JPS6213528B2 - - Google Patents

Info

Publication number
JPS6213528B2
JPS6213528B2 JP54067435A JP6743579A JPS6213528B2 JP S6213528 B2 JPS6213528 B2 JP S6213528B2 JP 54067435 A JP54067435 A JP 54067435A JP 6743579 A JP6743579 A JP 6743579A JP S6213528 B2 JPS6213528 B2 JP S6213528B2
Authority
JP
Japan
Prior art keywords
circumferential surface
casing
rotating shaft
bearing
inner circumferential
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54067435A
Other languages
Japanese (ja)
Other versions
JPS55163319A (en
Inventor
Yoshuki Ueno
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP6743579A priority Critical patent/JPS55163319A/en
Publication of JPS55163319A publication Critical patent/JPS55163319A/en
Publication of JPS6213528B2 publication Critical patent/JPS6213528B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C17/00Sliding-contact bearings for exclusively rotary movement
    • F16C17/02Sliding-contact bearings for exclusively rotary movement for radial load only
    • F16C17/022Sliding-contact bearings for exclusively rotary movement for radial load only with a pair of essentially semicircular bearing sleeves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C17/00Sliding-contact bearings for exclusively rotary movement
    • F16C17/02Sliding-contact bearings for exclusively rotary movement for radial load only
    • F16C17/028Sliding-contact bearings for exclusively rotary movement for radial load only with fixed wedges to generate hydrodynamic pressure, e.g. multi-lobe bearings

Description

【発明の詳細な説明】 本発明は、一方向に回転する回転軸に対して用
いられる動圧すべり軸受を高精度且つ極めて容易
に製造し得る方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a highly accurate and extremely easy manufacturing method for a hydrodynamic slide bearing used for a rotating shaft that rotates in one direction.

重荷重や衝撃荷重を受ける回転軸の軸受には、
一般に動圧すべり軸受(単にすべり軸受とも呼称
される)が使用される。この動圧すべり軸受の構
造として従来では、単なる円筒状のものや回転軸
とケーシングとの間に割り型の軸受メタルをライ
ニングしたもの等が知られている。ところが、先
に述べた単なる円筒状のものでは荷重の変動によ
つて回転軸と軸受内周面との最小隙間が変化する
ため、回転精度が低下してしまう欠点を有してお
り、特に高速回転するものでは特殊な形状をした
割り型の軸受メタルをライニングしたものが用い
られている。
Bearings for rotating shafts that are subject to heavy loads and impact loads are
Hydrodynamic slide bearings (also simply called slide bearings) are generally used. Conventionally, known structures of this hydrodynamic slide bearing include a simple cylindrical structure and a structure in which a split bearing metal is lined between the rotating shaft and the casing. However, with the simple cylindrical shape mentioned above, the minimum clearance between the rotating shaft and the inner circumferential surface of the bearing changes as the load changes, resulting in a reduction in rotational accuracy, especially at high speeds. For rotating devices, a specially shaped split bearing metal lining is used.

例えば、このような従来の動圧すべり軸受の断
面構造を表す図面に示すように、図中、矢印方向
に回転する回転軸1の周囲には、本実施例では二
個に分割された軸受金2が位置しており、更にそ
の外側にはこの軸受金2に密着してこれを固定支
持するケーシング3が位置している。図示例にお
けるケーシング3の形状は円筒状となつているた
め、このケーシング3の内周面3aに密着する軸
受金2の外周面2aはそのケーシング3の内周面
3aの曲率と対応した曲率の半円弧状に形成され
ている。軸受金2の内周面2bの形状は回転軸1
の回転方向に向かうに従つてこの回転軸1の外周
面に対して軸受金2の内周面2bが漸次接近した
状態に加工されており、従つてこの軸受金2は楔
状をなし、回転軸1と軸受金2との間には楔状隙
間が形成され、ここに潤滑油4が充填される。
For example, as shown in the drawing showing the cross-sectional structure of such a conventional hydrodynamic sliding bearing, in this embodiment, a bearing ring divided into two parts is arranged around a rotating shaft 1 that rotates in the direction of the arrow in the drawing. 2 is located, and a casing 3 is located outside of the casing 3 that tightly contacts and fixedly supports the bearing metal 2. Since the shape of the casing 3 in the illustrated example is cylindrical, the outer circumferential surface 2a of the bearing metal 2 that is in close contact with the inner circumferential surface 3a of the casing 3 has a curvature corresponding to the curvature of the inner circumferential surface 3a of the casing 3. It is formed in a semicircular arc shape. The shape of the inner circumferential surface 2b of the bearing metal 2 is similar to that of the rotating shaft 1.
The inner peripheral surface 2b of the bearing metal 2 is machined so that it gradually approaches the outer peripheral surface of the rotating shaft 1 in the direction of rotation of the rotating shaft. A wedge-shaped gap is formed between 1 and the bearing metal 2, and this gap is filled with lubricating oil 4.

従つて、回転軸1が図中、矢印方向に左回り回
転すると、潤滑油4は回転軸1と軸受金2との間
に形成された楔状隙間の狭隘な側へその粘性によ
つて連れ込まれるため、動圧を発生して回転軸1
が軸受金2に対して浮き上つた状態となつて回転
する。この場合、回転軸1に対して負荷する衝撃
荷重等の荷重変動のうちの図中、左右方向成分は
潤滑油4の動圧によつて減衰吸収されるため、高
精度の回転を維持することができるのである。
Therefore, when the rotating shaft 1 rotates counterclockwise in the direction of the arrow in the figure, the lubricating oil 4 is drawn into the narrow side of the wedge-shaped gap formed between the rotating shaft 1 and the bearing metal 2 due to its viscosity. Therefore, dynamic pressure is generated and the rotating shaft 1
rotates in a state where it floats above the bearing metal 2. In this case, in the figure, the left-right component of load fluctuations such as impact loads applied to the rotating shaft 1 is attenuated and absorbed by the dynamic pressure of the lubricating oil 4, so that high-precision rotation can be maintained. This is possible.

しかし、上述したような二つ或いはそれ以上の
割り型の軸受メタルをライニングしたものでは、
それらの内周面の形状等からも容易に想像できる
ように、製作や組み立て等が非常にめんどうであ
り、著しく高コストとなつてしまう虞れがあつ
た。
However, in a bearing lined with two or more split bearing metals as described above,
As can be easily imagined from the shape of their inner peripheral surfaces, manufacturing, assembly, etc. are extremely troublesome, and there is a risk that the cost will be extremely high.

本発明はかかる従来の動圧すべり軸受の欠点に
鑑み、特に一方向に回転する回転軸用の二つ割型
の動圧すべり軸受を対象としてこれを高精度に製
造でき、しかも著しく容易に製造及び組み立てが
可能な方法を提供することを目的とする。
In view of the drawbacks of conventional hydrodynamic slide bearings, the present invention is aimed at producing two-split type hydrodynamic slide bearings for rotating shafts that rotate in one direction with high precision and is extremely easy to manufacture. and to provide a method that allows assembly.

この目的を達成する本発明の動圧すべり軸受の
製造方法にかかる構成は、一方向に回転する回転
軸とこれを支持する内周面を有するケーシングと
の間に介装され且つ外周面が前記ケーシングの内
周面に密着すると共に内周面が前記回転軸の回転
方向に向かうに従つてこの回転軸の外周面に対し
て漸次接近した楔状をなす複数個の軸受金で形成
された動圧すべり軸受において、前記ケーシング
の内周面と対応した外周面を有する棒状の軸受金
素材にこの中心軸に対して平行に偏心した円孔を
穿設すると共にこの軸受金素材を当該軸受金素材
の中心軸と前記円孔の中心軸とを含む平面で等し
く二分割し、いずれか一方の向きを逆にしてこれ
らを前記ケーシングの内周面に密着させたことを
特徴とする。
The structure of the method for manufacturing a hydrodynamic sliding bearing of the present invention that achieves this object is such that the bearing is interposed between a rotary shaft that rotates in one direction and a casing having an inner circumferential surface that supports the rotary shaft, and the outer circumferential surface is Dynamic pressure formed by a plurality of wedge-shaped bearing metals that are in close contact with the inner circumferential surface of the casing and whose inner circumferential surfaces gradually approach the outer circumferential surface of the rotating shaft as they move toward the rotational direction of the rotating shaft. In a sliding bearing, a circular hole eccentrically parallel to the central axis is bored in a rod-shaped bearing metal material having an outer peripheral surface corresponding to the inner peripheral surface of the casing, and the bearing metal material is inserted into the bearing metal material. The casing is characterized in that it is divided into two equal parts along a plane including the central axis and the central axis of the circular hole, one of which is reversed in direction, and these parts are brought into close contact with the inner circumferential surface of the casing.

なお、この場合に回転軸よりも多少大きめの径
の穴を分割時の削り代を考慮してケーシングの内
径よりもやや大きな外径を具えた棒材に対して偏
心して穿設し、これをワイヤソーやダイヤモンド
カツタ等の公知の手段で棒材の中心軸とこの中心
軸と平行な穴の中心軸とを含む平面で等しく二つ
割りすると共に上下逆に組み合わせるとよい。
又、棒材に穿設する穴の半径は、回転軸の半径と
棒材に対する穴の偏心量とを加えた値よりも大き
くする必要がある。一般に、丸穴はその加工が非
常に簡単で寸法精度や仕上げ精度を高くすること
が容易なため、本発明による動圧すべり軸受は高
精度であることが期待できる。
In this case, a hole with a diameter slightly larger than the rotating shaft is drilled eccentrically to the bar material, which has an outer diameter slightly larger than the inner diameter of the casing, taking into account the cutting allowance when dividing. It is preferable to use a known means such as a wire saw or a diamond cutter to divide the bar into equal parts along a plane containing the central axis of the bar and the central axis of the hole parallel to the central axis, and then combine the bars upside down.
Further, the radius of the hole drilled in the bar needs to be larger than the sum of the radius of the rotating shaft and the eccentricity of the hole with respect to the bar. In general, round holes are very easy to machine, and it is easy to improve dimensional accuracy and finishing accuracy, so the hydrodynamic slide bearing according to the present invention can be expected to have high accuracy.

このように本発明の動圧すべり軸受の製造方法
によると、偏心穴を穿設した筒状の軸受金素材を
等しく二つ割りして逆向きに組み合わせるだけで
良いので、極めて容易且つ低コストにて製造する
ことができる。しかも、高精度にて製作及び組み
立てができるため、回転軸の安定な回転を一層助
長させることが可能である。
As described above, according to the method for manufacturing a hydrodynamic sliding bearing of the present invention, it is only necessary to divide a cylindrical bearing metal material with an eccentric hole into two equal halves and assemble them in opposite directions, which makes manufacturing extremely easy and at low cost. can do. Moreover, since it can be manufactured and assembled with high precision, it is possible to further promote stable rotation of the rotating shaft.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明の対象となつた動圧すべり軸受の
軸に対して垂直な断面形状を表した断面図であ
り、図中の符号で 1は回転軸、1aは回転軸の外周面、2は軸受
金、2aは軸受金の外周面、2bは軸受金の内周
面、3はケーシング、3aはケーシングの内周
面、4は潤滑油である。
The drawing is a cross-sectional view showing the cross-sectional shape perpendicular to the axis of the hydrodynamic sliding bearing that is the object of the present invention, and the reference numerals in the drawing are: 1 is the rotating shaft, 1a is the outer circumferential surface of the rotating shaft, and 2 is the outer circumferential surface of the rotating shaft. 2a is the outer peripheral surface of the bearing metal, 2b is the inner peripheral surface of the bearing metal, 3 is a casing, 3a is the inner peripheral surface of the casing, and 4 is lubricating oil.

Claims (1)

【特許請求の範囲】[Claims] 1 一方向に回転する回転軸とこれを支持する内
周面を有するケーシングとの間に介装され且つ外
周面が前記ケーシングの内周面に密着すると共に
内周面が前記回転軸の回転方向に向うに従つてこ
の回転軸の外周面に対して漸次接近した楔状をな
す複数個の軸受金で形成された動圧すべり軸受の
製造方法において、前記ケーシングの内周面と対
応した外周面を有する丸棒状の軸受金素材の中心
軸に対して平行に偏心した円孔を穿設すると共に
この軸受金素材を当該軸受金素材の中心軸と前記
円孔の中心軸とを含む平面で等しく二分割し、い
ずれか一方の向きを逆にしてこれらを前記ケーシ
ングの内周面に密着させたことを特徴とする動圧
すべり軸受の製造方法。
1 A casing that is interposed between a rotating shaft that rotates in one direction and a casing that has an inner circumferential surface that supports the rotating shaft, and whose outer circumferential surface is in close contact with the inner circumferential surface of the casing and whose inner circumferential surface rotates in the rotational direction of the rotating shaft. In the method for manufacturing a hydrodynamic sliding bearing formed of a plurality of wedge-shaped bearing metals that gradually approach the outer circumferential surface of the rotating shaft, the outer circumferential surface corresponding to the inner circumferential surface of the casing is An eccentric circular hole is bored parallel to the central axis of a round bar-shaped bearing metal material, and the bearing metal material is equally spaced in a plane containing the central axis of the bearing metal material and the central axis of the circular hole. A method of manufacturing a hydrodynamic sliding bearing, characterized in that the bearing is divided into parts, one of which is reversed in direction, and the parts are brought into close contact with the inner circumferential surface of the casing.
JP6743579A 1979-06-01 1979-06-01 Sliding bearing for dynamic pressure Granted JPS55163319A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6743579A JPS55163319A (en) 1979-06-01 1979-06-01 Sliding bearing for dynamic pressure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6743579A JPS55163319A (en) 1979-06-01 1979-06-01 Sliding bearing for dynamic pressure

Publications (2)

Publication Number Publication Date
JPS55163319A JPS55163319A (en) 1980-12-19
JPS6213528B2 true JPS6213528B2 (en) 1987-03-27

Family

ID=13344831

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6743579A Granted JPS55163319A (en) 1979-06-01 1979-06-01 Sliding bearing for dynamic pressure

Country Status (1)

Country Link
JP (1) JPS55163319A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0130330B1 (en) * 1983-07-01 1987-02-18 BBC Aktiengesellschaft Brown, Boveri & Cie. Radial sliding bearing
JPH085374Y2 (en) * 1989-06-19 1996-02-14 マツダ株式会社 bearing
JP6153861B2 (en) * 2013-12-27 2017-06-28 三菱重工業株式会社 Bearing device
JP6159249B2 (en) * 2013-12-27 2017-07-05 三菱重工業株式会社 Bearing device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51102754A (en) * 1975-03-07 1976-09-10 Hitachi Ltd SHINDOBOSHI GATASUBERIJIKUKE
JPS5435546A (en) * 1977-08-23 1979-03-15 Koyo Seiko Co Ltd Fluid bearing
JPS5422644B2 (en) * 1973-06-30 1979-08-08

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5422644U (en) * 1977-07-18 1979-02-14

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5422644B2 (en) * 1973-06-30 1979-08-08
JPS51102754A (en) * 1975-03-07 1976-09-10 Hitachi Ltd SHINDOBOSHI GATASUBERIJIKUKE
JPS5435546A (en) * 1977-08-23 1979-03-15 Koyo Seiko Co Ltd Fluid bearing

Also Published As

Publication number Publication date
JPS55163319A (en) 1980-12-19

Similar Documents

Publication Publication Date Title
US6176621B1 (en) Rotary slide bearing and producing method therefor
US5704718A (en) Sintered oil-impregnated bearing and method for manufacturing same
KR950011538B1 (en) Seramic bearing and product method
JPH10231841A (en) Sliding bearing
US4655615A (en) Wrapped cylindrical bush
EP0381336B1 (en) Ceramic bearing
KR880005375A (en) Bearing system with active reservoir between two axially isolated hydraulic bearings
JPS6113018A (en) Tilt segment type radial bearing
US4141255A (en) Mechanism for transferring a rotary motion into an axial motion
WO2000025035A1 (en) Hydrodynamic journal bearing, particularly for steam turbines
JPS6213528B2 (en)
US3433542A (en) Multiface cylindrical bearings for guiding rotation of vertical shafts
US4486104A (en) Composite bearing
US3168358A (en) Bearing
JP6399951B2 (en) Drive device
JPS58217818A (en) Self-alignment bearing
CN107869512B (en) Shaft member for fluid bearing device, method for manufacturing same, and fluid bearing device
US3717393A (en) Radial fluid-film bearing
US4033237A (en) Hydrostatic piston machine having small clearances between bearing surfaces
JP2020133694A (en) Differential decelerator
JPH0289807A (en) Non-round bearing
JP2594602Y2 (en) Pin gear type reducer
KR960034780A (en) Spindle unit and how to assemble it
JPH0628394U (en) Pin gear reducer
JPH0578690B2 (en)