have been widely used as adsorbents for PSA use a special device (such as an autoclave) for synthesizing them at high temperature and high pressure. However, it cannot be denied that it is disadvantageous as a device for synthesis.

【0011】ベンゼントリカルボン酸には、ヘミメリト
酸、トリメシン酸、トリメリト酸の3種がある。今、ベ
ンゼントリカルボン酸をBTC、2価の金属をMで表わ
すと、上記文献1および文献2,2’の錯体は「M3(BT
C)2・mH2O」で示されるものと考えられる。mは1,
2,3,4,5,6,12などである。
There are three types of benzenetricarboxylic acids: hemimelitic acid, trimesic acid, and trimellitic acid. Now, when benzenetricarboxylic acid is represented by BTC and a divalent metal is represented by M, the complex of the above-mentioned literature 1 and literatures 2 and 2 ′ is represented by “M 3 (BT
C) 2 · mH 2 O ”. m is 1,
2, 3, 4, 5, 6, 12, and the like.

【0012】文献1には、そこで得られる錯体の基礎特
性があげられているだけであり、その用途については言
及がない。文献2,2’には、そこで得られる錯体の基
礎特性と共に、水およびNH3 ガスの吸脱着につき言及
があるので、吸着剤としての用途が示唆されている。
Reference 1 merely mentions the basic properties of the complex obtained therefrom, but does not mention its use. The literature 2,2 ', where together with the basic properties of the resulting complex, since there are mentioned per adsorption and desorption of water and NH 3 gas, have been suggested use as adsorbents.

【0013】ところで、文献1の錯体のX線回折結果に
ついては、X-RAY POWDER DATA FILEに収録のデータによ
り知ることができる。それによれば、文献1の錯体のう
ちCu 3(C9H3O6)3・3H2O、Cu3(C9H3O6)2で示される錯体の
粉末X線回折における面間隔dのうちメインのものは、
それぞれ9.37Å、8.93Åである。もし[Cu3(C9H3O6)2] n
を基本単位とする構造式を有していても、面間隔dがこ
れらと相違しているものが得られれば、その錯体は文献
1の錯体とは立体構造が違っており、従ってその錯体の
性質も異なり、利用分野の拡大が期待できる。なお、文
献2,2’の錯体は、金属成分がCo、NiまたはZn
であり、本発明の意図しているCu系錯体とは物質が相
違している。
By the way, the results of X-ray diffraction of the complex of Reference 1
About the data recorded in the X-RAY POWDER DATA FILE.
You can know. According to this, the complex of the literature 1 is used.
Chi Cu Three(C9HThreeO6)Three・ 3HTwoO, CuThree(C9HThreeO6)TwoOf the complex represented by
Of the interplanar spacing d in powder X-ray diffraction, the main one is
They are 9.37Å and 8.93Å respectively. If [CuThree(C9HThreeO6)Two] n 
Even if it has a structural formula with a basic unit of
If something different is obtained, the complex will be
The structure of the complex is different from that of the complex 1;
The properties are different, and the application field can be expected to expand. The sentence
Complexes 2 and 2 'have a metal component of Co, Ni or Zn.
The substance is a phase complex with the Cu-based complex intended in the present invention.
Wrong.

【0014】ところで、メタンは低公害の自動車用燃料
として用いることができ、CNGと呼ばれる圧縮ガスの
容器を搭載した車が現段階で国内で1万台程度走行して
いる。しかしながら、高圧充填(通常は200kg/cm2
填)となるため、燃料容量と安全性に課題が残ってお
り、容器内に活性炭系などのメタンの吸着剤を収容し
て、同一貯蔵量で容器内圧力を低下させようとする努力
が進行中である。
By the way, methane can be used as a low-pollution automotive fuel, and about 10,000 vehicles equipped with a compressed gas container called CNG are running in Japan at this stage. However, because of high-pressure filling (normally 200 kg / cm 2 filling), fuel capacity and safety issues still remain. Efforts to reduce internal pressure are ongoing.

【0015】二酸化炭素ガスに関しては、地球温暖化防
止対策に関係して、第1段階としての分別・選択吸収手
段のための液層、固層吸収剤の開発が進行している。
Regarding carbon dioxide gas, development of a liquid layer and a solid layer absorbent for separation / selective absorption means as a first step is progressing in connection with measures to prevent global warming.

【0016】本発明は、このような背景下において、銅
イオンとトリメシン酸類とから合成される多孔質錯体を
工業的に有利に製造する方法を提供すること、さらには
その錯体を用いたガス(殊にメタンガスまたは二酸化炭
素ガス)の分離回収方法および貯蔵方法を提供すること
を目的とするものである。
Under such a background, the present invention provides a method for industrially advantageously producing a porous complex synthesized from copper ions and trimesic acids, and further provides a gas using the complex ( In particular, it is an object of the present invention to provide a method for separating and recovering methane gas or carbon dioxide gas) and a method for storing the same.

【0017】[0017]

【課題を解決するための手段】本発明のガス吸着剤の製
造法は、銅イオンとトリメシン酸類とを、反応溶媒とし
てのアルコールと水との混合溶媒中で反応させることに
より、多孔質錯体からなる吸着剤を製造することを特徴
とするものである。
The process for producing a gas adsorbent according to the present invention comprises reacting copper ions with trimesic acids in a mixed solvent of alcohol and water as a reaction solvent to form a porous complex from a porous complex. Which is characterized by producing an adsorbent.

【0018】本発明のガスの分離回収方法は、上記で得
られた吸着剤を用いて、PSAまたはTSAにより混合
ガスからの特定ガスの分離回収(殊にメタンガスまたは
二酸化炭素ガスを含む混合ガスからのこれらのガスの分
離回収)を行うことを特徴とするものである。
The gas separation and recovery method of the present invention uses the adsorbent obtained above to separate and recover a specific gas from a mixed gas by PSA or TSA (particularly from a mixed gas containing methane gas or carbon dioxide gas). (Separation and recovery of these gases).

【0019】本発明のガスの貯蔵方法は、上記で得られ
た吸着剤を用いて、ガス(殊にメタンガスまたは二酸化
炭素ガス)の貯蔵を行うことを特徴とするものである。
The gas storage method of the present invention is characterized in that a gas (in particular, methane gas or carbon dioxide gas) is stored using the adsorbent obtained above.

【0020】[0020]

【発明の実施の形態】以下本発明を詳細に説明する。DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below in detail.

【0021】〈吸着剤の製造法〉本発明の多孔質錯体
は、銅イオン(銅塩)とトリメシン酸類との反応物であ
る。
<Production Method of Adsorbent> The porous complex of the present invention is a reaction product of copper ions (copper salts) and trimesic acids.

【0022】銅イオン源としては、酢酸第二銅、硝酸第
二銅、塩化第二銅、硫酸第二銅などの第二銅塩が好適に
用いられる。ただし場合によっては、第一銅塩も用いる
ことができる。
As the copper ion source, cupric salts such as cupric acetate, cupric nitrate, cupric chloride and cupric sulfate are preferably used. However, in some cases, cuprous salts can also be used.

【0023】トリメシン酸類としては、トリメシン酸
(つまり1,3,5−ベンゼントリカルボン酸)が好適
に用いられ、場合によってはトリメシン酸のベンゼン環
の2,4,6位のHの少なくとも一つがアルキル基、ア
ルコキシ基、ハロゲンなどに置換された誘導体も用いる
ことができる。
As the trimesic acid, trimesic acid (that is, 1,3,5-benzenetricarboxylic acid) is preferably used, and in some cases, at least one of H at positions 2, 4, and 6 of the benzene ring of trimesic acid is an alkyl. A derivative substituted with a group, an alkoxy group, a halogen, or the like can also be used.

【0024】反応は銅塩とトリメシン酸類との両者を溶
解する溶媒中で行われるが、本発明においては、このと
きの反応溶媒としてアルコールと水との混合溶媒を用い
る。トリメシン酸類は水に難溶であるが、その水をアル
コールと併用するわけである。
The reaction is carried out in a solvent in which both the copper salt and trimesic acid are dissolved. In the present invention, a mixed solvent of alcohol and water is used as the reaction solvent at this time. Trimesic acids are poorly soluble in water, but that water is used in combination with alcohol.

【0025】ここでアルコールとしては、炭素数が1〜
5程度のアルコールが単独でまたは2種以上を混合して
用いられるが、水との混和性やコストを考えると、メタ
ノール、エタノール、イソプロパノールまたはn−プロ
パノールが適当であり、特にメタノールが重要である。
Here, the alcohol has 1 to 1 carbon atoms.
About 5 alcohols are used singly or as a mixture of two or more kinds. In view of miscibility with water and cost, methanol, ethanol, isopropanol or n-propanol is suitable, and methanol is particularly important. .

【0026】アルコールと水との混合割合は、高い比表
面積を持つ錯体を得るために、容積比で1:10〜1
0:1に設定することが好ましい。より好ましい範囲は
1:7〜7:1、特に好ましい範囲は1:5〜5:1で
ある。両者の容積比が上記の範囲から外れるときは、得
られる錯体の比表面積が低くなる傾向がある。
The mixing ratio of alcohol and water is from 1:10 to 1 by volume in order to obtain a complex having a high specific surface area.
It is preferable to set 0: 1. A more preferred range is 1: 7 to 7: 1, and a particularly preferred range is 1: 5 to 5: 1. When the volume ratio of the two is out of the above range, the specific surface area of the obtained complex tends to be low.

【0027】他の溶媒、たとえば、ケトン類、エーテル
類、エステル類、セロソルブ類、多価アルコール類、炭
化水素類などは、原料の銅塩の溶解性が悪くなるおそれ
があるので使用しない方が有利であるが、場合によって
は上記のアルコールと併用しても差し支えない。
Other solvents, for example, ketones, ethers, esters, cellosolves, polyhydric alcohols, hydrocarbons and the like may not be used because the solubility of the raw material copper salt may be deteriorated. Although it is advantageous, it may be used in combination with the above alcohol in some cases.

【0028】溶媒の使用量については、特に限定はない
ものの、重量基準で、銅塩とトリメシン酸類との合計量
の10〜2000倍程度、殊に30〜1000倍程度用
いることが、反応の制御の容易さの点で好ましい。
The amount of the solvent to be used is not particularly limited, but is preferably about 10 to 2000 times, especially about 30 to 1000 times, the total amount of the copper salt and trimesic acid on a weight basis. This is preferred in terms of ease of operation.

【0029】銅塩とトリメシン酸類とのモル比は、Cu
イオン3モルに対しトリメシン酸類2モルを目安とする
が、その比率よりもどちらかを過剰ないし大過剰に用い
てもよい。好ましくは、トリメシン酸類が過剰の方が、
より大きな比表面積を持つ錯体が得られる。Cuイオン
から見た場合、配位子がトリメシン酸類に交換されるこ
とになるので、通常は後者のトリメシン酸類の方を当量
(Cuイオン3モルに対しトリメシン酸類2モル)かそ
れよりも過剰に、たとえばCuイオン3モルに対しトリ
メシン酸類を2〜10モル程度用いる方が有利である。
トリメシン酸類をさらに大過剰用いても反応上は有利と
なるが、経済的には良いとは言えない。
The molar ratio between the copper salt and trimesic acid is Cu
The standard is 2 moles of trimesic acid with respect to 3 moles of ion, but either of them may be used in excess or large excess. Preferably, excess trimesic acid,
A complex having a larger specific surface area is obtained. From the viewpoint of Cu ions, the ligand is exchanged for trimesic acids. Therefore, the latter trimesic acids are usually used in an equivalent amount (2 moles of trimesic acids per 3 moles of Cu ions) or in excess. For example, it is more advantageous to use about 2 to 10 moles of trimesic acid per 3 moles of Cu ions.
Even if trimesic acid is used in a large excess, it is advantageous in terms of the reaction, but it cannot be said that it is economically good.

【0030】反応温度は、30〜300℃、殊に40〜
200℃、なかんずく50〜180℃とすることが多い
が、通常は還流温度で反応させることが好ましい。反応
温度が余りに低すぎるときは反応速度が遅くなり、反応
温度が余りに高いときには生成物が分解するおそれがあ
る。
The reaction temperature is 30 to 300 ° C., preferably 40 to 300 ° C.
The temperature is often 200 ° C., especially 50 to 180 ° C., but it is usually preferable to carry out the reaction at the reflux temperature. When the reaction temperature is too low, the reaction rate becomes slow, and when the reaction temperature is too high, the product may be decomposed.

【0031】反応圧力は常圧で充分であるが、加圧条件
を採用しても差し支えない。
As for the reaction pressure, normal pressure is sufficient, but pressurized conditions may be employed.

【0032】反応時間は、反応温度によって大きく異な
るので一概には決められないが、還流温度で反応させた
ときは、1,2時間程度から1昼夜までとすることが多
い。好ましくは3時間以下である。
The reaction time varies greatly depending on the reaction temperature, and thus cannot be unconditionally determined. However, when the reaction is carried out at a reflux temperature, the reaction time is often from about 1,2 hours to one day and night. Preferably it is 3 hours or less.

【0033】反応終了後、沈殿物をろ過することによっ
て、生成物(錯体)を簡単に単離することができる。生
成物単離後は、必要に応じ水や有機溶媒による洗浄を行
う。
After completion of the reaction, the product (complex) can be easily isolated by filtering the precipitate. After isolation of the product, washing with water or an organic solvent is performed as necessary.

【0034】単離された錯体は、これを速やかに減圧下
で加熱することによって、脱溶媒することが特に好まし
い。加熱温度は、50〜350℃程度が好適である。な
お脱溶媒せずに数日間放置すると、錯体の結晶構造が変
わり、比表面積が大巾に減少する。これに対し脱溶媒を
行うと、錯体が安定化して多孔質構造が維持される。こ
れにより目的物である錯体(多孔質錯体)が得られる。
It is particularly preferred that the isolated complex be immediately desolvated by heating it under reduced pressure. The heating temperature is preferably about 50 to 350 ° C. If left for several days without removing the solvent, the crystal structure of the complex changes, and the specific surface area is greatly reduced. On the other hand, when the solvent is removed, the complex is stabilized and the porous structure is maintained. Thereby, the target complex (porous complex) is obtained.

【0035】このようにして得られた錯体は、 ([Cu3(C
9H3O6)2]・m(H2O))nを基本単位とする構造式を有し、粉
末X線回折におけるメインの面間隔dが実質的に7.60Å
である。
The complex thus obtained is represented by ([Cu 3 (C
9 H 3 O 6 ) 2 ] · m (H 2 O)) n , having a structural formula of n as a basic unit, and having a main plane distance d in powder X-ray diffraction of substantially 7.60 °
It is.

【0036】この錯体は多孔質であり、BET法による
比表面積がたとえば900m2/g以上と大きく、ガス吸着
剤として用いることができる。また、触媒、乾燥剤、分
別材料、分析材料、電池材料などの用途も期待できる。
This complex is porous and has a large specific surface area of, for example, 900 m 2 / g or more according to the BET method, and can be used as a gas adsorbent. In addition, applications such as catalysts, desiccants, separation materials, analysis materials, and battery materials can be expected.

【0037】〈ガスの分離回収方法〉上記で得られた吸
着剤を用いて、PSAまたはTSAにより混合ガスから
の特定ガスの分離回収を行うができる。この吸着剤は、
メタンガスまたは二酸化炭素ガスを吸着、脱着する性質
を有するので、メタンガスまたは二酸化炭素ガスを含む
混合ガスからのメタンガスまたは二酸化炭素ガスの吸
着、脱着用に特に重要である。
<Method of Separating and Recovering Gas> A specific gas can be separated and recovered from a mixed gas by PSA or TSA using the adsorbent obtained above. This adsorbent is
Since it has a property of adsorbing and desorbing methane gas or carbon dioxide gas, it is particularly important for adsorption and desorption of methane gas or carbon dioxide gas from a mixed gas containing methane gas or carbon dioxide gas.

【0038】〈ガスの貯蔵方法〉そして上記で得られた
吸着剤は、メタンガスまたは二酸化炭素ガスを大量に吸
着する性質を有するので、ガス(殊にメタンガスまたは
二酸化炭素ガス)の貯蔵を行う目的にも有用である。こ
れらのガスを貯蔵した吸着剤は、たとえば自動車用の燃
料ガス、燃料電池の原料ガスの供給源として使うことが
できる。
<Gas storage method> The adsorbent obtained above has a property of adsorbing a large amount of methane gas or carbon dioxide gas, and is used for storing gas (particularly, methane gas or carbon dioxide gas). Is also useful. The adsorbent storing these gases can be used, for example, as a supply source of fuel gas for automobiles and source gas of fuel cells.

【0039】[0039]

【実施例】次に実施例をあげて本発明をさらに説明す
る。
The present invention will be further described with reference to the following examples.

【0040】〈測定方法〉比表面積は、Micromeritics
社製のAccuSorb 2100Eを使用し、液体窒素温度でBET
法により測定、計算して求めた。
<Measurement method> The specific surface area was measured by Micromeritics.
BET at liquid nitrogen temperature using AccuSorb 2100E
It was measured and calculated by the method.

【0041】ガス吸着量は、サンプルの入ったサンプル
容器、予め体積を測定したマニホールド、圧力計(横河
電機株式会社製、高精度圧力測定モジュールを使用)
と、バルブや配管からなるガス吸収量測定装置(図4)
を使用して測定した。測定方法は、まずヘリウムガスを
マニホールド部に充填しサンプル容器に導入して圧力低
下からのデッド・ボリュウムを測定する。ついで対象ガ
スを同じくマニホールド部に充填後、サンプル容器に導
入して、圧力低下からガスの吸収量を計算した。装置全
体は恒温槽に入れ、25.0℃の一定温度で測定した。
The gas adsorption amount is measured by a sample container containing a sample, a manifold whose volume has been measured in advance, and a pressure gauge (using a high-precision pressure measuring module manufactured by Yokogawa Electric Corporation).
And a gas absorption measuring device consisting of valves and piping (Fig. 4)
Measured using The measuring method is as follows. First, a helium gas is charged into a manifold portion, introduced into a sample container, and dead volume due to pressure drop is measured. Next, after the target gas was similarly filled in the manifold portion, the gas was introduced into the sample container, and the gas absorption was calculated from the pressure drop. The whole apparatus was put in a thermostat and measured at a constant temperature of 25.0 ° C.

【0042】実施例1 300mlの三つ口フラスコに酢酸第二銅一水和物 203.2
mg(1.018mmol) を入れ、これにメタノール80mlと水2
0mlとの混合溶媒を加えて溶かした。これにトリメシン
酸 144.5mg(0.688mmol) をメタノール40mlと水10ml
との混合溶媒に溶かした溶液を加え、フラスコを加熱し
て還流を始めた。混合溶媒におけるメタノールと水との
比は、容量比で4:1となる。翌日冷却後、沈殿をろ過
して、窒素ガスを数時間吹き付けて乾燥させたところ、
紺色の錯体 322.0mgが得られた。この錯体を真空下に2
00℃で2時間加熱処理し、BET法(窒素ガス使用)
により比表面積を測定したところ、比表面積は964m2
/gであった。
EXAMPLE 1 Cupric acetate monohydrate 203.2 was placed in a 300 ml three-necked flask.
mg (1.018 mmol), and add 80 ml of methanol and 2
A mixed solvent with 0 ml was added to dissolve. 144.5 mg (0.688 mmol) of trimesic acid was added to 40 ml of methanol and 10 ml of water.
A solution dissolved in a mixed solvent with was added, and the flask was heated to start refluxing. The ratio of methanol to water in the mixed solvent is 4: 1 by volume. After cooling the next day, the precipitate was filtered and dried by blowing nitrogen gas for several hours.
322.0 mg of a dark blue complex were obtained. The complex is placed under vacuum 2
Heat treatment at 00 ° C for 2 hours, BET method (using nitrogen gas)
The specific surface area was measured to be 964 m 2
/ g.

【0043】なお、上記のろ過および窒素ガス乾燥を行
った後の錯体を、加熱処理を行わずに室温で1週間保管
し、その後真空下に200℃で加熱処理を2時間行って
比表面積を測定したところ、比表面積は9m2/gに減少し
ていた。
The complex after the above-mentioned filtration and drying with nitrogen gas was stored at room temperature for 1 week without heat treatment, and then heat-treated at 200 ° C. for 2 hours under vacuum to reduce the specific surface area. Upon measurement, the specific surface area was reduced to 9 m 2 / g.

【0044】実施例2 300mlの三つ口フラスコに酢酸第二銅一水和物 205.2
mg(1.028mmol) を入れ、これにメタノール80mlと水4
0mlとの混合溶媒を加えて溶かした。これにトリメシン
酸 150.4mg(0.716mmol) をメタノール20mlと水10ml
との混合溶媒に溶かした溶液を加え、フラスコを加熱し
て還流を始めた。混合溶媒におけるメタノールと水との
比は、容量比で2:1となる。翌日冷却後、沈殿をろ過
して、窒素ガスを数時間吹き付けて乾燥させたところ、
紺色の錯体 335.5mgが得られた。この錯体を真空下に2
00℃で2時間加熱処理し、BET法(窒素ガス使用)
により比表面積を測定したところ、比表面積は1002
m2/gであった。
EXAMPLE 2 Cupric acetate monohydrate 205.2 was placed in a 300 ml three-necked flask.
mg (1.028 mmol), and add 80 ml of methanol and 4
A mixed solvent with 0 ml was added to dissolve. 150.4 mg (0.716 mmol) of trimesic acid was added to 20 ml of methanol and 10 ml of water.
A solution dissolved in a mixed solvent with was added, and the flask was heated to start refluxing. The ratio of methanol to water in the mixed solvent is 2: 1 by volume. After cooling the next day, the precipitate was filtered and dried by blowing nitrogen gas for several hours.
335.5 mg of a dark blue complex were obtained. The complex is placed under vacuum 2
Heat treatment at 00 ° C for 2 hours, BET method (using nitrogen gas)
When the specific surface area was measured by
m 2 / g.

【0045】実施例3 300mlの三つ口フラスコに酢酸第二銅一水和物 201.0
mg(1.007mmol) を入れ、これにメタノール40mlと水8
0mlとの混合溶媒を加えて溶かした。これにトリメシン
酸 141.5mg(0.673mmol) をメタノール10mlと水20ml
との混合溶媒に溶かした溶液を加え、フラスコを加熱し
て還流を始めた。混合溶媒におけるメタノールと水との
比は、容量比で1:2となる。翌日冷却後、沈殿をろ過
して、窒素ガスを数時間吹き付けて乾燥させたところ、
濃い青色の錯体 229.0mgが得られた。この錯体を真空下
に200℃で2時間加熱処理し、BET法(窒素ガス使
用)により比表面積を測定したところ、比表面積は12
69m2/gであった。
EXAMPLE 3 Cupric acetate monohydrate 201.0 was placed in a 300 ml three-necked flask.
mg (1.007 mmol), methanol 40 ml and water 8
A mixed solvent with 0 ml was added to dissolve. 141.5 mg (0.673 mmol) of trimesic acid was added to 10 ml of methanol and 20 ml of water.
A solution dissolved in a mixed solvent with was added, and the flask was heated to start refluxing. The ratio of methanol to water in the mixed solvent is 1: 2 by volume. After cooling the next day, the precipitate was filtered and dried by blowing nitrogen gas for several hours.
229.0 mg of a deep blue complex were obtained. This complex was heat-treated under vacuum at 200 ° C. for 2 hours, and the specific surface area was measured by the BET method (using nitrogen gas).
It was 69 m 2 / g.

【0046】実施例4 300mlの三つ口フラスコに酢酸第二銅一水和物 409.6
mg(2.052mmol) を入れ、これにメタノール33mlと水6
7mlとの混合溶媒を加えて溶かした。これにトリメシン
酸 285.0mg(1.356mmol) をメタノール33mlと水67ml
との混合溶媒に溶かした溶液を加え、フラスコを加熱し
て還流を始めた。混合溶媒におけるメタノールと水との
比は、容量比で1:2となる。3時間後、冷却し、沈殿
をろ過して、窒素ガスを数時間吹き付けて乾燥させたと
ころ、水色の錯体 672.7mgが得られた。この錯体をすみ
やかに真空下に200℃で2時間加熱処理し、BET法
(窒素ガス使用)により比表面積を測定したところ、比
表面積は1385m2/gであった。
Example 4 Cupric acetate monohydrate 409.6 was placed in a 300 ml three-necked flask.
mg (2.052 mmol), 33 ml of methanol and 6
A mixed solvent with 7 ml was added and dissolved. To this, 285.0 mg (1.356 mmol) of trimesic acid was added to 33 ml of methanol and 67 ml of water.
A solution dissolved in a mixed solvent with was added, and the flask was heated to start refluxing. The ratio of methanol to water in the mixed solvent is 1: 2 by volume. After 3 hours, the mixture was cooled, the precipitate was filtered, and dried by blowing nitrogen gas for several hours to obtain 672.7 mg of a light blue complex. This complex was immediately heat-treated under vacuum at 200 ° C. for 2 hours, and the specific surface area was measured by a BET method (using nitrogen gas) to find that the specific surface area was 1,385 m 2 / g.

【0047】この錯体のガス吸収量を測定した結果を図
1に示す。図1に吸着等温線を示したように、この錯体
は、メタンガスについては1.0 MpaG, 25℃で145ml/
g、二酸化炭素ガスについては0.7 MpaG, 25℃で312m
l/gを吸収し、いずれの場合も減圧すると全量を脱離し
た。
FIG. 1 shows the result of measuring the gas absorption of this complex. As shown in the adsorption isotherm in FIG. 1, this complex is 145 ml / methane at 1.0 MpaG and 25 ° C. for methane gas.
g, carbon dioxide gas is 0.7 MpaG, 312m at 25 ℃
l / g was absorbed, and in all cases, when the pressure was reduced, the entire amount was desorbed.

【0048】実施例5 300mlの三つ口フラスコに酢酸第二銅一水和物 200.8
mg(1.006mmol) を入れ、これにメタノール25mlと水7
5mlとの混合溶媒を加えて溶かした。これにトリメシン
酸 140.7mg(0.670mmol) をメタノール10mlと水30ml
との混合溶媒に溶かした溶液を加え、フラスコを加熱し
て還流を始めた。混合溶媒におけるメタノールと水との
比は、容量比で1:3となる。翌日冷却後、沈殿をろ過
して、窒素ガスを数時間吹き付けて乾燥させたところ、
濃い青色の錯体 297.8mgが得られた。この錯体を真空下
に200℃で2時間加熱処理し、BET法(窒素ガス使
用)により比表面積を測定したところ、比表面積は11
44m2/gであった。
Example 5 200.8 cupric acetate monohydrate was placed in a 300 ml three-necked flask.
mg (1.006 mmol), 25 ml of methanol and 7
A mixed solvent with 5 ml was added to dissolve. 140.7 mg (0.670 mmol) of trimesic acid was added to 10 ml of methanol and 30 ml of water.
A solution dissolved in a mixed solvent with was added, and the flask was heated to start refluxing. The ratio of methanol to water in the mixed solvent is 1: 3 by volume. After cooling the next day, the precipitate was filtered and dried by blowing nitrogen gas for several hours.
297.8 mg of a deep blue complex were obtained. This complex was heat-treated at 200 ° C. for 2 hours under vacuum, and the specific surface area was measured by the BET method (using nitrogen gas).
It was 44 m 2 / g.

【0049】比較例1 300mlの三つ口フラスコに酢酸第二銅一水和物 200.2
mg(1.003mmol) を入れ、エタノール100mlを加えて溶
かした。これにトリメシン酸 420.8mg(2.002mmol) をエ
タノール50mlに溶かした溶液を加え、その後1週間か
けて加熱還流を行った。ついで加熱を止め、冷却し、沈
殿をろ過して、窒素ガスを吹き付けて乾燥させたとこ
ろ、青色の沈殿 156.3mgが得られた。この錯体を真空下
に120℃で1時間加熱処理し、BET法(窒素ガス使
用)により比表面積を測定したところ、比表面積は39
8m2/gであった。
Comparative Example 1 Cupric acetate monohydrate 200.2 was placed in a 300 ml three-necked flask.
mg (1.003 mmol) was added and dissolved by adding 100 ml of ethanol. A solution of 420.8 mg (2.002 mmol) of trimesic acid dissolved in 50 ml of ethanol was added thereto, and the mixture was heated under reflux for one week. Then, the heating was stopped, the mixture was cooled, and the precipitate was filtered and dried by blowing nitrogen gas to obtain 156.3 mg of a blue precipitate. This complex was heat-treated at 120 ° C. for 1 hour under vacuum, and the specific surface area was measured by the BET method (using nitrogen gas).
It was 8 m 2 / g.

【0050】比較例2 300mlの三つ口フラスコに酢酸第二銅一水和物1.0443
g(5.231mmol)を入れ、メタノール200mlを加えて溶か
した。これにトリメシン酸2.1160g(10.069mmol) をエタ
ノール70mlに溶かした溶液を加え、その後1週間かけ
て加熱還流を行った。ついで加熱を止め、冷却し、沈殿
をろ過して、窒素ガスを吹き付けて乾燥させたところ、
青色の沈殿 0.7507gが得られた。この錯体を真空下に1
20℃で1時間加熱処理し、BET法(窒素ガス使用)
により比表面積を測定したところ、比表面積は338m2
/gであった。
Comparative Example 2 A cupric acetate monohydrate (1.0443) was placed in a 300 ml three-necked flask.
g (5.231 mmol) was added and dissolved by adding 200 ml of methanol. A solution prepared by dissolving 2.1160 g (10.069 mmol) of trimesic acid in 70 ml of ethanol was added thereto, and the mixture was heated under reflux for one week. Then heating was stopped, cooled, and the precipitate was filtered and dried by blowing nitrogen gas.
0.7507 g of a blue precipitate was obtained. This complex is placed under vacuum
Heat treatment at 20 ° C for 1 hour, BET method (using nitrogen gas)
The specific surface area was determined to be 338 m 2
/ g.

【0051】参考例1 モレキュラーシーブス5A(バイリット社製)の比表面
積をBET法(窒素ガス使用)により測定したところ、
360m2/gであった。さらに、このモレキュラーシーブ
ス5Aのガス吸収量を測定したところ、図2に吸着等温
線を示したように、メタンガスについては0.4 MpaG, 25
℃で45ml/g、二酸化炭素ガスについては0.4 MpaG, 25
℃で112ml/gを吸収した。
Reference Example 1 The specific surface area of the molecular sieves 5A (manufactured by Bayrit) was measured by the BET method (using nitrogen gas).
It was 360 m 2 / g. Further, when the gas absorption amount of this molecular sieve 5A was measured, as shown in the adsorption isotherm in FIG.
45 ml / g at ℃, 0.4 MpaG, 25 for carbon dioxide gas
At 112C / 112 ml / g were absorbed.

【0052】参考例2 活性炭(武田薬品工業株式会社製の「白鷺」)のガス吸
着量を測定したところ、図3に吸着等温線を示したよう
に、メタンガスについては0.4 MpaG, 25℃で62ml/g、
二酸化炭素ガスについては0.4 MpaG, 25℃で120ml/g
を吸収した。
Reference Example 2 The amount of gas adsorbed on activated carbon ("Shirasagi" manufactured by Takeda Pharmaceutical Co., Ltd.) was measured. As shown in the adsorption isotherm in FIG. 3, methane gas was 0.4 MpaG, 62 ml at 25 ° C. / g,
120 ml / g at 0.4 MpaG, 25 ° C for carbon dioxide gas
Was absorbed.

【0053】〈まとめ〉実施例1〜5および比較例1〜
2の結果を表1に示す。表1から、溶媒としてアルコー
ルと水との混合溶媒を用いた実施例1〜5においては、
溶媒としてアルコールのみを用いた比較例1〜2に比
し、比表面積が顕著に大きい多孔質錯体からなる吸着剤
が得られることがわかる。
<Summary> Examples 1 to 5 and Comparative Examples 1 to
Table 1 shows the results of No. 2. From Table 1, in Examples 1 to 5 using a mixed solvent of alcohol and water as the solvent,
It can be seen that an adsorbent comprising a porous complex having a remarkably large specific surface area can be obtained as compared with Comparative Examples 1 and 2 using only alcohol as a solvent.

【0054】[0054]

【表1】 [Table 1]

【0055】また実施例1の個所で述べたように、反応
終了後の生成物を単離した後、すみやかに減圧下に加熱
して脱溶媒を行ったときの比表面積は964m2/gである
のに対し、そのような脱溶媒を行わなかったときの比表
面積はわずかに9m2/gであり、生成物を単離した後、脱
溶媒をすることが重要であることがわかる。
As described in the section of Example 1, the product after the completion of the reaction was isolated and immediately heated under reduced pressure to remove the solvent, and the specific surface area was 964 m 2 / g. In contrast, the specific surface area without such desolvation was only 9 m 2 / g, indicating that it was important to desolvate after isolating the product.

【0056】さらにまた、実施例4で得られた吸着剤
を、参考例1のゼオライト、参考例2の活性炭と対比す
ると、図1および図2,3のように、メタンガスおよび
二酸化炭素ガスの吸着性の点で大きな差があることがわ
かる。
Further, when the adsorbent obtained in Example 4 was compared with the zeolite of Reference Example 1 and the activated carbon of Reference Example 2, as shown in FIGS. 1 and 2, the adsorption of methane gas and carbon dioxide gas was confirmed. It can be seen that there is a large difference in terms of sex.

【0057】[0057]

【発明の効果】本発明においては、銅イオンとトリメシ
ン酸類とをアルコールと水との混合溶媒中で反応させる
ことにより、比表面積の極めて大きい多孔質錯体からな
る吸着剤を得ている。
According to the present invention, an adsorbent comprising a porous complex having an extremely large specific surface area is obtained by reacting copper ions with trimesic acids in a mixed solvent of alcohol and water.

【0058】そのため、この吸着剤は、混合ガスから特
定ガスの分離回収方法(殊に、メタンガスまたは二酸化
炭素ガスを含有する混合ガスから、PSAまたはTSA
によりメタンガスまたは二酸化炭素ガスの分離回収する
方法)に適しており、また、ガスの貯蔵方法(殊に、メ
タンガスまたは二酸化炭素ガスを貯蔵する方法)に適し
ている。
For this reason, this adsorbent can be used for a method for separating and recovering a specific gas from a mixed gas (particularly, PSA or TSA from a mixed gas containing methane gas or carbon dioxide gas).
Is suitable for a method of separating and recovering methane gas or carbon dioxide gas), and is also suitable for a method of storing gas (particularly, a method of storing methane gas or carbon dioxide gas).

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施例4の錯体のメタンガスおよび二酸化炭素
ガスの吸着等温線である。
FIG. 1 is an adsorption isotherm of methane gas and carbon dioxide gas of the complex of Example 4.

【図2】参考例1のモレキュラーシーブス5Aのメタン
ガスおよび二酸化炭素ガスの吸着等温線である。
FIG. 2 is an adsorption isotherm of methane gas and carbon dioxide gas of the molecular sieve 5A of Reference Example 1.

【図3】参考例2の活性炭のメタンガスおよび二酸化炭
素ガスの吸着等温線である。
FIG. 3 is an adsorption isotherm of activated carbon of Reference Example 2 for methane gas and carbon dioxide gas.

【図4】実験で使用したガス吸収量測定装置の説明図で
ある。
FIG. 4 is an explanatory diagram of a gas absorption amount measuring device used in an experiment.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 安藤 紳一 大阪府大阪市西区靱本町2丁目4番11号 大陽東洋酸素株式会社内 (72)発明者 関矢 隆 大阪府大阪市西区靱本町2丁目4番11号 大陽東洋酸素株式会社内 Fターム(参考) 4D012 BA01 4G066 AA15A AA32A AA47A AA53A AB03A AB07A AB24B BA26 CA35 CA56 DA04 FA03 FA21 FA35 FA37  ──────────────────────────────────────────────────続 き Continuing from the front page (72) Inventor Shinichi Ando 2-4-1-11 Utsuhoncho, Nishi-ku, Osaka-shi, Osaka Inside Taiyo Toyo Oxygen Co., Ltd. (72) Inventor Takashi Sekiya 2-Utsuhoncho, Nishi-ku, Osaka-shi, Osaka No. 4-11 Taiyo Toyo Oxygen Co., Ltd. F term (reference) 4D012 BA01 4G066 AA15A AA32A AA47A AA53A AB03A AB07A AB24B BA26 CA35 CA56 DA04 FA03 FA21 FA35 FA37

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】銅イオンとトリメシン酸類とを、反応溶媒
としてのアルコールと水との混合溶媒中で反応させるこ
とにより、多孔質錯体からなる吸着剤を製造することを
特徴とするガス吸着剤の製造法。
1. A gas adsorbent comprising reacting copper ions with trimesic acids in a mixed solvent of alcohol and water as a reaction solvent to produce an adsorbent comprising a porous complex. Manufacturing method.
【請求項2】多孔質錯体が、 ([Cu3(C9H3O6)2]・m(H
2O))nを基本単位とする構造式を有するものである請求
項1記載の製造法。
2. The method according to claim 1, wherein the porous complex is ([Cu 3 (C 9 H 3 O 6 ) 2 ] · m (H
2. The method according to claim 1, wherein the compound has a structural formula having 2 O)) n as a basic unit.
【請求項3】多孔質錯体のBET法による比表面積が9
00m2/g以上である請求項1記載の製造法。
3. The porous complex having a specific surface area of 9 by a BET method.
2. The method according to claim 1, wherein the amount is at least 00 m 2 / g.
【請求項4】反応後、単離した生成物を脱溶媒すること
を特徴とする請求項1記載のガス吸着剤の製造法。
4. The process for producing a gas adsorbent according to claim 1, wherein the isolated product is desolvated after the reaction.
【請求項5】脱溶媒方法が、減圧下での加熱によるもの
である請求項4記載のガス吸着剤の製造法。
5. The method for producing a gas adsorbent according to claim 4, wherein the desolvation method is performed by heating under reduced pressure.
【請求項6】アルコールと水との混合割合が、容積比で
1:10〜10:1である請求項1記載のガス吸着剤の
製造法。
6. The method for producing a gas adsorbent according to claim 1, wherein the mixing ratio of the alcohol and water is 1:10 to 10: 1 by volume.
【請求項7】請求項1で得られた吸着剤を用いて、PS
AまたはTSAにより混合ガスからの特定ガスの分離回
収を行うことを特徴とするガスの分離回収方法。
7. A method for producing PS using the adsorbent obtained in claim 1.
A method for separating and recovering a specific gas from a mixed gas using A or TSA.
【請求項8】メタンガスまたは二酸化炭素ガスを含有す
る混合ガスから、PSAまたはTSAによりメタンガス
または二酸化炭素ガスの分離回収を行うものである請求
項7記載のガスの分離回収方法。
8. The method for separating and recovering gas according to claim 7, wherein methane gas or carbon dioxide gas is separated and recovered from the mixed gas containing methane gas or carbon dioxide gas by PSA or TSA.
【請求項9】請求項1で得られた吸着剤を用いて、ガス
の貯蔵を行うことを特徴とするガスの貯蔵方法。
9. A method for storing gas, comprising using the adsorbent obtained in claim 1 to store gas.
【請求項10】貯蔵するガスが、メタンガスまたは二酸
化炭素ガスである請求項9記載のガスの貯蔵方法。
10. The gas storage method according to claim 9, wherein the gas to be stored is methane gas or carbon dioxide gas.
JP2001002868A 2001-01-10 2001-01-10 Manufacturing method of gas adsorbent Expired - Fee Related JP3566655B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001002868A JP3566655B2 (en) 2001-01-10 2001-01-10 Manufacturing method of gas adsorbent

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001002868A JP3566655B2 (en) 2001-01-10 2001-01-10 Manufacturing method of gas adsorbent

Publications (2)

Publication Number Publication Date
JP2002204953A true JP2002204953A (en) 2002-07-23
JP3566655B2 JP3566655B2 (en) 2004-09-15

Family

ID=18871300

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001002868A Expired - Fee Related JP3566655B2 (en) 2001-01-10 2001-01-10 Manufacturing method of gas adsorbent

Country Status (1)

Country Link
JP (1) JP3566655B2 (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006061758A (en) * 2004-08-24 2006-03-09 Daikin Ind Ltd Carbon dioxide remover
EP1674555A1 (en) * 2004-12-20 2006-06-28 Basf Aktiengesellschaft Concentration of methane in methane containing gas mixtures by adsorption
JP2006212469A (en) * 2005-02-01 2006-08-17 Honda Motor Co Ltd Heat treatment method for metal-organic skeleton structure body
JP2006297276A (en) * 2005-04-20 2006-11-02 Kuraray Co Ltd Gas absorbent, its manufacturing method and gas-absorbing method using it
JP2006297278A (en) * 2005-04-20 2006-11-02 Kuraray Co Ltd Gas absorbent, its manufacturing method and gas-absorbing method using it
WO2006122920A1 (en) * 2005-05-18 2006-11-23 Basf Aktiengesellschaft Gas odorous substance separation
WO2007101797A1 (en) * 2006-03-09 2007-09-13 Basf Se Closed reversible breathing apparatus having a metal organic framework
EP2032513A1 (en) * 2006-06-14 2009-03-11 Basf Se Process for preparing unsaturated hydrocarbons
JP2011064336A (en) * 2003-11-24 2011-03-31 Basf Se Method of adjusting, storing, and releasing gas using electrochemically produced crystalline, porous, organometallic skeleton material
JP2011514377A (en) * 2008-03-17 2011-05-06 ビーエーエスエフ ソシエタス・ヨーロピア Use of formate-based porous metal-organic framework materials for methane storage
WO2012093883A2 (en) * 2011-01-07 2012-07-12 Sk Innovation Co., Ltd. Filtering structure coated with catalyst for reforming synthesis gas and filtering method using the same
CN103055812A (en) * 2012-12-24 2013-04-24 淮北市森化碳吸附剂有限责任公司 Preparation method for methane special-purpose carbon adsorbent in pressure swing adsorption
KR20140109356A (en) * 2010-04-15 2014-09-15 에어 프로덕츠 앤드 케미칼스, 인코오포레이티드 Recovery of NF3 from Adsorption Operation
JPWO2015129685A1 (en) * 2014-02-26 2017-03-30 国立大学法人京都大学 Porous coordination polymer and use thereof
WO2018139108A1 (en) * 2017-01-26 2018-08-02 パナソニック株式会社 Desulfurization apparatus and desulfurization method
CN114471074A (en) * 2022-02-22 2022-05-13 华侨大学 Application of macromolecule-metal complex in reversible ammonia gas trapping
CN114634628A (en) * 2022-04-18 2022-06-17 佛山科学技术学院 Preparation method of barium-based metal organic framework material for separating methane and nitrogen

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011064336A (en) * 2003-11-24 2011-03-31 Basf Se Method of adjusting, storing, and releasing gas using electrochemically produced crystalline, porous, organometallic skeleton material
JP2006061758A (en) * 2004-08-24 2006-03-09 Daikin Ind Ltd Carbon dioxide remover
EP1674555A1 (en) * 2004-12-20 2006-06-28 Basf Aktiengesellschaft Concentration of methane in methane containing gas mixtures by adsorption
JP2006212469A (en) * 2005-02-01 2006-08-17 Honda Motor Co Ltd Heat treatment method for metal-organic skeleton structure body
JP4658668B2 (en) * 2005-04-20 2011-03-23 株式会社クラレ Gas absorbent, method for producing the same, and method for absorbing gas using the same
JP4603926B2 (en) * 2005-04-20 2010-12-22 株式会社クラレ Gas absorbent, method for producing the same, and method for absorbing gas using the same
JP2006297278A (en) * 2005-04-20 2006-11-02 Kuraray Co Ltd Gas absorbent, its manufacturing method and gas-absorbing method using it
JP2006297276A (en) * 2005-04-20 2006-11-02 Kuraray Co Ltd Gas absorbent, its manufacturing method and gas-absorbing method using it
WO2006122920A1 (en) * 2005-05-18 2006-11-23 Basf Aktiengesellschaft Gas odorous substance separation
WO2007101797A1 (en) * 2006-03-09 2007-09-13 Basf Se Closed reversible breathing apparatus having a metal organic framework
EP2032513A1 (en) * 2006-06-14 2009-03-11 Basf Se Process for preparing unsaturated hydrocarbons
JP2011514377A (en) * 2008-03-17 2011-05-06 ビーエーエスエフ ソシエタス・ヨーロピア Use of formate-based porous metal-organic framework materials for methane storage
KR20140109356A (en) * 2010-04-15 2014-09-15 에어 프로덕츠 앤드 케미칼스, 인코오포레이티드 Recovery of NF3 from Adsorption Operation
KR101686085B1 (en) * 2010-04-15 2016-12-13 에어 프로덕츠 앤드 케미칼스, 인코오포레이티드 Recovery of NF3 from Adsorption Operation
WO2012093883A2 (en) * 2011-01-07 2012-07-12 Sk Innovation Co., Ltd. Filtering structure coated with catalyst for reforming synthesis gas and filtering method using the same
WO2012093883A3 (en) * 2011-01-07 2012-12-06 Sk Innovation Co., Ltd. Filtering structure coated with catalyst for reforming synthesis gas and filtering method using the same
CN103055812A (en) * 2012-12-24 2013-04-24 淮北市森化碳吸附剂有限责任公司 Preparation method for methane special-purpose carbon adsorbent in pressure swing adsorption
JPWO2015129685A1 (en) * 2014-02-26 2017-03-30 国立大学法人京都大学 Porous coordination polymer and use thereof
WO2018139108A1 (en) * 2017-01-26 2018-08-02 パナソニック株式会社 Desulfurization apparatus and desulfurization method
JP6406745B1 (en) * 2017-01-26 2018-10-17 パナソニック株式会社 Desulfurization apparatus and desulfurization method
US10625198B2 (en) 2017-01-26 2020-04-21 Panasonic Corporation Desulfurization apparatus and desulfurization method
CN114471074A (en) * 2022-02-22 2022-05-13 华侨大学 Application of macromolecule-metal complex in reversible ammonia gas trapping
CN114634628A (en) * 2022-04-18 2022-06-17 佛山科学技术学院 Preparation method of barium-based metal organic framework material for separating methane and nitrogen
CN114634628B (en) * 2022-04-18 2023-06-13 佛山科学技术学院 Preparation method of barium-based metal organic framework material for separating methane and nitrogen

Also Published As

Publication number Publication date
JP3566655B2 (en) 2004-09-15

Similar Documents

Publication Publication Date Title
JP3566655B2 (en) Manufacturing method of gas adsorbent
EP2746248B1 (en) Metal complex and adsorbent material, storage material, and separating material comprising same
US8741030B2 (en) Metal complex, and adsorbent, occlusion material and separator material made from same
JP5787665B2 (en) Metal complex, adsorbent, occlusion material and separation material comprising the same
KR20110068183A (en) Hybrid porous material and method of preparing same
JP5705010B2 (en) Metal complex and separation material comprising the same
JP5677131B2 (en) Metal complex, and occlusion material and separation material comprising the same
EP4023656A1 (en) Novel aluminum-based metal-organic framework having three dimensional porous structure and comprising at least two types of ligands, preparation method therefor, and use thereof
JP5725784B2 (en) Metal complex and separation material comprising the same
JP3545678B2 (en) Oxygen gas absorbent, method for producing the same, and method for absorbing oxygen gas
JP2009226277A (en) Acetylene occluding material and manufacturing method, as well as high-purity acetylene supply device
JPH09227571A (en) Gas-storing metal complex, its production, gas-storing apparatus and automobile furnished with gas-storing apparatus
US7604683B2 (en) Gas separation method using adsorbent
JP2011195575A (en) Metal complex and production method thereof
JP5730078B2 (en) Separation method of hydrocarbon-based mixed gas
EP2347821B1 (en) Gas adsorbing material, precursor of the gas adsorbing material, and process for producing gas adsorbing material
JP2007204446A (en) Metal complex and method for recovering rare gas by using the same
JP3917324B2 (en) Porous complexes and adsorbents
JP4777153B2 (en) Gas separation method and gas collection method
Salimi et al. Solvent‐Directed Construction of a Nanoporous Metal‐Organic Framework with Potential in Selective Adsorption and Separation of Gas Mixtures Studied by Grand Canonical Monte Carlo Simulations
JP5328378B2 (en) Metal complex and method for producing the same
JP5832197B2 (en) Metal complex, and occlusion material and separation material comprising the same
JP2013040130A (en) Metal complex, and adsorbing material, occluding material and separating material each comprising the same
JP2012232929A (en) Metal complex, and adsorbing material and separation material comprising the same
JP2012056946A (en) Metal complex, and adsorbing material, storage material and separation material composed thereof

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040319

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040518

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040608

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040610

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080618

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090618

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100618

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100618

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100618

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110618

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110618

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120618

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120618

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120618

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130618

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130618

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130618

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees