JPS62134979A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPS62134979A
JPS62134979A JP27462285A JP27462285A JPS62134979A JP S62134979 A JPS62134979 A JP S62134979A JP 27462285 A JP27462285 A JP 27462285A JP 27462285 A JP27462285 A JP 27462285A JP S62134979 A JPS62134979 A JP S62134979A
Authority
JP
Japan
Prior art keywords
diode
electrode
semiconductor layer
electrodes
semiconductor device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27462285A
Other languages
Japanese (ja)
Inventor
Katsu Ito
克 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Citizen Watch Co Ltd
Original Assignee
Citizen Watch Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Citizen Watch Co Ltd filed Critical Citizen Watch Co Ltd
Priority to JP27462285A priority Critical patent/JPS62134979A/en
Publication of JPS62134979A publication Critical patent/JPS62134979A/en
Pending legal-status Critical Current

Links

Landscapes

  • Bipolar Transistors (AREA)

Abstract

PURPOSE:To enhance the performance of a diode, to raise frequency and to reduce power consumption by forming the electrode of the diode formed by a semiconductor layer in a comblike electrode, and reducing the resistance component of the electrode. CONSTITUTION:Electrodes of a diode are formed in a comblike structure. Thus, an anode electrode 120 and a cathode electrode 130 both become parallel connection equivalently in wiring series resistance to be reduced. The comblike electrode is microminiaturized to form a larger P-N junction area per unit area, i.e., to perform a larger current capacity.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は絶縁性基板上に半導体層を形成し、その半導体
層を用いてダイオードを形成する半導体装置に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a semiconductor device in which a semiconductor layer is formed on an insulating substrate and a diode is formed using the semiconductor layer.

〔従来の技術〕[Conventional technology]

一般にVHF、UHF帯の受信装置は、電波を受信する
アンテナで電波を受けたあと、高周波増幅回路ブロック
で希望の信号を増幅し、局部発振回路ブロックからの発
振信号と、周波数変換回路ブロックにおいて混合し、一
定の中間周波信号を得る。この種の受信装置はプリント
基板、あるいは、セラミック基板上に、各種フィルタ、
トランジスタ、ダイオード、コンデンサ、コイル、抵抗
などの単体個別部品を装着し、金属筐体に収納された構
成となっている。さらにこの種の受信装置が、今後大き
な市場が期待される小型携帯情報機器、たとえばポケッ
トテレビ、あるいはいわゆるポケットベルとよばれる個
人別選択受信呼び出し装置な・どに搭載された場合には
、小型化、薄型化、高性能化の要求が強い。
In general, VHF and UHF band receiving devices receive radio waves with an antenna, amplify the desired signal with a high frequency amplifier circuit block, and mix it with an oscillation signal from a local oscillation circuit block in a frequency conversion circuit block. and obtain a constant intermediate frequency signal. This type of receiving device has various filters and
It has a structure in which individual components such as transistors, diodes, capacitors, coils, and resistors are installed and housed in a metal casing. Furthermore, if this type of receiving device is installed in small portable information devices that are expected to have a large market in the future, such as pocket televisions or individual selective reception and calling devices called pagers, it will be possible to reduce the size of the device. There is a strong demand for thinner and higher performance devices.

第5図(a)、(b)は従来一般に使用されて(・た絶
縁基板上、たとえばSOS構造上のダイオードの電極パ
ターンの例を示す平面図である。第5図tal、(bl
ともにN”−P−P”uダイオードを示している。
FIGS. 5(a) and 5(b) are plan views showing examples of electrode patterns of diodes on insulating substrates, such as SOS structures, which have been commonly used in the past.
Both show N''-P-P''u diodes.

100は絶縁性基板、106は半導体層、102は金属
配線部、104はコンタクト部、120はアノード電極
、160はカソード電極、140はN+型半導体層、1
42はP型半導体層、144はビ型半導体層を示す。第
5図(a)、第5図(b)とも同一の物には同一の番号
を付しである。第5図(a)、(blの場合、どちらの
場合も、P−N接合面を大きくして電流容量を大きくし
ようとするとダイオード用の半導体層の占める面積が非
常に大きくなる。
100 is an insulating substrate, 106 is a semiconductor layer, 102 is a metal wiring section, 104 is a contact section, 120 is an anode electrode, 160 is a cathode electrode, 140 is an N+ type semiconductor layer, 1
42 is a P-type semiconductor layer, and 144 is a Vi-type semiconductor layer. The same numbers are given to the same parts in both FIG. 5(a) and FIG. 5(b). In both cases of FIGS. 5(a) and (bl), if the current capacity is increased by increasing the PN junction surface, the area occupied by the semiconductor layer for the diode becomes extremely large.

また第5図(a)の場合、160のカソード電極が、半
Aq体層106の周辺に形成されているため配線抵抗が
非常に大きくなる。
Further, in the case of FIG. 5(a), since 160 cathode electrodes are formed around the half Aq body layer 106, the wiring resistance becomes very large.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

現在、小型携帯情報機器に搭載される受信装置は、さら
に小型化、薄型化、高性能化、低消費電力化が進められ
ているものの、個別部品そのものの容積縮少は電気的性
能の劣化を招いたり、価格が鳥くなったりしがちである
。またプリント基板上の過度な高密度実装は実装の自動
化、実装後の調整の困難さから量産性の阻害を招(。
Currently, the receiving devices installed in small portable information devices are becoming smaller, thinner, more sophisticated, and have lower power consumption. Inviting and prices tend to be bird. In addition, excessively high-density mounting on printed circuit boards hinders mass production due to the difficulty of automating mounting and post-mounting adjustments.

また、プリント配線パターンの高密度化も電磁的、静電
的な誘導を起こし、プリント基板の電気的性能の劣化を
招く。
Furthermore, increased density of printed wiring patterns also causes electromagnetic and electrostatic induction, leading to deterioration of the electrical performance of printed circuit boards.

したがってこれらの問題点を解決するため:で受信回路
の集積化が期待されている。集積化のプロセスとして、
バルクシリコン基板上のI’vl OS F ET集積
回路やバイポーラトランジスタ集積回路があるがどちら
も素子に寄生する容量が大きいことや、配線と基板間の
容量が大きく、またこれらの寄生容量に打ち勝つために
は大きなバイアス電圧や大電流を必要とするために高周
波化、低消費電力化は著しく困難である。
Therefore, in order to solve these problems, integration of receiving circuits is expected. As a process of integration,
There are I'vl OS FET integrated circuits and bipolar transistor integrated circuits on bulk silicon substrates, but both have large parasitic capacitance in the element, large capacitance between wiring and substrate, and it is necessary to overcome these parasitic capacitances. Since this requires a large bias voltage and large current, it is extremely difficult to achieve higher frequencies and lower power consumption.

したがってこれらの寄生容量が非常に少ない絶縁性基板
上に半導体層を形成した。たとえばSOS構造の集積回
路は、高速化、高周波化、低消費電力化において極めて
有利である。このような高周波用集積回路の構成要素と
してダイオードがある。
Therefore, a semiconductor layer was formed on an insulating substrate with very little parasitic capacitance. For example, integrated circuits with an SOS structure are extremely advantageous in terms of speed, high frequency, and low power consumption. A diode is a component of such a high frequency integrated circuit.

一般にSOS構造上のダイオードはそのシリコン層の厚
さが1μm以下という構造がゆえに、P −N接合面、
あるいは同一の型のたとえばN型、P型のシリコンでも
異なるイオン濃度の接合面は基板と垂直な面にのみ形成
される。すなわち水平面内の接合面は形成されない。も
ちろん水平面内に接合面を形成する特殊な半導体装置の
製造方法も考えられるが、その方法はかなり厄介な工程
を多く必要とするのでその実施は、容易であるとは云い
難い。
In general, diodes with an SOS structure have a silicon layer with a thickness of 1 μm or less, so the P-N junction surface,
Alternatively, even if silicon is of the same type, for example, N type or P type, junction surfaces with different ion concentrations are formed only on the plane perpendicular to the substrate. That is, no bonding surface in the horizontal plane is formed. Of course, a special method of manufacturing a semiconductor device in which a bonding surface is formed in a horizontal plane is also conceivable, but that method requires many rather complicated steps, so it cannot be said that it is easy to implement.

そのためバルクシリコン上に形成されたダイオードと電
流容量の等しい接合面積をSOS構造上に形成する場合
は、バルクシリコン上の場合に比してはるかに大きな素
子面積を必要とする。
Therefore, when a junction area having the same current capacity as a diode formed on bulk silicon is formed on an SOS structure, a much larger element area is required than that on bulk silicon.

したがってウェハー上の面積効率が悪く、歩留りの面で
も問題がある。さらにダイオードの面積が大きくなると
、電極の配線容量は、SO3構造の特徴ゆえにほとんど
増加しないが、配線抵抗の増加、すなわちダイオード直
列抵抗の増加は避けがた(、ダイオードの高性能化、高
周波化、低消費電力化を著しく困難にしていた。本発明
の目的はこのような問題点を解決するための半導体装置
を提供するものである。
Therefore, the area efficiency on the wafer is poor, and there is also a problem in terms of yield. Furthermore, when the area of the diode increases, the wiring capacitance of the electrode hardly increases due to the characteristics of the SO3 structure, but an increase in the wiring resistance, that is, an increase in the diode series resistance, is unavoidable. This has made it extremely difficult to reduce power consumption.An object of the present invention is to provide a semiconductor device for solving these problems.

〔問題点を解決するための手段〕[Means for solving problems]

絶縁性基板と絶縁性基板上に設けられた半導体層を備え
た半導体装置において、上記半導体層を用いて形成され
たダイオードの電極をくし歯状電極とし、電極の抵抗成
分を低減し、該ダイオードの高性能化、高周波化、低消
費電力化を行なうものである。
In a semiconductor device comprising an insulating substrate and a semiconductor layer provided on the insulating substrate, the electrode of the diode formed using the semiconductor layer is a comb-shaped electrode to reduce the resistance component of the electrode, and the diode The goal is to achieve higher performance, higher frequency, and lower power consumption.

〔作用〕[Effect]

SOS構造の半導体装置の特徴としては、配線と基板間
の容量が小さいこと、またMOSFETを形成する場合
でもソースやドレインと基板間の容量が小さく、バルク
シリコン上にM OS F E Tを形成する場合に比
して高速化、低消費電力化が可能である。またサファイ
ア単結晶基板が非常に高い絶縁性を持っていること、誘
電率や機械的強度が周波数、温度に対して安定であるこ
と、高銹電率かつ低誘電体損失を示すこと、高熱伝導率
を有すること、化学的に不活性で高耐蝕性を持つこと、
これらの特徴はモノンシックICのみならず高密度混成
IC用基板としても有利である。
SOS structure semiconductor devices are characterized by a small capacitance between the wiring and the substrate, and even when forming a MOSFET, the capacitance between the source or drain and the substrate is small, and the MOS FET is formed on bulk silicon. It is possible to achieve faster speeds and lower power consumption compared to the conventional case. In addition, the sapphire single crystal substrate has extremely high insulating properties, its dielectric constant and mechanical strength are stable over frequency and temperature, it exhibits high galvanic constant and low dielectric loss, and it has high thermal conductivity. chemically inert and highly corrosion resistant,
These features are advantageous not only as a monolithic IC but also as a substrate for high-density hybrid ICs.

しかるに、同一の絶縁性基板上、たとえばSOS構造上
にダイオードを形成し、その電極は電極の直列抵抗が等
価的に並列接続で小さくなる(し歯状の構造とする。す
なわちダイオードの能動領域を細かく分割し1ユニツト
あたりの電極幅を短くした多数のくし歯電極を結線し、
並列接続とする構造としたものである。
However, when diodes are formed on the same insulating substrate, for example on an SOS structure, the series resistance of the electrodes is equivalently reduced by parallel connection (a tooth-tooth structure, that is, the active area of the diode is By connecting a large number of comb-shaped electrodes that are finely divided and shorten the electrode width per unit,
The structure is connected in parallel.

〔実施例〕〔Example〕

以下図面に基づいて詳述する。 The details will be explained below based on the drawings.

第1図は本発明の実施例を示す(し歯状電極を用いたダ
イオードの平面図である。
FIG. 1 shows an embodiment of the present invention (a plan view of a diode using an annular electrode).

100.102.104.106.120.160.1
40.142.144は第6図の同一の番号と同一の物
である。第1図のように、ダイオードの電極なくし歯状
の構造とすることにより、アノード電極120、カソー
ド電極130共にその配線直列抵抗が等価的に並列接続
となり小さく成、すなわちより大きい電流容量の達成を
実現できる。
100.102.104.106.120.160.1
40.142.144 are the same as the same numbers in FIG. As shown in Fig. 1, by making the diode electrodes have a comb-shaped structure, the wiring series resistances of both the anode electrode 120 and the cathode electrode 130 are equivalently connected in parallel, which reduces them, that is, achieves a larger current capacity. realizable.

第2図は第1図のA−A’に沿った断面図である。FIG. 2 is a sectional view taken along line A-A' in FIG.

20は絶縁膜である。他の番号は第1図と同一の物には
同一の番号を付しである。
20 is an insulating film. Other numbers are the same as those in FIG. 1.

第3図は本発明の他の実施例を示すくし歯状電極を用い
たダイオードの平面図である。やはり第1図と同一の物
には同一の番号を付しである。第3図はP−N接合面を
蛇行パターンとした構成となっている。
FIG. 3 is a plan view of a diode using comb-shaped electrodes showing another embodiment of the present invention. Components that are the same as in FIG. 1 are given the same numbers. In FIG. 3, the P-N junction surface has a meandering pattern.

第4図は本発明の実施例内におけるダイオードのくし歯
状電極数と配線抵抗の関係を示すグラフである。第4図
において、横軸は夕゛イオードのくし歯状電極数、縦軸
はダイオード電極の配線抵抗、をとりて示す。曲線Aは
くし歯状電極数の増加とともにダイオードの配線抵抗が
減少する様子を示している。
FIG. 4 is a graph showing the relationship between the number of comb-like electrodes of a diode and wiring resistance in an embodiment of the present invention. In FIG. 4, the horizontal axis represents the number of comb-like electrodes of the diode, and the vertical axis represents the wiring resistance of the diode electrodes. Curve A shows how the wiring resistance of the diode decreases as the number of comb-shaped electrodes increases.

本発明をたとえばSOS構造上に可変容量ダイオードを
形成した場合に応用しても効果が太きい。
Even if the present invention is applied, for example, to a case where a variable capacitance diode is formed on an SOS structure, the effect is significant.

受信器等の同調回路において、可変容量ダイオードの直
列抵抗成分の低減は、Q値を高(することができ、雑音
指数も低(することができる効果がある。また、同様に
SOS構造上のスイッチングダイオードに本発明を応用
した場合は、ダイオードの順方向高周波抵抗が小さくな
り、伝送損失を小さくできる効果がある。
In a tuned circuit such as a receiver, reducing the series resistance component of a variable capacitance diode has the effect of increasing the Q value and lowering the noise figure. When the present invention is applied to a switching diode, the forward high frequency resistance of the diode is reduced, resulting in the effect of reducing transmission loss.

〔発明の効果〕〔Effect of the invention〕

以上の説明で明らかなように、本発明によれば絶縁性基
板上の半導体層に形成したダイオードの高性能化、高周
波化、低消費電力化を図ることができる。
As is clear from the above description, according to the present invention, it is possible to achieve higher performance, higher frequency, and lower power consumption of a diode formed in a semiconductor layer on an insulating substrate.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例を示すくし歯状電極を用いたダ
イオードの平面図。第2図は第1図のA−A’断面図。 第3図は本発明の他の実施例を示すくし歯状電極を用い
たダイオードの平面図。第4図は本発明の実施例におけ
るダイオードのくし歯状電極数と配線抵抗の関係を示す
グラフ。第5図(a)、(b)は従来のSOS構造のダ
イオードの電極パターンを示す平面図。 100・・・・・・絶縁性基板、 106・・・・・・半導体層、 120・・・・・・アノード電極、 160・・・・・・カソード電極。
FIG. 1 is a plan view of a diode using comb-shaped electrodes showing an embodiment of the present invention. FIG. 2 is a sectional view taken along the line AA' in FIG. FIG. 3 is a plan view of a diode using comb-like electrodes showing another embodiment of the present invention. FIG. 4 is a graph showing the relationship between the number of comb-shaped electrodes of a diode and wiring resistance in an example of the present invention. FIGS. 5(a) and 5(b) are plan views showing electrode patterns of a diode with a conventional SOS structure. 100... Insulating substrate, 106... Semiconductor layer, 120... Anode electrode, 160... Cathode electrode.

Claims (3)

【特許請求の範囲】[Claims] (1)絶縁性基板とこの絶縁性基板上に設けられた半導
体層を備えた半導体装置において、該半導体層を用いて
ダイオードを形成し、該ダイオードの電極をくし歯状電
極とすることを特徴とする半導体装置。
(1) A semiconductor device comprising an insulating substrate and a semiconductor layer provided on the insulating substrate, characterized in that the semiconductor layer is used to form a diode, and the electrodes of the diode are comb-shaped electrodes. semiconductor device.
(2)ダイオードはSOS構造であることを特徴とする
特許請求の範囲第1項記載の半導体装置。
(2) The semiconductor device according to claim 1, wherein the diode has an SOS structure.
(3)ダイオードは可変容量ダイオードあるいはスイッ
チングダイオード、あるいは定電圧ダイオード、あるい
はPINダイオードであることを特徴とする特許請求の
範囲第1項記載の半導体装置。
(3) The semiconductor device according to claim 1, wherein the diode is a variable capacitance diode, a switching diode, a constant voltage diode, or a PIN diode.
JP27462285A 1985-12-06 1985-12-06 Semiconductor device Pending JPS62134979A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27462285A JPS62134979A (en) 1985-12-06 1985-12-06 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27462285A JPS62134979A (en) 1985-12-06 1985-12-06 Semiconductor device

Publications (1)

Publication Number Publication Date
JPS62134979A true JPS62134979A (en) 1987-06-18

Family

ID=17544286

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27462285A Pending JPS62134979A (en) 1985-12-06 1985-12-06 Semiconductor device

Country Status (1)

Country Link
JP (1) JPS62134979A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5204735A (en) * 1988-04-21 1993-04-20 Kabushiki Kaisha Toshiba High-frequency semiconductor device having emitter stabilizing resistor and method of manufacturing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5204735A (en) * 1988-04-21 1993-04-20 Kabushiki Kaisha Toshiba High-frequency semiconductor device having emitter stabilizing resistor and method of manufacturing the same

Similar Documents

Publication Publication Date Title
US7202152B2 (en) Semiconductor device with inductive component and method of making
US7112502B2 (en) Method to fabricate passive components using conductive polymer
EP0661805B1 (en) LC element, semiconductor device, and LC element manufacturing method
US7638419B2 (en) Method of fabricating a via attached to a bond pad utilizing a tapered interconnect
US6756681B1 (en) Radio frequency integrated circuit having increased substrate resistance enabling three dimensional interconnection with feedthroughs
JPS61276484A (en) Liquid crystal television receiver
EP0912997B1 (en) Rf power package with a dual ground
US3597706A (en) Strip line switch
US5751555A (en) Electronic component having reduced capacitance
JPH10284694A (en) Product having silicon substrate and supporting electronic circuit which operates at frequency higher than radio frequency
JPS62134979A (en) Semiconductor device
US5886587A (en) Flipped lumped element circulator
JPH06181119A (en) Composite lc parts
US6060968A (en) Device with circuit element and transmission line formed by a dielectric between facing conductor strips
JP2006501682A (en) Conductive electronic component and manufacturing method thereof
JPS5892277A (en) Manufacture of field effect transistor
JP3120938B2 (en) Semiconductor integrated device and method of manufacturing the same
RU2101803C1 (en) Shf transistor microassembly
US8344430B2 (en) Multiple substrate electrical circuit device
JP2590686B2 (en) Hybrid integrated circuit
US20080171418A1 (en) Method to Fabricate Passive Components Using Conductive Polymer
JPH025465A (en) Semiconductor device
JPH09162357A (en) High frequency semiconductor device
JP2004103819A (en) Monolithic microwave integrated circuit
JPH0936171A (en) Integrated circuit device