JPS62135299A - Generator control system - Google Patents

Generator control system

Info

Publication number
JPS62135299A
JPS62135299A JP60272579A JP27257985A JPS62135299A JP S62135299 A JPS62135299 A JP S62135299A JP 60272579 A JP60272579 A JP 60272579A JP 27257985 A JP27257985 A JP 27257985A JP S62135299 A JPS62135299 A JP S62135299A
Authority
JP
Japan
Prior art keywords
generator
control
turbine
manipulated variable
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60272579A
Other languages
Japanese (ja)
Inventor
Toshiro Nishimori
西森 壽郎
Hiroyuki Tanaka
裕幸 田中
Katsuyoshi Nesato
禰里 勝義
Takashi Otsuka
敬 大塚
Sumio Yokogawa
横川 純男
Yoshiteru Ueki
植木 芳照
Shunichiro Hanada
花田 俊一郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kansai Electric Power Co Inc
Fuji Electric Co Ltd
Original Assignee
Kansai Electric Power Co Inc
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kansai Electric Power Co Inc, Fuji Electric Co Ltd filed Critical Kansai Electric Power Co Inc
Priority to JP60272579A priority Critical patent/JPS62135299A/en
Publication of JPS62135299A publication Critical patent/JPS62135299A/en
Pending legal-status Critical Current

Links

Landscapes

  • Control Of Eletrric Generators (AREA)

Abstract

PURPOSE:To improve transient and static stability by adding an output from a controller conducting multivariable feedback control to the manipulated variables of each system as the quantities of correction on the basis of various informations observed from a generator and a turbine. CONSTITUTION:A multivariable controller 1 arithmetic operates optimum feedback gains on the basis of generator voltage Vt(K), a generator output Pe(K), field flux phif(K), turbine angular-frequency omega(K), a generator phase angle delta(K) and turbine opening Pm(K), and arithmetically operates a field manipulated variable Ue(K) and a governing manipulated variable Ug(K) with a multivariable control theory. The field manipulated variable Ve(K) is added to outputs from an automatic voltage regulator 4 and a system stabilizer 5 as correction signals. On the other hand, the governing manipulated variable Ug(K) is added to an output from a governor 7 as a correction signal.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、発電所における発電機励磁系、タービン調
速系のダンピング(弾性復元it)特性を改善するため
の発電機制御方式に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a generator control method for improving the damping (elastic restoring IT) characteristics of a generator excitation system and a turbine regulating system in a power plant.

〔従来の技術〕[Conventional technology]

第2図は従来の発電機制御システムを示す概要図である
。なお、同図において、11は発電機、12はタービン
、13は励磁系、14は自動電圧調整器(AVR) 、
15は調速系(ガバナ系)、16は入力弁、17は系統
安定化装置(PSS’)である。
FIG. 2 is a schematic diagram showing a conventional generator control system. In the figure, 11 is a generator, 12 is a turbine, 13 is an excitation system, 14 is an automatic voltage regulator (AVR),
Reference numeral 15 indicates a speed control system (governor system), 16 an input valve, and 17 a system stabilizing device (PSS').

すなわち、従来はAVR14により電圧を一定に保つ制
御、および調速系によりタービン回転数(周波数)を一
定に保つ制御が行なわれる。かかるシステムでは、いわ
ゆる負制動現象に伴う発電機出力電圧および電力の動揺
が、主として高いゲインをもつ自動電圧調整装置14に
よって発生ずることが知られており、このため系統安定
化装置(PSS)17が補助的に設けられる。このPS
817は発電機出力、タービン回転数、発電機内部相差
角等の各偏差の少なくとも1つを取り出し、これを図示
されない位相調整器を介してAVR14に補正信号とし
て与えることにより、動揺の抑制を図るものである。
That is, conventionally, the AVR 14 performs control to keep the voltage constant, and the governor system performs control to keep the turbine rotation speed (frequency) constant. In such systems, it is known that fluctuations in the generator output voltage and power associated with so-called negative braking phenomena are mainly caused by the automatic voltage regulator 14 having a high gain, and for this reason, the system stabilizer (PSS) 17 is provided auxiliary. This PS
817 extracts at least one of the deviations of the generator output, turbine rotation speed, generator internal phase difference angle, etc., and provides this as a correction signal to the AVR 14 via a phase adjuster (not shown), thereby suppressing oscillation. It is something.

また、上記の他に、発電機とこれが併入される電力系統
との間に3相短絡などの重故障が発生すると、これを検
知してタービン出力を一旦減少方向に急速制御する制御
方式を採ることにより、安定度の向上を図るようにして
いる。さらには、発電所送電端母線に短絡事故が発生し
たときは制動抵抗を一時的に投入し、事故発生によって
タービン発電機軸に蓄えられた加速エネルギーを吸収さ
せ、脱調を防ぐ等の措置を施すことにより、過渡安定度
の増強を図るようにしている。
In addition to the above, if a serious failure such as a three-phase short circuit occurs between the generator and the power system to which it is connected, a control method is developed that detects this and rapidly controls the turbine output in the direction of decrease. By adopting this method, we aim to improve stability. Furthermore, when a short-circuit accident occurs on the transmission end bus of a power plant, a braking resistor is temporarily applied to absorb the acceleration energy stored in the turbine generator shaft due to the accident and take measures to prevent step-out. This is intended to enhance transient stability.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら、上記PSSについては、例えば系統側に
発生する外乱に応じて発電機出力(電力)が動揺すると
、その変動分がP S Sによって取り出されるが、こ
の変動固有周波数はそのときの発電機出力状態や、発電
機端子以遠の外部リアクタンスの大きさによって大幅に
変化するため、上記位相調整器の位相特性が変わり、動
揺抑制効果が低下するという問題がある。
However, regarding the PSS mentioned above, when the generator output (power) fluctuates in response to a disturbance occurring on the grid side, for example, the fluctuation is extracted by the PSS, but this fluctuation natural frequency is the generator output at that time. Since it changes significantly depending on the state and the magnitude of the external reactance beyond the generator terminal, there is a problem in that the phase characteristics of the phase adjuster change and the oscillation suppressing effect decreases.

また、タービン高速バルブ制御は、故障時等に発電機軸
に蓄えられる加速エネルギーを吸収するために行なわれ
るが、これを効果的に行なうためには、図示されない主
制御弁とインターセプト弁とを同時に高速閉制御し、そ
の後は元の出力に戻すために開制御が必要であるが、イ
ンターセプト弁の開方向時間は一般に5〜10秒と長く
、このためタービン出力低下に伴う周波数低下をもたら
すばかりでなく、ボイラ出口圧力を上昇させて不必要な
安全弁動作を引き起こす原因ともなる。
Turbine high-speed valve control is performed to absorb acceleration energy stored in the generator shaft in the event of a failure, etc., but in order to effectively perform this, it is necessary to simultaneously control the main control valve and intercept valve (not shown) at high speed. After closing control, open control is necessary to return to the original output, but the opening time of the intercept valve is generally long, 5 to 10 seconds, which not only causes a decrease in frequency due to a decrease in turbine output. , which increases the boiler outlet pressure and causes unnecessary safety valve operation.

さらには、過渡安定度の増強を図るべく用いられる制動
抵抗としては、発電所容量の50〜100%相当の容量
のものが必要であり、しかも高速投入の必要があるので
、経済的な負担となる設備投資を余儀なくされるという
問題がある。
Furthermore, the braking resistor used to enhance transient stability must have a capacity equivalent to 50 to 100% of the power plant capacity, and must be turned on at high speed, which is an economic burden. There is a problem of being forced to make additional capital investment.

したがって、この発明は上記の如き問題を解決し、優れ
た制御性能を発揮し得る発電機制御方式を提供すること
を目的とする。
Therefore, an object of the present invention is to provide a generator control method that can solve the above problems and exhibit excellent control performance.

〔問題点を解決するための手段〕[Means for solving problems]

発電機出力電圧を制御する発電機動ti系と、タービン
回転数を制御するタービン調速系と、発電機およびター
ビンから得られる各種の観測量をもとに多変数制御理論
にもとづく制御演算をして最適フィードバックゲインを
個々に定め上記各系対応の操作量を出力する多変数制御
装置とを設ける。
Control calculations are performed based on multivariable control theory based on the generator motor Ti system that controls the generator output voltage, the turbine speed governor system that controls the turbine rotation speed, and various observed quantities obtained from the generator and turbine. A multi-variable control device is provided which individually determines optimum feedback gains and outputs manipulated variables corresponding to each of the systems.

〔作用〕[Effect]

多変数制御装置からの操作量を各基の操作出力にそれぞ
れ補正量として加えることにより、特に電圧、電力変動
を有効に抑制し、安定度の向上を図る。
By adding the manipulated variable from the multivariable control device as a correction amount to the manipulated output of each unit, voltage and power fluctuations in particular are effectively suppressed and stability is improved.

〔実施例〕〔Example〕

第1図はこの発明の実施例を示す構成図である。 FIG. 1 is a block diagram showing an embodiment of the present invention.

同図において、1は発電機およびタービンから得られる
各種の観測量をもとに最適フィードバックゲインを演算
し、多変数制御理論にもとづく制御を行なう多変数制御
装置であり、わかり易く図示したものである。また、2
1.22はバンドパスフィルタ、31.32はリミッタ
、4は自動電圧調整機(AVR) 、5は系統安定化装
置(PSS)、6はサイリスク励磁装置の点弧角調節器
、7は調速機(ガバナ)、8はタービン開度調節器であ
り、4〜6によって既設の発電機励磁系が、また7およ
び8によって既設のタービン調速系がそれぞれ形成され
る。
In the figure, 1 is a multivariable control device that calculates the optimal feedback gain based on various observed quantities obtained from the generator and turbine and performs control based on multivariable control theory, and is illustrated in an easy-to-understand diagram. . Also, 2
1.22 is a band pass filter, 31.32 is a limiter, 4 is an automatic voltage regulator (AVR), 5 is a system stabilization device (PSS), 6 is a firing angle regulator of the Cyrisk exciter, and 7 is a speed governor. 8 is a turbine opening adjuster, 4 to 6 form an existing generator excitation system, and 7 and 8 form an existing turbine speed control system.

まず、多変数制御装置1について説明する。なお、こ\
で用いられる各符号の意味は次のとおりである。
First, the multivariable control device 1 will be explained. In addition, this
The meaning of each symbol used in is as follows.

■よ :電圧設定値 vLikl:  (k)時点の発電機出力電圧Ps :
出力設定値 P、。>:(k)時点の発電機出力 Φ、。、: (k)時点の界磁々束 Φ、。−n:(kl)時点の界磁々束 ωn、:  (k)時点のタービン角周波数ω。−n:
(kl)時点のタービン角周波数δ(k)=(k)時点
の発電機相差角 δn−u  :  (k  1)時点の発電機相差角p
aw、。: (k)時点のタービン開度Pffin−+
+ :  (k  1 )時点のタービン開度u−n+
:  (k)時点の界磁操作量us(k−H:  (k
  1)時点の界6n操作量uq(k、:  (k)時
点の調速操作量u、(k−11:  (k  1 )時
点の調速操作量つまり、こ\では定周期Δτのサンプリ
ング制御を前提としており、各量の今回値にはサフィッ
クスkを付し、前回値にはサフィックス(k−1)を付
して示している。また、K II−1(+ bおよびに
21〜に26は個別に決定されるゲインである。
■Yo: Voltage setting value vLikl: Generator output voltage Ps at time (k):
Output setting value P,. >: Generator output Φ at time (k). ,: Field magnetic flux Φ at time (k). -n: Field magnetic flux ωn at time (kl): Turbine angular frequency ω at time (k). -n:
Turbine angular frequency δ(k) at time (kl) = Generator phase difference angle δn-u at time (k): Generator phase difference angle p at time (k1)
aww,. : Turbine opening degree Pffin-+ at time (k)
+: Turbine opening degree u−n+ at the time of (k 1 )
: Field operation amount us(k-H: (k) at time (k)
1) Field of time 6n Manipulated amount uq (k,: Speed-governing manipulated variable u at time (k), (k-11: Speed-governing manipulated variable at time (k 1 ), that is, sampling control with a constant period Δτ The current value of each quantity is shown with a suffix k, and the previous value is shown with a suffix (k-1). 26 is a gain determined individually.

こ\で、電圧制御偏差V、  Vtn、の励磁操作量u
 a (klに対する効果については、61時間には、
ue+k) = uan+−n + Kz (Vs −
= Vtn++)すなわち、 Δuan+=Kz (Vi  Vtn+)となる。つま
り、励磁系操作量に対して電圧制御偏差は積分効果を果
す。また、電力制御偏差P。
Here, the excitation operation amount u of the voltage control deviation V, Vtn,
a (For the effect on kl, at 61 hours,
ue+k) = uan+-n + Kz (Vs-
= Vtn++) That is, Δuan+=Kz (Vi Vtn+). In other words, the voltage control deviation has an integral effect on the excitation system operation amount. Also, power control deviation P.

Pan++のガバナ操作量ug(k、に対する効果は、
上記と同様にして、 なる関係が成立してこれも積分効果を示す。さらに、電
圧制御偏差はゲインに!Iにてガバナ系の操作量に関与
し、また電力制御偏差はゲインに1□にて励磁系の操作
量に関与し、しかも各制御偏差は相手方の操作量に対し
て積分効果を示す。
The effect of Pan++ on the governor operation amount ug(k) is
Similarly to the above, the following relationship is established, which also shows an integral effect. Furthermore, voltage control deviation becomes gain! I is related to the manipulated variable of the governor system, and the power control deviation is related to the manipulated variable of the excitation system at gain 1□, and each control deviation has an integral effect on the manipulated variable of the other party.

また、発電機の動的挙動に対する主要な影響量として予
め選ばれた諸量Φ1.ω、δおよびP、。
In addition, various quantities Φ1, which were selected in advance as the main influencing quantities on the dynamic behavior of the generator, ω, δ and P,.

については、それぞれ測定または推定された今回値と前
回値との偏差が、一方ではそれぞれゲインKI3〜に1
6にて励磁系操作量に関与し、他方ではそれぞれゲイン
に23〜に2&にてガバナ系操作量に関与する。この場
合、例えば界磁磁束Φ、たけに着目して、これの励磁系
操作量に対する効果を調べて見ると、61時間では、 u、(、l、−u、(k−I、+に8.(Φ、。、−Φ
ftk−11)したがって、 Δuati++=に+3°ΔΦt (k)−’−u a
 <kl = K +xΦf (k)となる。つまり、
界磁磁束は励磁系操作量に対して比例効果を示す。この
ように、個々の影響量はそれぞれの励磁系の操作量に対
してもガバナ系の操作量に対しても比例効果を示すこと
になる。
On the other hand, the deviation between the measured or estimated current value and the previous value is 1 for each gain KI3~.
6 is involved in the excitation system operation amount, and on the other hand, 23 to 2& are involved in the governor system operation amount in the gain, respectively. In this case, for example, focusing on the field magnetic flux Φ, and examining its effect on the excitation system operation amount, in 61 hours, u, (, l, -u, (k-I, +) is 8 .(Φ, ., −Φ
ftk-11) Therefore, Δuati++=+3°ΔΦt (k)-'-u a
<kl = K +xΦf (k). In other words,
The field magnetic flux shows a proportional effect to the excitation system operation amount. In this way, each influence amount exhibits a proportional effect on the manipulated variable of each excitation system and the manipulated variable of the governor system.

こ\で、個々のゲインに、〜Kl&およびに21〜に2
&を最適に設定するためには、例えば制御指標Jとして +qz  (P t  P ann)”+q3  (u
lltkl  us。−3,)2”qa  (tl(1
(kl  ug□−0)2)を定め、予め重み係数q1
〜q4を設定した上で、この指標Jの値が最小となるよ
うにゲインを決める手法を用いればよい。この場合に必
要となるのが制御対象の動的モデルであり、さらにこの
モデルに各制御偏差を表わす状DIを加えたモデルにつ
いて指標Jを考えるのである。以上の如き制御原理によ
れば、電圧および電力の制御偏差について積分制御が行
なわれる結果、最終的な定常偏差は零となる。したがっ
て、制御対象の動的モデルは簡易モデルでもよく、これ
によって制御ゲインの決定が実用的に簡単になる。こう
して、重み係数q、〜q、を設定するだけで、自動計算
により最適な制御ゲインを決定することができ、動特性
の優れた制御を実現することができる。
Here, set the individual gains to ~Kl& and 21 to 2.
In order to optimally set &, for example, +qz (P t P ann)”+q3 (u
lltkl us. −3,)2”qa (tl(1
(kl ug□-0)2), and the weighting coefficient q1
After setting ~q4, a method may be used in which the gain is determined so that the value of this index J becomes the minimum value. In this case, what is needed is a dynamic model of the controlled object, and the index J is considered based on a model in which a shape DI representing each control deviation is added to this model. According to the control principle as described above, integral control is performed on the voltage and power control deviations, and as a result, the final steady-state deviation becomes zero. Therefore, the dynamic model of the controlled object may be a simple model, which makes determining the control gain practically simple. In this way, by simply setting the weighting coefficients q, ~q, the optimum control gain can be determined through automatic calculation, and control with excellent dynamic characteristics can be realized.

さて、こうして取り出された操作量のうち、界磁操作量
U、。、はバンドパスフィルタ21によってその変動分
のみが抽出された後、必要に応じてリミッタ31により
制限され、補正制御信号Δu a fklとして点弧角
調節器6に与えられる。したがって、発電機励磁系はA
VR4およびPSS5の各出力に補正制御信号を加えて
制御が行なわれる。
Now, among the manipulated variables extracted in this way, the field manipulated variable U. After only the variation thereof is extracted by the bandpass filter 21, it is limited by the limiter 31 as necessary, and is given to the firing angle adjuster 6 as a correction control signal Δu a fkl. Therefore, the generator excitation system is A
Control is performed by adding a correction control signal to each output of VR4 and PSS5.

−4、iP]1lJi作it u 、軸、もバンドパス
フィルタ22およびリミッタ32によってその変動分の
みが制限して取り出され(ΔU、。、参照)、これが調
速機7の出力に加算されて調速系の制御が行なわれる。
-4, iP] 1lJi produced it u , axis, only the variation thereof is limited and taken out by the bandpass filter 22 and limiter 32 (see ΔU, .), and this is added to the output of the speed governor 7. The speed governing system is controlled.

つまり、発電機励磁系およびタービン調速系の各々に多
変数制御装置からの操作量を補正制御信号として加える
ことにより、制御性能の改善を図るものである。したが
って、この発明は既に設置されている設備を有効に利用
する場合等に用いて好適である。
That is, the control performance is improved by adding the manipulated variable from the multivariable control device as a correction control signal to each of the generator excitation system and the turbine speed control system. Therefore, the present invention is suitable for use in cases where already installed equipment is effectively utilized.

〔発明の効果〕〔Effect of the invention〕

この発明によれば、発電機やタービンから観測される各
種情報をもとに多変数フィードバック制御を行なう制御
装置を設け、その出力を各基の操作量に対しそれぞれ補
正量として加えて制御するようにしたので、過渡および
定態安定度が著しく向上する利点がもたらされる。
According to this invention, a control device is provided that performs multivariable feedback control based on various information observed from the generator and the turbine, and the output is controlled by adding the output as a correction amount to the manipulated variable of each unit. This provides the advantage of significantly improved transient and steady-state stability.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の実施例を示す構成図、第2図は発電
所制御「システムの従来例を示す概要図である。 符号説明 1・・・多変数制御装置、4,14・・・自動電圧調整
器(AVR) 、5.17・・・系統安定化装置(PS
S)、6・・・点弧角調節器、7・・・調速機、8・・
・開度調節器、11・・・発電機、12・・・タービン
、13・・・励磁系、15・・・ガバナ系、16・・・
入力弁、′21゜22・・・バンドパスフィルタ、31
.32・・・リミッタ。
Fig. 1 is a block diagram showing an embodiment of the present invention, and Fig. 2 is a schematic diagram showing a conventional example of a power plant control system. Automatic voltage regulator (AVR), 5.17...System stabilizer (PS)
S), 6... Firing angle adjuster, 7... Speed governor, 8...
・Opening adjuster, 11... Generator, 12... Turbine, 13... Excitation system, 15... Governor system, 16...
Input valve, '21゜22...Band pass filter, 31
.. 32...Limiter.

Claims (1)

【特許請求の範囲】[Claims] 発電機出力電圧を制御する発電機励磁系と、タービン回
転数を制御するタービン調速系と、発電機およびタービ
ンから得られる各種の観測量をもとに多変数制御理論に
もとづく制御演算して最適フィードバックゲインを個々
に決め前記各系対応の操作量を出力する多変数制御装置
とを備え、該制御装置からの操作量を各系の操作出力に
対しそれぞれ補正制御信号として加えて制御を行なうこ
とを特徴とする発電機制御方式。
Control calculations are performed based on multivariable control theory based on the generator excitation system that controls the generator output voltage, the turbine governor system that controls the turbine rotation speed, and various observed quantities obtained from the generator and turbine. A multi-variable control device that individually determines an optimum feedback gain and outputs a manipulated variable corresponding to each system, and performs control by adding the manipulated variable from the control device as a correction control signal to the manipulated output of each system. A generator control method characterized by:
JP60272579A 1985-12-05 1985-12-05 Generator control system Pending JPS62135299A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60272579A JPS62135299A (en) 1985-12-05 1985-12-05 Generator control system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60272579A JPS62135299A (en) 1985-12-05 1985-12-05 Generator control system

Publications (1)

Publication Number Publication Date
JPS62135299A true JPS62135299A (en) 1987-06-18

Family

ID=17515879

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60272579A Pending JPS62135299A (en) 1985-12-05 1985-12-05 Generator control system

Country Status (1)

Country Link
JP (1) JPS62135299A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999037016A1 (en) * 1998-01-13 1999-07-22 Chubu Electric Power Co., Inc. System stabilizer for power generating system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999037016A1 (en) * 1998-01-13 1999-07-22 Chubu Electric Power Co., Inc. System stabilizer for power generating system
US6337561B1 (en) 1998-01-13 2002-01-08 Chubu Electric Power Co., Inc. Apparatus for stabilizing a power system adapted to generating systems

Similar Documents

Publication Publication Date Title
EP1679563B1 (en) Device and method for controlling a gas turbine electric power generating system
JPH0350492B2 (en)
US3477014A (en) Electrical control systems with stabilizing control means
JPS62135299A (en) Generator control system
JP4577168B2 (en) Control device for motor output
JP2000270481A (en) Method for analyzing stability of power system
JPS62135298A (en) Generator control system
JP2540202B2 (en) Correction control method in multivariable control system of generator
JP2737064B2 (en) Control device
JPH02262843A (en) Power system stabilizer
JPH04229022A (en) Power system controller
JPH0417570A (en) Voltage control method for inverter
JP3021914B2 (en) Active power limiter for hydropower stations
JPS5836197A (en) Generating output controller
Kumar et al. A generalized PSS architecture for balancingtransient and small signal response.
DE19545520A1 (en) Speed controller for AC turbogenerator set
JP2938183B2 (en) Turbine control device
Săvulescu et al. Gain scheduling adaptive system for the extension of speed domain of the FOC drives with asynchronous motors
JPH01308198A (en) Excitation controller for synchronous machine
SU989667A2 (en) Device for limiting transfer of active power in intersystem communication
JPS6337599B2 (en)
JPS598008A (en) Pid arithmetic type automatic controller
JPH03261400A (en) Controller of generator
JPH01240775A (en) Speed control device for hydraulic turbine generator
Yousefi et al. Improve Small Signal Stability in Single-Machine Infinite-Bus with Power System Stabilizer