JPS62135225A - Power converter - Google Patents

Power converter

Info

Publication number
JPS62135225A
JPS62135225A JP60274955A JP27495585A JPS62135225A JP S62135225 A JPS62135225 A JP S62135225A JP 60274955 A JP60274955 A JP 60274955A JP 27495585 A JP27495585 A JP 27495585A JP S62135225 A JPS62135225 A JP S62135225A
Authority
JP
Japan
Prior art keywords
current
power conversion
power
conversion element
time
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60274955A
Other languages
Japanese (ja)
Inventor
平田 昭生
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP60274955A priority Critical patent/JPS62135225A/en
Publication of JPS62135225A publication Critical patent/JPS62135225A/en
Pending legal-status Critical Current

Links

Landscapes

  • Direct Current Feeding And Distribution (AREA)
  • Protection Of Static Devices (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】[Detailed description of the invention]

〔発明の技術分野〕 本発明は゛電力変換装置の過電流の検出・保護において
、事故゛電流が低いレベルで検出でき、更に電力変換装
置のどのアームが異富かも判別可能な信頼性の高い保護
方式を有する電力変換装置に関するものである。 〔発明の技術的背景とその問題点〕 本発明に類する電力変換装置としては、交流−直流変換
装置、直流−交流電力変換装置などで、自然転流や強制
転流など種々の公知のものがある。 これら電力変換装置の保護方式としては、例えば既発f
i1図書「ニュー□ドライブエレクトロニクス、上山直
り編著、■電気書院第1版857年7月25日発行」の
P 114〜117に示される如く、過電流保護として
、過電流検出器や高速ヒユーズを主回路に挿入して保護
するのが一般的であった。この従来技術の実施例を第3
図に示す。 第3図において、11は交流電源、12は整流器、13
は負荷、14は制御回路、15は基準、16は電流検出
器、18は過電流検出器、12.〜126は電力変換素
子、19.〜19.は高速ヒユーズである。第3図の如
く構成された電力変換装置では、又a、戒源11の交流
電力を整流器12で直流電力に順変換して負荷13を駆
動する。この時負荷13に供給する直流電力は基準15
の設定値に従って制御回路14で制御される。 整流器12を構成する6アームの個々の電力変換素子1
21〜】2.が劣化した場合の従来の検出・保護方法は
速断ヒユーズ19.〜196をよう断させて保護するか
、電流検出器16を介して整流器12に流れる電流が過
負荷電流より充分に大きな値いかどうかを過−11検出
器18で検出して保護する方法がとられていた。 このような従来技術による電力変換装置の検出・保護方
式としては、次の問題点があった。 (1)過電流検出器18によシ保護する方法では、その
検出レベルを整流器12の過負荷電流値よシも大きな値
とする必要があシ、しかも過負荷時の電流リップルなど
を考慮すると過電流検出レベルは過負荷tm数値に対し
て充分大きな値にしなければならない。この値は一般に
過負荷容量が225%程度なら過電流検出レベルは定格
電流の300俤〜350係のレベルに設定されている。 従って過電流を検出した時点では充分に事故電流が増加
してしまつている問題があった。他方電力変換素子の如
く熱耐僅の少ない素子を使用する7ピカ変換装置では、
事故′l′を流が劣化(永久故障)をおこしていない他
の健全な電力変換素子を流れる点を考慮すれば、これら
事故’iJ!流の影響によるストレスを健全な電力変換
素子に残さないために事故電流ができるだけ小さい時点
に検出・保護することが望ましいことが明らかであるが
、この要望を従来技術では占すことができなかった。 (2)過電流検出器18’lf−使用する方法では、電
力変換素子12.〜12.の6アームの中でどの電力変
換素子が劣化したか判別することができなかった。 このため最近の電力変換装置は重要プラントの各分野に
使用されるが、万一電力変換素子12.〜12゜のいず
れかが劣化(永久故障)シた場合にとの′電力変換素子
かを調査して素子変換を行ない復旧するまでの故障復旧
時間が非常に長くなり、この間のプラントの停止損害も
過大となる欠点があった。 (3)他方、速断ヒユーズ19.〜196を整流器12
の各アームに6本挿入すれば、事故電流は少なくとも2
アームの速断ヒユーズを流れるため、電力変換素子が劣
化した部分の速断ヒユーズが切れるとは限らないため、
前述(2)の欠点が残るとともに、速断ヒユーズ191
〜196にも交換が必要になったシ、事故゛電流のスト
レスが残る問題があった。 〔発明の目的〕 本発明は前記する従来技術の欠点に鑑みてなされたもの
で、電力変換装置の過電流の検出保護において、従来よ
りも事故電流を低いレベルで検出・保護することができ
、更に電力変換装置のどのアームが興奮かも判別可能な
信頼性が高く、故障復旧時間も短縮できる電力変換装置
を提供することを目的としている。 〔発明の概要〕 本発明は、制御回路の制御タイミング信号と、電流検出
器の電流検出信号を比較判別する電流位相判別器を設り
て、電流検出信号の大きさと検出極性とタイミングを比
較して、整流器12の事故電数の有無を判別する。この
ように判別すれば、事故′1a流の検出レベルを電力変
換装置の連總定格電流以内にすることも可能で、非常に
素早い事故電流の検出と保護を行なうことができる。 また電力変換装置の又流端子に対応して前記電流位相判
別器を設けると、電力変換装置の各アームごとに事故電
流の有無を判別できるから、どのアームの電力変換素子
が故障したかを判別することができ、万一の事故発生時
の故障復旧時間を最少とすることができる特徴を本発明
によって提供することができる。 〔発明の実施例〕 本発明の一実施例を第1図に示す。この図は交流−直流
変換を自然転流で行なう第3図に対応した電力変換装置
に本発明を実施した例である。第1図で、前述する第3
図と同一番号を符した回路構成素子は同一機能の回路構
成素子である。他方、17は電流位相判別器である。ま
た整流器12の交流端子に流れる11L流をIN+ I
s 、 ITとする。 第1図の電力変換装置としての作用は、i11述する第
3図と同様なので、以下8g2図に示す波形を利用して
、本発明にて付加した電流位相判別器17の作用を中心
に説明する。第2図において、整流器12の入力交流電
流波形をIn + Is + ITとして第2図に示す
。この電流IR、Is 、 ITは図示する極性で所定
の期間流れるがこれを太線の実線で示す。即ち交流電源
11の1サイクルを60°ごとに6等分し、それぞれの
時刻をt1〜t、とすれば、図示する120’の期間づ
つ図示する極性と位相関係で入力交流電流波形IR、I
s 、 ETがそれぞれ流れる。またこの波形は電流検
出器16によって検出可能である。 一方電流位相判別器[7では、制御回路14からの制御
タイミング信号によって入力交流電流波形Ill、I8
.ITの極性と導通期間が判別できる。従って電流位相
判別器17は、例えば第2図に破線の波形で示す期間に
破線の波形の極性の電流が流れるとi4帛である。この
異層を電流位相判別器17で判別し、制御回路14に停
止信号を与える。 この機能を入力交流電流波形Iaについて詳述する。時
刻t1より時勿口、は電力変換素子12.が導通ずる。 従って図示の期間正側に電流が流れる。時亥10.で電
力変換素子12□が点弧されるが、この時点で電力変換
素子12.が劣化すると、交流電源11−電力変換素子
12□−tヒカ変換素子12.−交流電源11のループ
で事故′lt流が流れる。この事故@流の極性は第2図
時刻t、より時刻t4までのr出に負極性で表われる。 従って時刻t、から時刻t、−1でにこの負極性の事故
電流の有無を判別すれば電力変換素子12.の劣化の有
無を判別できる。 又、時刻14から時刻t6の期間は電力変換素子124
が導通するから、この期間は負極性で電流が流れる。時
刻−で′電力変換素子12.が点弧されるが同様に電力
変換素子124が劣化すると、交流′鑞源11−電力変
換素子124−電力変換素子12.−交流電源11のル
ープで事故電流が流れ、この事故電流の極性は時刻t6
よυ時刻t、までの期間に正極性で表われる。従って電
力変換素子124の劣化有無が同様に判別できる。他の
電力変換素子12□、12.。 12、 、126も同様に判別できることが明らかであ
る。 一般に電力変換素子12.〜126の劣化が発生する確
立は、その電流導通期間の前後に非%に高いので、前述
の方法によって判別すれば電力変換素子12、〜126
の劣化の有無が各電力変換素子ごとに判別できることが
明らかである。しかも前述時刻t。 よシ時刻t4まで、または時刻t、より時刻!、までの
事故電流の判別レベルは、この期間電流が所定極性で検
出されることが異゛5であるから、電流検出器16の誤
差などを考えて、定格連続電流以下の電流レベルに設定
することができる。 従って、本発明では、事故電流が定格連続電流以下であ
っても検出・保護動作を行なうことができ、万一電力変
換素子が劣化してもその電力変換素子がどのアームの電
力変換素子かを電流位相判別器
[Technical Field of the Invention] The present invention provides highly reliable protection for overcurrent detection and protection of power converters, which can detect fault current at a low level and furthermore determine which arm of the power converter is abnormally rich. The present invention relates to a power conversion device having a method. [Technical background of the invention and its problems] There are various known power conversion devices similar to the present invention, such as AC-DC converters and DC-AC power converters, such as natural commutation and forced commutation. be. As a protection method for these power converters, for example,
As shown in pages 114 to 117 of the i1 book "New □ Drive Electronics, edited by Naori Ueyama, Denkishoin 1st edition, published July 25, 857," overcurrent protection mainly uses overcurrent detectors and high-speed fuses. It was common to insert it into the circuit to protect it. The third embodiment of this prior art
As shown in the figure. In Fig. 3, 11 is an AC power supply, 12 is a rectifier, and 13 is a rectifier.
14 is a load, 14 is a control circuit, 15 is a reference, 16 is a current detector, 18 is an overcurrent detector, 12. -126 are power conversion elements; 19. ~19. is a high speed fuse. In the power converter configured as shown in FIG. 3, the AC power from the source 11 is converted into DC power by the rectifier 12 to drive the load 13. At this time, the DC power supplied to the load 13 is standard 15
is controlled by the control circuit 14 according to the set value. Six-arm individual power conversion elements 1 constituting a rectifier 12
21 ~] 2. The conventional method of detection and protection when the fuse deteriorates is to use a quick-acting fuse. - 196 is cut off, or the over-11 detector 18 detects whether the current flowing to the rectifier 12 via the current detector 16 is sufficiently larger than the overload current. It was getting worse. The detection and protection system for the power conversion device according to the prior art has the following problems. (1) In the method of protection using the overcurrent detector 18, it is necessary to set the detection level to a value larger than the overload current value of the rectifier 12, and moreover, considering current ripple during overload, etc. The overcurrent detection level must be set to a sufficiently large value relative to the overload tm value. Generally, if the overload capacity is about 225%, the overcurrent detection level is set at a level between 300 and 350 of the rated current. Therefore, there is a problem in that the fault current has increased sufficiently by the time the overcurrent is detected. On the other hand, in a 7-picture conversion device that uses elements with low heat resistance such as power conversion elements,
If we consider that the flow of the accident 'l' flows through other healthy power conversion elements that have not deteriorated (permanently failed), these accident 'iJ! It is clear that it is desirable to detect and protect a fault current when it is as small as possible in order to prevent stress caused by the influence of current from remaining on healthy power conversion elements, but conventional technology has not been able to meet this demand. . (2) Overcurrent detector 18'lf - In the method used, power conversion element 12. ~12. It was not possible to determine which power conversion element had deteriorated among the six arms. For this reason, recent power converters are used in various fields of important plants, but in the unlikely event that the power converter element 12. If any of the power conversion elements deteriorates (permanently fails), the time required to recover from the failure by investigating whether it is a power conversion element, converting the element, and restoring the device will be extremely long, resulting in plant stoppage damage during this time. It also had the disadvantage of being too large. (3) On the other hand, quick acting fuse 19. ~196 rectifier 12
If six wires are inserted into each arm, the fault current will be at least 2
Since the current flows through the fast-blow fuse in the arm, it is not guaranteed that the fast-blow fuse in the part where the power conversion element has deteriorated will blow.
In addition to the above-mentioned drawback (2) remaining, the fast-acting fuse 191
~196 also had to be replaced, but there was a problem that the stress of the electric current remained. [Object of the Invention] The present invention has been made in view of the above-mentioned shortcomings of the prior art, and is capable of detecting and protecting fault current at a lower level than before in overcurrent detection and protection of power conversion equipment. Furthermore, it is an object of the present invention to provide a power converter that is highly reliable and can determine which arm of the power converter is excited, and that can shorten failure recovery time. [Summary of the Invention] The present invention provides a current phase discriminator that compares and discriminates a control timing signal of a control circuit and a current detection signal of a current detector, and compares the magnitude, detection polarity, and timing of the current detection signal. Then, it is determined whether there is a fault current in the rectifier 12 or not. By making this determination, the detection level of the fault '1a flow can be kept within the continuous rated current of the power converter, and fault current detection and protection can be carried out very quickly. Furthermore, if the current phase discriminator is provided corresponding to the cross-current terminal of the power converter, it is possible to determine the presence or absence of a fault current for each arm of the power converter, so it is possible to determine which arm's power converter element has failed. The present invention can provide features that can minimize failure recovery time in the event of an accident. [Embodiment of the Invention] An embodiment of the present invention is shown in FIG. This figure shows an example in which the present invention is implemented in a power conversion device corresponding to FIG. 3, which performs AC-DC conversion by natural commutation. In Figure 1, the third
Circuit components having the same numbers as those in the drawings have the same functions. On the other hand, 17 is a current phase discriminator. In addition, the 11L current flowing to the AC terminal of the rectifier 12 is connected to IN+I
Let s be IT. The operation of the power conversion device in FIG. 1 is the same as that in FIG. do. In FIG. 2, the input AC current waveform of the rectifier 12 is shown as In + Is + IT. These currents IR, Is, and IT flow for a predetermined period with the polarities shown in the figure, which are shown by thick solid lines. That is, if one cycle of the AC power supply 11 is divided into six equal parts every 60 degrees, and the time of each is set as t1 to t, then the input AC current waveforms IR, I will be generated with the polarity and phase relationship shown in the diagram for each period of 120'.
s and ET flow respectively. Further, this waveform can be detected by the current detector 16. On the other hand, in the current phase discriminator [7], the input AC current waveforms Ill, I8 are determined by the control timing signal from the control circuit 14.
.. IT polarity and conduction period can be determined. Therefore, the current phase discriminator 17 is i4 when a current having the polarity of the waveform of the broken line flows during the period shown by the waveform of the broken line in FIG. 2, for example. This different layer is determined by the current phase discriminator 17 and a stop signal is given to the control circuit 14. This function will be explained in detail regarding the input AC current waveform Ia. From time t1, power conversion element 12. is conductive. Therefore, current flows on the positive side during the illustrated period. Time pig 10. At this point, power conversion element 12□ is ignited.At this point, power conversion element 12. deteriorates, AC power supply 11 - power conversion element 12 □ - t voltage conversion element 12 . - An accidental current flows in the loop of the AC power supply 11. The polarity of this accident @ flow appears as a negative polarity at r output from time t to time t4 in FIG. Therefore, if the presence or absence of this negative polarity fault current is determined from time t to time t, -1, the power conversion element 12. The presence or absence of deterioration can be determined. Also, during the period from time 14 to time t6, the power conversion element 124
conducts, so current flows with negative polarity during this period. At time -'power conversion element 12. is ignited, but if the power conversion element 124 deteriorates in the same way, the alternating current (AC) source 11 - power conversion element 124 - power conversion element 12 . - A fault current flows in the loop of the AC power supply 11, and the polarity of this fault current changes at time t6.
It appears with positive polarity during the period up to υ time t. Therefore, it is possible to similarly determine whether or not the power conversion element 124 has deteriorated. Other power conversion elements 12□, 12. . It is clear that 12, , and 126 can be similarly discriminated. Generally power conversion element 12. The probability that deterioration occurs in the power conversion elements 12 and 126 is extremely high before and after the current conduction period, so if it is determined by the method described above, the power conversion elements 12 and 126
It is clear that the presence or absence of deterioration can be determined for each power conversion element. Moreover, the aforementioned time t. Until time t4, or from time t! Since the fault current discrimination level up to , is different in that the current is detected with a predetermined polarity during this period, the current level is set to a current level below the rated continuous current, taking into account the error of the current detector 16, etc. be able to. Therefore, in the present invention, even if the fault current is below the rated continuous current, detection and protection operations can be performed, and even if a power conversion element deteriorates, it is possible to detect which arm the power conversion element belongs to. Current phase discriminator

【7で判別できるから、
故障復旧時間が大幅に短縮できる特徴を有する電力変換
装置を提供できる。 本発明の変形例としては、事故α流の検出期間を特に限
定するものではない。これは例えば、第1図の電力変換
素子12.について述べれば、時刻!、より時刻−の間
の任意の期間でも良く、または負荷時刻t4から時刻t
、の間負荷13に流れる電流を検出して、この検出電流
と、この期間に電力変換素子124を流れる電流成分と
の差成流をとって、時刻監、から時刻t6′!での所定
の期間負極性の′、電流が所定レベルあるかどうかを判
別して、電力変換素子12.の劣化の有無を判別しても
良い。 また電流位相判別器17の事故4流検出レベルを特に限
定するものではない。 また本発明の適用される電力変換装置の構成や種類を特
に限定するものではなく、強制転流の電流形インバータ
回路や、負荷転流のインバータ回路などに適用できる。 その他車発明の要旨を変更しない範囲しておいて各種の
実施例を提供できることが明らかである。 〔発明の効果〕 本発明によれば、電力変換装置のどのアームを構成する
電力変換素子が劣化したかを判別でき、しかも電力変換
素子劣化時の事故電流が成力変換装置の連続定格14流
以下のレベルであっても検出・保護動作を行なうことが
できる。従って本発明シてよる電力変換装置では、次の
特徴が得られる。 (1)事故電流が低いレベルで検出・保護動作が行なわ
れるから健全な電力変換素子などへの事故電諦のストレ
スを最少とすることができ、装置の信頼性が大幅に向上
する。 (2)  どのアームの電力変換素子が劣化したかが、
電流位相判別器で判別可能であるから、直ちに劣化した
電力変換素子の某換作業に収りかかることができ、故障
復旧時間を大幅に短縮することができ、この結果事故に
伴なうプラントの停止損害なども最少とすることができ
る。 4、 1?’l而の間単な説明 第】図は交流電力を直流電力に変換する電力変換装置に
本発明を適用した実施例図、第2図は第1図の動作を説
明するための波形図、第3図は第】図に対応した従来の
電力変換装置の実施例金示す図である。 11  交流電諒     12  整流器13  負
荷       14 ・制御回路L:5−2&準  
     16 パ紙流検出器t7・電流位相判別器 
 18・・過電流検出器121〜126・ 4力変換素
子  191〜196・・・高速ヒユーズ第1図 第2図
[Since it can be determined by 7,
It is possible to provide a power conversion device that has the feature that failure recovery time can be significantly shortened. As a modification of the present invention, the detection period of the accident α flow is not particularly limited. This is, for example, the power conversion element 12 in FIG. Speaking of time! , or from load time t4 to time t.
, detects the current flowing through the load 13 during , and calculates the differential flow between this detected current and the current component flowing through the power conversion element 124 during this period, and monitors the time from time t6'! of negative polarity for a predetermined period, it is determined whether the current is at a predetermined level, and the power conversion element 12. The presence or absence of deterioration may also be determined. Further, the fault fourth current detection level of the current phase discriminator 17 is not particularly limited. Further, the configuration and type of the power conversion device to which the present invention is applied is not particularly limited, and the present invention can be applied to forced commutation current source inverter circuits, load commutation inverter circuits, and the like. It is clear that various other embodiments can be provided without changing the gist of the invention. [Effects of the Invention] According to the present invention, it is possible to determine which power conversion element of which arm of the power conversion device has deteriorated, and moreover, the fault current at the time of deterioration of the power conversion device is lower than the continuous rated 14 current of the power conversion device. Detection and protection operations can be performed even at the following levels. Therefore, the power converter according to the present invention has the following features. (1) Since the detection and protection operations are performed at a low level of fault current, the stress of the fault on healthy power conversion elements can be minimized, and the reliability of the device is greatly improved. (2) Which arm's power conversion element has deteriorated?
Since it can be determined using a current phase discriminator, it is possible to immediately begin work on replacing degraded power conversion elements, greatly shortening the failure recovery time, and as a result, reducing plant damage caused by accidents. Stoppage damage can also be minimized. 4. 1? [Brief explanation] Fig. 2 is a diagram of an embodiment in which the present invention is applied to a power converter that converts AC power into DC power; Fig. 2 is a waveform diagram for explaining the operation of Fig. 1; FIG. 3 is a diagram showing an example of a conventional power conversion device corresponding to FIG. 11 AC voltage 12 Rectifier 13 Load 14 ・Control circuit L: 5-2 & quasi
16 paper flow detector t7/current phase discriminator
18...Overcurrent detector 121-126/Four force conversion element 191-196...High speed fuse Figure 1 Figure 2

Claims (1)

【特許請求の範囲】[Claims] 交流電力を直流電力に順変換、または直流電力を交流電
力に変換する直流電流一定方向の電力変換装置において
、その交流電流を検出する電流検出器を設け、制御回路
を介して前記電力変換装置のどのアームの電力変換素子
が導通するかが判別できる制御タイミング信号を得て、
各アームの電力変換素子のそれぞれの導通期間が完了し
た後、前記導通期間とは反対極性で所定の期間内に所定
レベル以上の電流検出信号が得られた時、どのアームの
電力変換素子の劣化かを判別して事故検出と保護動作を
行なうことを特徴とする電力変換装置。
In a power conversion device for forward converting AC power to DC power or for converting DC power to AC power with a constant direction of DC current, a current detector for detecting the AC current is provided, and a current detector for detecting the AC current is provided, and the power conversion device is Obtain a control timing signal that can determine which arm's power conversion element is conductive.
After the conduction period of each power conversion element in each arm is completed, when a current detection signal of a predetermined level or higher is obtained within a predetermined period with a polarity opposite to the conduction period, the deterioration of the power conversion element in which arm is detected. A power conversion device is characterized in that it performs accident detection and protective operation by determining whether
JP60274955A 1985-12-09 1985-12-09 Power converter Pending JPS62135225A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60274955A JPS62135225A (en) 1985-12-09 1985-12-09 Power converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60274955A JPS62135225A (en) 1985-12-09 1985-12-09 Power converter

Publications (1)

Publication Number Publication Date
JPS62135225A true JPS62135225A (en) 1987-06-18

Family

ID=17548888

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60274955A Pending JPS62135225A (en) 1985-12-09 1985-12-09 Power converter

Country Status (1)

Country Link
JP (1) JPS62135225A (en)

Similar Documents

Publication Publication Date Title
JPS62156576A (en) Method and device for testing trouble of control turn-off semiconductor element
US6084785A (en) Electric power converter
JPH11122819A (en) Dc ground fault detector
US6998735B2 (en) Controlled rectifier bridge, control system, and method for controlling rectifier bridge by disabling gate control signals
JPS62135225A (en) Power converter
JP4423949B2 (en) Control device for AC / AC direct conversion device
CA1093153A (en) Circuit for detecting a missed commutation in a self- commutating inverter
JPH07107751A (en) Inverter circuit
JP2841531B2 (en) Arm short detection circuit for power converter
JPS627333A (en) Missed phase detection circuit for static power converter
JP2829684B2 (en) Gate pulse abnormality detection circuit of power converter
RU2024144C1 (en) Three-phase load checking and protection device
JPH09182461A (en) Npc inverter
JPH0793788B2 (en) Power converter
JPS59127580A (en) Defect detector for inverter
JPH06174763A (en) Overcurrent detecting circuit
JPS63103616A (en) Overcurrent protective circuit
JPS5980115A (en) Circuit for protecting transistor inverter circuit
JPS5819160A (en) Defect detector for stationary power converter
JPS60241712A (en) Ground protecting device of power converter
JPS58204723A (en) Protecting device for power converter
JPS61251417A (en) Semiconductor converter
JPS6158427A (en) Method of protecting overcurrent of inverter
JPS60187269A (en) Power recovery controller
JPS62126870A (en) Protecting circuit for power converter circuit