JPS6213457B2 - - Google Patents

Info

Publication number
JPS6213457B2
JPS6213457B2 JP318678A JP318678A JPS6213457B2 JP S6213457 B2 JPS6213457 B2 JP S6213457B2 JP 318678 A JP318678 A JP 318678A JP 318678 A JP318678 A JP 318678A JP S6213457 B2 JPS6213457 B2 JP S6213457B2
Authority
JP
Japan
Prior art keywords
layer
nonwoven fabric
fibers
thin
inorganic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP318678A
Other languages
Japanese (ja)
Other versions
JPS5496219A (en
Inventor
Masahide Yazawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KOBUNSHI KAKO KENKYUSHO
Original Assignee
KOBUNSHI KAKO KENKYUSHO
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KOBUNSHI KAKO KENKYUSHO filed Critical KOBUNSHI KAKO KENKYUSHO
Priority to JP318678A priority Critical patent/JPS5496219A/en
Publication of JPS5496219A publication Critical patent/JPS5496219A/en
Publication of JPS6213457B2 publication Critical patent/JPS6213457B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Panels For Use In Building Construction (AREA)
  • Laminated Bodies (AREA)

Description

【発明の詳細な説明】 (発明の分野) 本願は長繊維直交不織布を皮層部に配置するこ
とにより繊維を少く用いて、腰があつて曲り難
く、破砕し難く、不燃耐火の無機凝結材系の薄層
建材の構成を目的とする。
Detailed Description of the Invention (Field of the Invention) The present application uses a small amount of fibers by arranging a long-fiber orthogonal nonwoven fabric in the skin layer, and uses a non-flammable and fire-resistant inorganic aggregate material that is stiff, hard to bend, hard to crush, and non-flammable and fireproof. The purpose is to construct thin-layer building materials.

(先行技術との関係) 従来薄層建材としては石綿(アスベスト)等を
混合したセメントや石膏板が市販されている。併
し石綿は発癌物質としてその使用が困難亦は禁止
の方向にある。
(Relationship with Prior Art) Conventional thin-layer building materials include cement and gypsum board mixed with asbestos, etc. However, asbestos is a carcinogenic substance, making it difficult to use or even prohibiting its use.

石綿代替品としてガラス又は有機の短繊維の配
合が検討されているが、無方向性短小繊維は5%
以下の配合では何等効果なく、少くとも8%以上
で石綿等では15%以上配合される場合が多く、高
価な人造繊維を高率に用いては耐熱的物性面から
のみでなくコスト的にも石綿に比し不利となる。
従つてかゝる高価な人造繊維を可及的に少量用い
て効果を充分発揮するためには繊維材としては短
繊維として用いないで、長繊維であるフイラメン
トの直交不織布の形で薄層建材の皮層部に配置
し、繊維配合が1〜2%位で良結果の得られるよ
うにしたのが本願製品構成の一つの特徴である。
The combination of glass or organic short fibers is being considered as a substitute for asbestos, but non-directional short fibers account for 5%.
The following combinations have no effect: at least 8% or more, and asbestos, etc., are often mixed at 15% or more, and using a high percentage of expensive artificial fibers is not only effective in terms of heat-resistant properties but also in terms of cost. It is disadvantageous compared to asbestos.
Therefore, in order to use such expensive man-made fibers in as small a quantity as possible and achieve the full effect, they should not be used as short fibers, but rather as thin-layer building materials in the form of orthogonal non-woven fabrics made of filaments, which are long fibers. One of the features of the product composition of the present application is that it is placed in the cortical layer of the skin, and good results can be obtained with a fiber content of about 1 to 2%.

薄層建材に繊維を配合補強する際、曲げ応力に
対して、最も効果的に働くためには建材皮層部に
高ヤング率のフイラメント又はフイラメント糸の
方向性をもつた経緯直交不織布体を配する事が望
ましい。
When reinforcing fibers in thin building materials, in order to work most effectively against bending stress, place filaments with a high Young's modulus or orthogonal nonwoven fabrics with filament yarn orientation in the skin layer of the building material. things are desirable.

皮層部にない配合繊維は継ぎ材の役目を果す
が、曲げ応力には余り役立たない。
Compound fibers that are not in the cortical layer serve as a joint material, but are not very useful for bending stress.

(発明の要約) 本願発明の第1は長繊維直交不織布を無機凝結
材の表裏面中に浅く埋没配置させ、表裏面の中間
に補強材又は増量材を添加配合した無機凝結材を
充填し、全体が一体的に凝結密着した構成を特徴
とする長繊維直交不織布を皮層部にもつ薄層建材
であり、発明の第2は、表裏の長繊維直交不織布
の中間に、補強材として鉄波ラスを配置し、その
空間に他の補強材又は増量材を添加配合した無機
凝結材を充填し、全体が一体的に凝結密着した構
成を特徴とする長繊維直交不織布を皮層部にもつ
薄層建材である。
(Summary of the Invention) The first aspect of the present invention is to place a long-fiber orthogonal nonwoven fabric shallowly buried in the front and back surfaces of an inorganic coagulant, and fill the inorganic coagulant with a reinforcing material or filler in the middle of the front and back surfaces. It is a thin-layer building material having a long fiber orthogonal nonwoven fabric in the skin layer, which is characterized by a structure in which the entire structure is integrally coagulated. A thin-layer building material having a long-fiber orthogonal nonwoven fabric in its skin layer, which is characterized by a structure in which the space is filled with an inorganic coagulating material mixed with other reinforcing materials or fillers, and the whole is coagulated tightly. It is.

(発明の目的) 本願は長繊維直交不織布を皮層部に配置するこ
とより繊維を少く用いて、腰があつて曲り難く、
破砕し難く、不燃耐火の無機凝結材系の薄層建材
の構成を目的とする。これらは各項別に説明す
る。本願で薄層とは厚さ5〜12mm位で、平板状の
場合と波賦形の場合がある。
(Object of the invention) The present application uses less fiber than the long-fiber orthogonal nonwoven fabric placed in the cortical layer, and has a stiff waist and is difficult to bend.
The purpose is to construct a thin-layer building material based on inorganic coagulation material that is difficult to crush and is non-combustible and fireproof. These will be explained separately for each item. In the present application, a thin layer has a thickness of about 5 to 12 mm, and may be flat or corrugated.

(繊維材に要求される性質と種類) 本願では繊維材としては各種の長繊維が用いら
れるが、特に高ヤング率のガラス繊維又は有機繊
維としては高倍率延伸されて高ヤング率で耐熱性
の高い繊維が好適している。
(Properties and Types Required for Fiber Materials) In this application, various long fibers are used as fiber materials, but in particular, high Young's modulus glass fibers or organic fibers are those that have been drawn at a high magnification and have high Young's modulus and heat resistance. High fibers are preferred.

例えばポリビニールアルコール(pVA)、ポリ
アクリルニトリル(pAN)繊維は空気に接しな
い加熱下に熱収縮をおこさず、炭素繊維化の方向
を辿り、火炎加熱下に強さを保つ故特に望ましい
繊維である。
For example, polyvinyl alcohol (pVA) and polyacrylonitrile (pAN) fibers are particularly desirable fibers because they do not shrink when heated without contact with air, follow the direction of carbon fiber, and maintain strength when heated with flame. be.

そして之等の長繊維はトウ状繊維を広巾薄層に
展開するか、牽切製綿したスライバーを多条並列
ドラフトするか、或はフイラメント系を定ピツチ
で並列した広巾ウエブ層として、之を(経層×緯
層)又は(経層×緯層×経層)の構成の直交不織
布となして用いられる。
These long fibers can be produced by spreading out tow-like fibers into a wide thin layer, by drafting many strips of stretch-cut sliver in parallel, or by forming a wide web layer in which filament systems are arranged at a fixed pitch. It is used as an orthogonal nonwoven fabric with a structure of (longitudinal layer x latitudinal layer) or (longitudinal layer x latitudinal layer x longitudinal layer).

そしてこの直交不織布が薄層建材の表面に無機
凝結材中に埋没して皮層部に存在して、空気との
接触が少ない形に配置された構成が本願の特徴で
ある。
A feature of the present application is that the orthogonal nonwoven fabric is embedded in the inorganic coagulant on the surface of the thin building material and exists in the skin layer, so that it is arranged in such a way that there is little contact with air.

(PVAおよびPAN繊維の特徴) 要は薄層建材の皮層部にフイラメント直交不織
布主体の布体を配し、可及的低率の繊維材使用で
薄層建材補強を行う点が本願の特徴である。
(Characteristics of PVA and PAN fibers) The key point of this application is that a cloth body mainly made of filament orthogonal non-woven fabric is arranged in the skin layer of the thin-layer building material, and the thin-layer building material is reinforced using the lowest possible percentage of fiber material. be.

特に前述した無機凝結材が充分滲透して、之等
に被覆されたPVA、PAN繊維は、加熱乾燥下の
火炎等による加熱で、繊維は収縮したり、熔融し
て分子の配列弛緩を起すことなく、酸欠下にその
分子配列のまゝ下記する如く炭素繊維化の方向を
辿る故に、耐熱性ではむしろガラス繊維より高い
繊維材ともいえる。
In particular, PVA and PAN fibers coated with the above-mentioned inorganic coagulant permeate sufficiently may shrink or melt when heated by a flame during heat-drying, causing relaxation of the molecular arrangement. Rather, it can be said that it is a fiber material with higher heat resistance than glass fiber because its molecular arrangement remains unchanged under oxygen deficiency and follows the direction of carbon fiber formation as described below.

セメントに配合されるガラス繊維は普通のガラ
スでなく、特に耐アルカリガラス繊維である必要
が強調されているが、現在市販の耐アルカリガラ
ス繊維の耐アルカリ性は不充分であるといわれて
いる。
It is emphasized that the glass fibers used in cement should not be ordinary glass, but especially alkali-resistant glass fibers, but it is said that the alkali-resistant glass fibers currently on the market are insufficient in alkali resistance.

この点でPVAは室温下に耐アルカリ性をも
ち、加熱下では220℃以上で先ず脱水分解が起
り、その分解水分は加熱下に蒸発発散しPVAを
軟化することなく、続いて酸欠状態では脱水素さ
れて炭化する経過を辿る。PANは石灰アルカリ
下に−CN基が加水分解されて−CONH2又は−
COOHとなるが、この−COO−基はセメント等
の成分であるCaと結合して不溶化する故、室温
中で分子配列の弛緩なく、褐色に着色するが強度
低下しない点で耐アルカリ繊維といえる。火炎等
の高温加熱下では、酸欠状態で脱−CN基、脱−
CO−基反応が先ず起り続いて脱水素されて炭素
繊維化の方向を辿る。従つて之等熱不融性の有機
繊維布体を補強に用いる場合は本願の構成の如く
建材の表裏面に接して無機凝結材の皮層部にその
大部分を埋没して火炎に当つても繊維は酸欠不燃
状態に配置し、更に加熱が続いても、酸欠下に分
子配列の弛緩なくそのまゝ炭素繊維化の方向を辿
り、強力は低下しない点が本願構成の特徴であ
る。若し有機繊維が石膏ボードの表面紙の場合の
如く大気中に露出すれば、火炎で燃え去つて繊維
補強の効果は期待されず、建材は焼け崩れる欠点
を伴う。
In this respect, PVA has alkali resistance at room temperature, and dehydration decomposition occurs first at temperatures above 220°C under heating, and the decomposed water evaporates and evaporates under heating without softening PVA, and then dehydrates under oxygen-deficient conditions. We trace the process of dissolving and carbonizing. In PAN, −CN group is hydrolyzed under lime alkali to form −CONH 2 or −
It becomes COOH, but this -COO- group combines with Ca, which is a component of cement, etc., and becomes insolubilized, so it can be said to be an alkali-resistant fiber in that the molecular arrangement does not relax at room temperature, and although it is colored brown, the strength does not decrease. . Under high-temperature heating such as flame, de-CN groups and de-
A CO-group reaction occurs first, followed by dehydrogenation, leading to carbon fiber formation. Therefore, when such a heat-infusible organic fiber fabric is used for reinforcement, as in the configuration of the present application, most of it is buried in the skin layer of the inorganic coagulant in contact with the front and back surfaces of the building material, so that even when exposed to flame, The structure of the present application is characterized in that the fibers are arranged in an oxygen-deficient non-flammable state, and even if heating continues, the molecular arrangement remains in the direction of carbon fiberization without any relaxation due to the oxygen deficiency, and the strength does not decrease. If organic fibers are exposed to the atmosphere, as in the case of the surface paper of a gypsum board, they will be burned away by flames and no fiber reinforcing effect can be expected, with the drawback that the building material will burn and crumble.

(薄層建材に対する繊維の使用割合及び補強度) 上述した無機凝結材の薄層建材には、砂や有
機・無機の短小繊維で補強したり発泡粒や多孔質
材等を添加して軽量化を計る場合もあるが、一般
的には5〜12mm厚さで5〜15Kg/m2の重量を有す
る。平均して10Kg/m2として、その表裏に50g/
m2の並列フイラメント又は並列フイラメント糸の
直交不織布(950d×6本×6本/吋)を配すれ
ば、フイラメント使用量は表裏合計して100g/
m2で薄層建材の約1%の重量比であり、フイラメ
ントの引張強度が8〜10g/dとして約200Kg/
50mm巾の補強となる。特に低伸度高強度の
PVA、PAN繊維やガラス繊維は夫々単独か、又
は混用されてフイラメント直交不織布として用い
ることが好ましい。そして炭素繊維は熱や電気の
伝導性の向上の目的で混用される。
(Ratio of fiber used and degree of reinforcement for thin-layer building materials) Thin-layer building materials made of inorganic cohesive materials mentioned above can be made lighter by reinforcing them with sand, short organic/inorganic fibers, or adding foam particles, porous materials, etc. Generally, it has a thickness of 5 to 12 mm and a weight of 5 to 15 kg/m 2 . The average weight is 10Kg/ m2 , and 50g/m2 is applied to the front and back sides.
If m 2 of parallel filaments or orthogonal non-woven fabric of parallel filament yarns (950d x 6 threads x 6 threads/inch) are arranged, the amount of filament used on the front and back sides is 100g/inch.
m 2 is about 1% of the weight of the thin-layer building material, and the tensile strength of the filament is about 200 kg/d, assuming it is 8 to 10 g/d.
The reinforcement is 50mm wide. Especially for low elongation and high strength
PVA, PAN fibers and glass fibers are preferably used alone or in combination as a filament orthogonal nonwoven fabric. Carbon fiber is also used in combination to improve thermal and electrical conductivity.

亦格子目のフイラメント糸の直交不織布の被覆
力増大の目的で短繊維ウエブを積層した形で使用
される場合もある。
In addition, short fiber webs are sometimes used in a laminated form for the purpose of increasing the covering power of the orthogonal nonwoven fabric of filament yarns with a lattice pattern.

(繊維と凝結材との接着性および繊維の低伸度
性) 紡積糸や強撚フイラメント糸は接着剤やセメン
トや石膏等の凝結材(マトリツクス)が、各フイ
ラメント間に滲透不充分なので接着力弱く複合則
のあてはまる物性が期待できない点で好ましい繊
維材ではない。
(Adhesiveness between fibers and coagulating material and low elongation of fibers) Spun yarns and highly twisted filament yarns cannot be bonded because adhesives and coagulating agents (matrix) such as cement and plaster do not permeate between each filament. It is not a desirable fiber material because it is weak and cannot be expected to have physical properties to which the law of compounding applies.

本願で布体として織布を用いない理由は、織布
では経・緯の糸が互に上下に交錯し波形屈曲した
形をとり、各糸に多少の張力斑はさけられないも
のであり、折角高ヤング率の糸を用いても構造的
に亦実技的に伸度の多い布体となり、低伸度のセ
メントや石膏等の補強には適しないからである。
The reason why woven cloth is not used as the cloth body in this application is that in woven cloth, the warp and weft threads are intertwined vertically and have a wavy bent shape, and some tension unevenness in each thread cannot be avoided. This is because even if a yarn with a high Young's modulus is used, the fabric will have a high degree of elongation from a structural and practical standpoint, making it unsuitable for reinforcing low elongation cement, plaster, etc.

この点本願で用いる経緯直交不織布はフイラメ
ント又は無撚又は甘撚のフイラメント糸が真直ぐ
に伸びた形で任意の繊維・糸密度で経緯積層さ
れ、低伸度の繊維を用いればそのまゝ低伸度の布
体となり、セメント、石膏系、カルシウム−シリ
ケート系、又は炭カル−水ガラス系等のスラリー
状の無機凝結材を用いた場合、無撚の単繊維間に
之等凝結材がよく滲透し、相互接着が良好で薄層
建材補強にも最も効果的であるからである。
In this regard, the weft/warp orthogonal nonwoven fabric used in this application is made by laminating filaments or non-twisted or slightly twisted filament yarns in a straightly stretched form with any fiber/thread density, and if low elongation fibers are used, they will have low elongation as they are. When a slurry-like inorganic coagulant such as cement, gypsum, calcium-silicate, or charcoal-water glass is used, the coagulant permeates between the untwisted single fibers. However, it has good mutual adhesion and is the most effective for reinforcing thin-layer building materials.

そして有機繊維を用いた場合に繊維が無機凝結
材中に埋没する必要性は不燃化の必要性許りでな
く、繊維材と無機凝結材の接着面積の拡大及び引
掛り効果の拡大のためにも取られる有効な手段で
ある。かゝる形態の製品を得るに最も適した方法
は、薄層建材製造に当り、先ず直交不織布を特に
接着剤を加味した接着力の強い配合のセメント又
はα型1/2H2O石膏或は炭酸カルシウムと水ガ
ラス等のスラリーに浸漬し、圧搾し、更に要すれ
ばこの操作を繰返して、布体構成の単位フイラメ
ントの表面に充分上記無機凝結剤(材)を滲透被
覆せしめ、搾りを甘くして可及的に多量(布体坪
量の数倍)の凝結剤を添加サイジングした状態で
表裏面配置の直交不織布となし、その中間層に増
量材等の添加材を配合した無機凝結材を挟み一定
厚さとなし、全体的に凝結硬化せしめる方式が取
られる。
When organic fibers are used, the need for the fibers to be buried in the inorganic coagulant is not due to the need for non-combustibility, but also to expand the bonding area between the fiber material and the inorganic coagulant and to increase the hooking effect. is also an effective measure. The most suitable method for obtaining such a product is to first prepare orthogonal non-woven fabrics with cement, α-type 1/2H 2 O plaster, or α-type 1/2H 2 O plaster, which has a strong adhesive composition, especially in the production of thin-layer building materials. It is immersed in a slurry of calcium carbonate and water glass, etc. and squeezed, and if necessary, this operation is repeated to fully coat the surface of the unit filament of the cloth body with the above inorganic coagulant (material), and the squeezing process becomes sweet. An inorganic coagulating material that is made by adding and sizing as much coagulant as possible (several times the basis weight of the fabric) to form an orthogonal nonwoven fabric with front and back sides, and an inorganic coagulating material containing additives such as fillers in the middle layer. A method is used in which the entire layer is solidified and hardened by sandwiching the layers to a constant thickness.

上記の如くスラリー状の無機凝結材でサイジン
グすることは紙等の短小繊維の絡み合い体では組
織が破れて不可能であるが、本願で用いられる布
体は長繊維の構成である故連続的作業でサイジン
グが可能であり、特にこの種の布体は強度が大で
ある故通常坪量の少い即ち40〜60g/m2で充分実
用的補強の目的が達せられ、坪量少く而も無撚フ
イラメント構成の布体なる故、凝結材の滲透も良
好であり、又繊維坪量が少ないために凝結剤の引
掛かり効果を充分発揮するためには布体が薄層建
材の表面の無機凝結材中に大部分埋つて表面に接
して配置されることが望ましく、その実技的手段
として上記の如き布体の前処理サイジングが有効
であり、必要な手段である。
As mentioned above, sizing with an inorganic coagulant in the form of a slurry is impossible with paper or other intertwined short fibers because the structure is torn, but since the fabric used in this application has a long fiber structure, it is difficult to perform sizing using a slurry-like inorganic coagulant. In particular, this type of fabric has a high strength, so a small basis weight, i.e., 40 to 60 g/ m2 , is sufficient to achieve the purpose of practical reinforcement. Since the fabric has a non-twisted filament structure, the penetration of the coagulant is good, and since the fiber basis weight is small, in order for the fabric to fully exhibit the coagulant catching effect, the fabric has to absorb the inorganic material on the surface of the thin building material. It is desirable that most of the material be buried in the coagulant and placed in contact with the surface, and the above-mentioned pre-treatment and sizing of the fabric is an effective and necessary practical means for this purpose.

(中間層に用いる配合、凝結剤の組成) 上記の如くサイジングされた布体の中間層に、
増量材として砂(セメントの補強増量材)、又は
石綿・人造短繊維・パルプ繊維・ヘドロ短繊維等
の継ぎ補強材、シラスバルーン、パーライトの如
き多孔質軽量化材(体積の増量材)、合成樹脂そ
の他凝結促進剤等夫々の目的で添加した無機凝結
材を中間層の充填材として用いる。
(Blend and composition of coagulant used in intermediate layer) In the intermediate layer of the fabric sized as described above,
Sand as a bulking material (cement reinforcing bulking material), joint reinforcing materials such as asbestos, artificial short fibers, pulp fibers, sludge short fibers, porous lightening materials such as shirasu balloons and pearlite (volume bulking material), synthetic Inorganic setting agents such as resins and setting accelerators added for respective purposes are used as fillers in the intermediate layer.

(経緯直交不織布の製法) 高ヤング率の繊維例えば耐アルカリガラス繊
維、炭素繊維、一般ガラス繊維或は高強度・低伸
度の有機繊維の糸は糸切れし易く織布困難を伴う
が、本願で用いる直交不織布は本出願人の先願発
明特開昭52−124976号(特公昭53−38783)の方
法によれば、普通織機の2桁違いの高い1台当り
の製布能で、並列したフイラメント又は甘撚フイ
ラメント糸の広巾ウエブの形で経緯積層され、不
織的に布体が量産的かつ安価にえられる長所があ
る。
(Production method of weaving orthogonal nonwoven fabric) High Young's modulus fibers, such as alkali-resistant glass fibers, carbon fibers, general glass fibers, or high-strength, low-elongation organic fibers tend to break easily, making weaving difficult. The orthogonal nonwoven fabric used in this invention is manufactured by the method of the applicant's earlier patent application, JP-A No. 52-124976 (JP-A-53-38783), which has a fabric-making capacity per machine that is two orders of magnitude higher than that of an ordinary loom. The fabric is laminated in the form of a wide web of twisted filaments or lightly twisted filament yarns, and has the advantage that a non-woven fabric can be mass-produced at low cost.

この経緯直交積層する不織布の製法によれば、
かゝる高ヤング率の繊維・糸でも極めて容易に産
業用に適した布体が量産安価に製造されるもので
あり、一面から見ると本願は近来とみにその需要
が増大した軽量・不燃の薄層建材の構成に、石綿
に代替して莫大量の需要が期待されるフイラメン
ト直交不織布の用途発明とも考えうる。
According to this manufacturing method of nonwoven fabric that is orthogonally laminated,
Even with such high Young's modulus fibers/yarns, fabrics suitable for industrial use can be mass-produced at low cost.From one perspective, this application is aimed at producing lightweight, non-flammable thin fabrics for which the demand has increased in recent years. This can also be considered as an invention for the use of orthogonal filament nonwoven fabrics, which are expected to be in huge demand as an alternative to asbestos in the composition of layered building materials.

(図による製品の構造および製造工程の説明) 第1図は本発明の第1に属する製品の斜視図で
表面に浅く埋没した不織布は縦糸1、横糸2より
なり、裏面の不織布は縦糸3、横糸4よりなる。
中間層7は表裏面層の間にある。第2図は第1図
の製品を横方向に裁断した断面を示し、表面層
5、裏面層6、中間層7よりなる。第3図は本発
明の第2に属する製品の断面で、中間層にある波
形のものは鉄波ラス8を示す。第4図は本発明の
第1に属する製品製造の行程概略を示す。ベルト
18はピンチローラ19に送られて、この上に裏
面の不織布10がのせられ、次に無機凝結材12
が流出して不織布をおおう。プレスローラ15に
より軽くプレスされ、不織布は浅く凝結材中に埋
没される。次に中間層材14がこの上に流出し、
プレスロール16によつて表面が平らになる。次
に表面層を作る凝結材13が流出し、この上に表
面層の不織布11がのせられ、プレスローラ17
によつて不織布11は表面層の凝結材中に浅く埋
没する。ついで最下部にあるベルトはターンロー
ラ22によつてもとへかえる。ターンローラ22
の次に固体平面の受け台があり、ベルトをはなれ
た薄層体はおされてこの上に移動し、カツター2
0で適宜切断され製品23となる。尚凝固を早め
るために、図示してないがプレスローラ17と受
け台21の間に高周波加熱装置をつけ加える場合
がある。
(Explanation of product structure and manufacturing process using figures) Fig. 1 is a perspective view of a product belonging to the first aspect of the present invention, in which the nonwoven fabric shallowly buried in the surface consists of warp 1 and weft 2, and the nonwoven fabric on the back side consists of warp 3 and weft 3. Consists of 4 weft threads.
The intermediate layer 7 is between the front and back layers. FIG. 2 shows a cross section of the product shown in FIG. 1 cut in the transverse direction, and is composed of a surface layer 5, a back layer 6, and an intermediate layer 7. FIG. 3 is a cross section of a product belonging to the second aspect of the present invention, and the corrugated one in the intermediate layer shows an iron wave lath 8. FIG. 4 shows an outline of the product manufacturing process according to the first aspect of the present invention. The belt 18 is sent to a pinch roller 19, on which the back nonwoven fabric 10 is placed, and then an inorganic coagulating material 12 is placed on the belt 18.
flows out and covers the nonwoven fabric. The nonwoven fabric is lightly pressed by the press roller 15, and the nonwoven fabric is shallowly buried in the coagulating material. Then the intermediate layer material 14 flows out onto this,
The surface is made flat by the press roll 16. Next, the coagulating material 13 forming the surface layer flows out, the nonwoven fabric 11 forming the surface layer is placed on top of this, and the press roller 17
As a result, the nonwoven fabric 11 is shallowly buried in the surface layer of the aggregation material. The belt at the bottom is then turned back by the turn roller 22. Turn roller 22
Next there is a solid flat pedestal, and the thin layer that has left the belt is pushed onto it and placed on the cutter 2.
The product 23 is cut as appropriate at point 0. Although not shown, a high frequency heating device may be added between the press roller 17 and the pedestal 21 in order to accelerate solidification.

実施例 鉄波ラスを中間層に有する場合について述べ
る。無機凝結材をサイジングした不織布体を長さ
方向に連続移動せしめ、この布体上に厚さ0.35mm
の薄鉄板に前後に狭いピツチで長さ17mmの干鳥状
配置の切れ目を入れ、切れ目の長さと直角方向に
拡幅して平ラスとした。このラスを波形付与のロ
ーラ間を通して波形を与えた坪量0.4Kg/m2の波
ラスとなし定尺切断して、次々と断続した形に移
動する不織布体上に並べた。この波ラスの上方か
ら配合した無機凝結材を全幅的に供給し、振動を
与えてラスの目を抜けてラスの下側にも凝結材が
廻り、ラスを中心として凝結材が脱泡充填される
如くなし、ローラ間を通して圧縮下に所定の厚さ
とした。この際上側ローラーを経て導入した上側
の凝結剤上にサイジングした布体を重ねプレスロ
ーラで浅く埋没せしめ、ラスの継目毎切断して、
各枚毎養生時間放置して凝結を完結せしめて製品
とした。
Embodiment A case will be described in which an iron wave lath is provided in the intermediate layer. A nonwoven fabric body sized with an inorganic cohesive material is continuously moved in the length direction, and a 0.35 mm thick nonwoven fabric body is placed on this fabric body.
A thin iron plate was made with 17mm long bird-shaped cuts at narrow pitches in the front and back, and the width was widened in a direction perpendicular to the length of the cuts to create a flat lath. This lath was passed between corrugating rollers and cut into a wave lath with a basis weight of 0.4 kg/m 2 to a fixed length, and then arranged on a nonwoven fabric body that moved in an interrupted manner one after another. The blended inorganic coagulant is supplied from above the wave lath over the entire width, and is vibrated so that the coagulant passes through the holes of the lath and goes around the underside of the lath, degassing and filling the lath with the coagulant. It was passed between rollers and compressed to a predetermined thickness. At this time, the sized fabric was placed on top of the upper coagulant introduced through the upper roller and buried shallowly with a press roller, and the lath was cut at each seam.
Each sheet was left for a curing period to complete solidification and become a product.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は製品の斜視図面、第2図は製品の横方
向の断面図、第3図は中間層に鉄波ラスを入れた
製品の断面図、第4図は第1図の製品を作る行程
図である。 図面に於ける符号の説明、1,2……表面層の
縦糸および横糸、3,4……表面層の縦糸および
横糸、5,6……表面層および裏面層、7……中
間層、8……鉄波ラスの断面、10,11……表
面および裏面の不織布、12,13……無機凝結
材、14……中間層に用いる配合凝結材、15,
16,17……プレスローラ、18……ベルト、
19……ベルトを動かすピンチローラー、20…
…カツター、21……固体受け台、22……ター
ンローラー、23……製品。
Figure 1 is a perspective drawing of the product, Figure 2 is a cross-sectional view of the product in the lateral direction, Figure 3 is a cross-sectional view of a product with iron corrugated laths in the middle layer, and Figure 4 is how the product shown in Figure 1 is made. It is a journey diagram. Explanation of symbols in the drawings: 1, 2... Warp and weft of the surface layer, 3, 4... Warp and weft of the surface layer, 5, 6... Surface layer and back layer, 7... Intermediate layer, 8 ... Cross section of iron wave lath, 10, 11 ... Nonwoven fabric on the front and back surfaces, 12, 13 ... Inorganic setting material, 14 ... Compound setting material used for intermediate layer, 15,
16, 17...Press roller, 18...Belt,
19... Pinch roller that moves the belt, 20...
... cutter, 21 ... solid pedestal, 22 ... turn roller, 23 ... product.

Claims (1)

【特許請求の範囲】 1 表裏及び中間の3層よりなる薄層板材におい
て、長繊維直交不織布を薄層の無機凝結材の表裏
面中に浅く埋没配置し、表裏層の中間には補強材
又は増量材を添加配合した無機凝結材を充填し、
全体が一体的に凝結密着した構成を特徴とする長
繊維直交不織布を皮層部にもつ薄層建材。 2 特許請求の範囲1において、長繊維直交不織
布を含む表裏層の中間に、補強材として鉄波ラス
を中芯的に配置し、その空間に他の補強材又は増
量材を添加配合した無機凝結材を充填し、全体が
一体的に凝結密着した構成を特徴とする長繊維直
交不織布を皮層部にもつ薄層建材。
[Scope of Claims] 1. In a thin-layer plate material consisting of three layers: front, back and middle layers, a long fiber orthogonal nonwoven fabric is shallowly buried in the front and back surfaces of the thin layer of inorganic cohesive material, and a reinforcing material or Filled with inorganic coagulant mixed with filler,
A thin-layer building material whose skin layer is made of long-fiber orthogonal nonwoven fabric, which is characterized by a structure in which the entire structure is coagulated and adhered to each other. 2 In Claim 1, an inorganic coagulation material in which an iron wave lath is centrally arranged as a reinforcing material between the front and back layers containing the long-fiber orthogonal nonwoven fabric, and other reinforcing materials or fillers are added and blended in that space. A thin-layer building material whose skin layer is made of long-fiber orthogonal nonwoven fabric, which is characterized by a structure in which the entire structure is coagulated and adhered to each other.
JP318678A 1978-01-13 1978-01-13 Thin building material having nonnwoven fabric of perpendicularly crossed long fibers in surface layer Granted JPS5496219A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP318678A JPS5496219A (en) 1978-01-13 1978-01-13 Thin building material having nonnwoven fabric of perpendicularly crossed long fibers in surface layer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP318678A JPS5496219A (en) 1978-01-13 1978-01-13 Thin building material having nonnwoven fabric of perpendicularly crossed long fibers in surface layer

Publications (2)

Publication Number Publication Date
JPS5496219A JPS5496219A (en) 1979-07-30
JPS6213457B2 true JPS6213457B2 (en) 1987-03-26

Family

ID=11550361

Family Applications (1)

Application Number Title Priority Date Filing Date
JP318678A Granted JPS5496219A (en) 1978-01-13 1978-01-13 Thin building material having nonnwoven fabric of perpendicularly crossed long fibers in surface layer

Country Status (1)

Country Link
JP (1) JPS5496219A (en)

Also Published As

Publication number Publication date
JPS5496219A (en) 1979-07-30

Similar Documents

Publication Publication Date Title
US3639195A (en) Bonded fibrous materials and method for making them
JP4287881B2 (en) Reinforced thick fabric and method for producing the same
US4133928A (en) Fiber reinforcing composites comprising portland cement having embedded therein precombined absorbent and reinforcing fibers
US4762744A (en) Reinforcing composite for roofing membranes and process for making such composites
US4076884A (en) Fibre reinforcing composites
US4035544A (en) Asphalt roofing and method of making same
RU2005131731A (en) NONWOVEN MAT, METHOD FOR ITS MANUFACTURE AND FIBER COMPOSITE
NO157969B (en) PROCEDURE FOR THE MANUFACTURE OF FLAT, FIBER ARMED MATERIALS.
US3958055A (en) Adhesive bonding of isotropic fiber webs to form pattern bonded composites
TW201544666A (en) Carrier material for vinyl floor covering
RU2365687C1 (en) Needle-punched fabric and method of its production
DE69913387D1 (en) COMPOSITE FLEECE
UA127571C2 (en) Flame-resistant composite substrates for bituminous membranes
HUT65016A (en) Elastic woven material for covering structure, and surface covering by using the basic woven material, especially for covering walls, floors or ceilings
US7494558B2 (en) Laminate with improved properties
RU2357028C2 (en) Nonwoven needled material
US3400188A (en) Method for producing reticulated film
US3366529A (en) Needled non-woven fabrics and method of making the same
US4518658A (en) Waterproof membrane with fuse bonded non-woven reinforcement
JPS6213457B2 (en)
EP0208918A2 (en) Reinforcing composite for roofing membranes and process for making such composites
US5063099A (en) Non-woven mat consisting of acrylic continuous filaments showing high modulus impregnated with an inorganic matrix
CA1185775A (en) Composite lining material
JPS5842313B2 (en) Bituminous waterproofing base material
US3617430A (en) Bituminous sheet for use as water and dampness-insulating reinforcement material