JPS6213305B2 - - Google Patents

Info

Publication number
JPS6213305B2
JPS6213305B2 JP53129938A JP12993878A JPS6213305B2 JP S6213305 B2 JPS6213305 B2 JP S6213305B2 JP 53129938 A JP53129938 A JP 53129938A JP 12993878 A JP12993878 A JP 12993878A JP S6213305 B2 JPS6213305 B2 JP S6213305B2
Authority
JP
Japan
Prior art keywords
diamond
silicon
mass
pressure
volume
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP53129938A
Other languages
Japanese (ja)
Other versions
JPS5485212A (en
Inventor
Rii Minyangu
Edowaado Suzaara Roorensu
Chaaruzu Deuriiizu Robaato
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
General Electric Co
Original Assignee
General Electric Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by General Electric Co filed Critical General Electric Co
Publication of JPS5485212A publication Critical patent/JPS5485212A/en
Publication of JPS6213305B2 publication Critical patent/JPS6213305B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • C04B35/645Pressure sintering
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J3/00Processes of utilising sub-atmospheric or super-atmospheric pressure to effect chemical or physical change of matter; Apparatus therefor
    • B01J3/06Processes using ultra-high pressure, e.g. for the formation of diamonds; Apparatus therefor, e.g. moulds or dies
    • B01J3/062Processes using ultra-high pressure, e.g. for the formation of diamonds; Apparatus therefor, e.g. moulds or dies characterised by the composition of the materials to be processed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/12Both compacting and sintering
    • B22F3/14Both compacting and sintering simultaneously
    • B22F3/15Hot isostatic pressing
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/52Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbon, e.g. graphite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/6303Inorganic additives
    • C04B35/6316Binders based on silicon compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2203/00Processes utilising sub- or super atmospheric pressure
    • B01J2203/06High pressure synthesis
    • B01J2203/0605Composition of the material to be processed
    • B01J2203/062Diamond
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2203/00Processes utilising sub- or super atmospheric pressure
    • B01J2203/06High pressure synthesis
    • B01J2203/065Composition of the material produced
    • B01J2203/0655Diamond
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2203/00Processes utilising sub- or super atmospheric pressure
    • B01J2203/06High pressure synthesis
    • B01J2203/0675Structural or physico-chemical features of the materials processed
    • B01J2203/0685Crystal sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3817Carbides
    • C04B2235/3826Silicon carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/42Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
    • C04B2235/422Carbon
    • C04B2235/427Diamond
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/42Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
    • C04B2235/428Silicon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/608Green bodies or pre-forms with well-defined density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/616Liquid infiltration of green bodies or pre-forms
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • C04B2235/6587Influencing the atmosphere by vaporising a solid material, e.g. by using a burying of sacrificial powder
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/72Products characterised by the absence or the low content of specific components, e.g. alkali metal free alumina ceramics
    • C04B2235/721Carbon content
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/72Products characterised by the absence or the low content of specific components, e.g. alkali metal free alumina ceramics
    • C04B2235/728Silicon content
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/80Phases present in the sintered or melt-cast ceramic products other than the main phase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance

Description

【発明の詳細な説明】 本発明はケイ素含有結合媒体によつて結合され
たダイヤモンド結晶の緻密塊体からなる多結晶質
ダイヤモンド体の製造法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing a polycrystalline diamond body consisting of a dense mass of diamond crystals bonded by a silicon-containing bonding medium.

本発明方法は、ダイヤモンド結晶をケイ素原子
含有結合媒体で結合させた多結晶質ダイヤモンド
体を作るため、ダイヤモンド安定帯域で要求され
る圧力よりも実質的に低い圧力を利用する。本発
明の多結晶質ダイヤモンド体は多くの形状および
広い範囲の大きさで作ることができる。それは研
磨剤、切削工具、ノズルまたは他の耐磨耗性部材
として有用である。
The method of the present invention utilizes pressures substantially lower than those required in the diamond stability zone to create a polycrystalline diamond body in which diamond crystals are bonded with a bonding medium containing silicon atoms. The polycrystalline diamond bodies of the present invention can be made in many shapes and a wide range of sizes. It is useful as an abrasive, cutting tool, nozzle or other wear-resistant member.

概説すれば、多結晶質ダイヤモンド体を製造す
るための本発明方法は、熱圧縮段階を含み、かつ
形の上で少なくとも実質的に安定である粉末を作
るのに充分な圧力の下に圧力伝達粉末媒体中で周
囲温度で予め定められた大きさの型を圧縮し、上
記圧力伝達粉末媒体が付加した圧力を実質的に低
下させずに伝達し、上記熱圧縮中実質的に焼結し
ないで残るようにし、上記型を除いて形成された
キヤビテイ中にケイ素の塊体および上記ケイ素塊
体と接触したダイヤモンド結晶の塊体を置き、上
記キヤビテイおよびその内容物を追加量の上記圧
力伝達粉末媒体で覆いこれによつて内容物を上記
圧力伝達粉末で包覆し、上記キヤビテイおよびそ
の内容物に上記粉末媒体を介して上記キヤビテイ
およびその内容物の寸法を実質的に安定化するの
に充分な実質的に均衡した圧力を付与し、粉末包
覆キヤビテイの成形された実質的に均衡な系を均
一に生ぜしめ、このとき形成されたダイヤモンド
結晶の圧縮塊体の密度集、即ち体密度(以下単に
密度と称する)が上記圧縮されるダイヤモンド結
晶の体積の65容量%より大となし、上記ケイ素は
上記ダイヤモンド結晶の圧縮塊体の間隙を満たす
に充分な量で使用し、上記キヤビテイおよび内容
物を含む上記実質的な均衡系に上記ダイヤモンド
結晶およびケイ素が上記熱圧縮中少なくとも実質
的に不活性である雰囲気を与え、形成された実質
的な均衡系を熱圧縮して流体ケイ素を生成させ、
それをダイヤモンド結晶の上記圧縮塊体の間隙中
に侵入させ、上記熱圧縮を上記ケイ素が流体にな
る温度から約1600℃までの温度で、ダイヤモンド
結晶の上記圧縮塊体の間隙中に流体ケイ素を侵入
させるのに充分な圧力の下に行ない、上記熱圧縮
が上記ダイヤモンド結晶の5容量%以下を非ダイ
ヤモンド元素状炭素に変換せしめ、上記非ダイヤ
モンド炭素または上記ダイヤモンド結晶の表面を
ケイ素と反応させて炭化ケイ素を形成させ、形成
された熱圧縮された実質的な均衡系上にその冷却
中上記熱圧縮系の寸法を少なくとも実質的に保つ
に充分な圧力で維持させ、炭化ケイ素およびケイ
素からなるケイ素原子含有媒体によつて結合され
たダイヤモンド結晶からなる形成された多結晶質
ダイヤモンド体を回収し、ダイヤモンド結晶が上
記多結晶質ダイヤモンド体の少なくとも65容量%
の量で存在するようにすることからなる。
In general, the method of the present invention for producing polycrystalline diamond bodies includes a step of thermal compaction and pressure transfer under sufficient pressure to produce a powder that is at least substantially stable in shape. compacting a mold of a predetermined size in a powder medium at ambient temperature, said pressure transmitting powder medium transmitting the applied pressure substantially without reduction, and substantially not sintering during said hot compaction; placing a mass of silicon and a mass of diamond crystals in contact with the silicon mass in the cavity formed by removing the mold, and displacing the cavity and its contents with an additional amount of the pressure-transmitting powder medium. thereby enveloping the contents with said pressure transmitting powder and applying sufficient amount of said powder medium to said cavity and its contents to substantially stabilize the dimensions of said cavity and its contents. A substantially balanced pressure is applied to uniformly produce a shaped, substantially balanced system of powder-encased cavities, and the density of the compacted mass of diamond crystals formed, i.e., the body density (hereinafter referred to as (simply referred to as density) is greater than 65% by volume of the volume of the diamond crystal to be compressed, and the silicon is used in an amount sufficient to fill the interstices of the compressed mass of diamond crystal, and the silicon is used in an amount sufficient to fill the interstices of the compressed mass of diamond crystal, and providing an atmosphere in which the diamond crystals and silicon are at least substantially inert during the thermal compression, thermally compressing the formed substantially balanced system to produce fluid silicon;
The silicon is injected into the pores of the compressed mass of the diamond crystal, and the thermal compression is performed at a temperature from the temperature at which the silicon becomes a fluid to about 1600°C to form fluid silicon into the pores of the compressed mass of the diamond crystal. the thermal compression converts up to 5% by volume of the diamond crystals to non-diamond elemental carbon and causes the non-diamond carbon or the surface of the diamond crystals to react with silicon; silicon carbide is formed and maintained at a pressure sufficient to maintain at least substantially the dimensions of the thermocompressed system on the formed hot-compressed substantially isostatic system during its cooling; A formed polycrystalline diamond body consisting of diamond crystals bound by an atom-containing medium is recovered, wherein the diamond crystals are at least 65% by volume of the polycrystalline diamond body.
consists of making it exist in an amount of

当業者には添付図面を参照した以下の詳細な説
明から本発明を良く理解できるであろう。
Those skilled in the art will have a better understanding of the invention from the following detailed description taken in conjunction with the accompanying drawings.

本発明方法を実施するに当つては、ケイ素の塊
体と接触しているダイヤモンド結晶の塊体を、そ
れらの寸法を実質的に均一に実質的に安定化させ
るため周囲温度または室温で冷間圧縮段階にさら
し、次いで熱圧縮段階にさらし、これによつてケ
イ素を圧縮されたダイヤモンド結晶の塊体中に侵
入させる。
In carrying out the method of the present invention, the mass of diamond crystals in contact with the mass of silicon is cold-heated at ambient or room temperature to substantially uniformize and substantially stabilize their dimensions. A compression step followed by a hot compression step causes silicon to penetrate into the compacted mass of diamond crystals.

ダイヤモンド結晶塊体およびケイ素塊体は多く
の形をとることができる。例えば各塊体は層の形
であり、一つの層が他の層に積重した形であるこ
とができる。あるいはケイ素は管の形またはシリ
ンダー中に延びる芯を有するシリンダーの形であ
ることができ、ダイヤモンド結晶はケイ素シリン
ダーの芯内に充填することができる。更に別の態
様においては、ケイ素はバーの形をとることがで
き、このバーはキヤビテイ中で中心に置くことが
でき、ケイ素バーとキヤビテイの内壁の間の周囲
空間をダイヤモンド結晶で充填させることができ
る。
Diamond crystal bodies and silicon bodies can take many forms. For example, each mass can be in the form of layers, one layer stacked on top of another. Alternatively, the silicon can be in the form of a tube or a cylinder with a core extending into the cylinder, and the diamond crystals can be filled within the core of the silicon cylinder. In yet another embodiment, the silicon can be in the form of a bar, which can be centered in the cavity, and the surrounding space between the silicon bar and the inner wall of the cavity can be filled with diamond crystals. can.

本発明方法で使用するダイヤモンド結晶は、天
然ダイヤモンドまたは合成即ち人造ダイヤモンド
であることができる。それらは最大寸法約1μ〜
約100μの大きさの範囲であり、使用する個々の
大きさは個々の所望のダイヤモンド結晶の充填率
または密度によつて決まり、また形成される多結
晶質ダイヤモンド体のそれぞれの用途によつて決
まる。しかしながら5μより小さい結晶は10μよ
り大きい結晶と混合しなければならない、そし
て、ケイ素による満足できる侵入をできるように
するため5μより小さい結晶は好ましくはダイヤ
モンド混合物の50容量%より多く構成させるべき
でない。殆んどの研磨用には、約60μより大きく
ないダイヤモンド結晶が好ましい。好ましくはダ
イヤモンド混合物の充填率を最大にするため、そ
れらは即ち、小、中および大の大きさの結晶の大
きさ範囲を含有するようサイズ品種分けすべきで
ある。好ましくはサイズ品種分けした結晶は約1
μ〜約60μの範囲にあり、そして好ましくはこの
大きさの範囲内で結晶の全塊体の約60〜約80容量
%の範囲の大きい部分のものであり、約5〜約10
容量%の中程度の大きさのものであり、残余を小
さい大きさの結晶または粒子で構成させる。
The diamond crystals used in the method of the invention can be natural diamonds or synthetic or man-made diamonds. Their maximum size is approximately 1μ~
They range in size from about 100 microns, with the particular size used depending on the particular desired diamond crystal packing or density and the respective use of the polycrystalline diamond body being formed. . However, crystals smaller than 5μ must be mixed with crystals larger than 10μ, and in order to allow satisfactory penetration by silicon, crystals smaller than 5μ should preferably not constitute more than 50% by volume of the diamond mixture. Diamond crystals no larger than about 60 microns are preferred for most polishing applications. Preferably, in order to maximize the filling factor of the diamond mixtures, they should be sized to contain a range of crystal sizes, namely small, medium and large sized crystals. Preferably the size-sorted crystals are about 1
μ to about 60 μ, and preferably within this size range a large fraction ranges from about 60 to about 80% by volume of the total mass of crystals, and from about 5 to about 10
% by volume of medium size, with the remainder made up of small size crystals or particles.

ダイヤモンド結晶の分粒は、大きいダイヤモン
ド結晶をジエツトミリングすることによつて容易
に行なえる。ダイヤモンド結晶は本発明方法で使
用する前にその表面から酸化物または他の不純物
を除去するため化学的に清浄にするのが好まし
い。これはダイヤモンド結晶を水素中で約900℃
で約1時間加熱することによつて達成できる。
Grain sizing of diamond crystals can be easily accomplished by jet milling large diamond crystals. The diamond crystal is preferably chemically cleaned to remove oxides or other impurities from its surface before use in the method of the invention. This is the temperature of a diamond crystal in hydrogen at approximately 900℃.
This can be achieved by heating for about 1 hour.

本発明においてはケイ素はダイヤモンド結晶の
間の間隙または気孔中に注入または侵入させるた
めに使用する。ケイ素は例えば固体または粉末の
形であつてよく、これは結晶によつて占有されて
いる体積の65容量%以上の結晶密度を有するダイ
ヤモンド結晶塊体の間隙または気孔を満たすに充
分な量で使用する。一般にケイ素は約25容量%〜
約80容量%の範囲の量で使用できる、しかし好ま
しくは最良の結果を得るためには、それは、65容
量%より大きい結晶密度を有するダイヤモンド結
晶の体積の約30〜約60容量%の範囲である。
In the present invention, silicon is used to inject or penetrate into the interstices or pores between diamond crystals. The silicon may be in solid or powder form, for example, and is used in an amount sufficient to fill the interstices or pores of the diamond crystal mass having a crystal density of 65% or more by volume of the volume occupied by the crystals. do. Generally silicon is about 25% by volume ~
It can be used in amounts ranging from about 80% by volume, but preferably for best results it is in the range from about 30 to about 60% by volume of the diamond crystal with a crystal density greater than 65% by volume. be.

本発明の熱圧縮段階は、ダイヤモンド結晶の性
質またはケイ素の侵入に大きい有害な効果を有し
ない雰囲気中で行なう。特別なときには、熱圧縮
段階は実質的な真空中でまたはアルゴンまたはヘ
リウムの如き不活性ガス中で行なうことができ
る、あるいは窒素または水素中で行なうことがで
きる。本発明の熱圧縮段階は流体ケイ素と窒素ま
たは水素との間の著しい反応が生じないよう充分
速く行なう。本発明の熱圧縮段階は空気中で行な
うことはできない、何故ならばダイヤモンドは
800℃以上の空気中で急速にグラフアイト化し、
液体ケイ素は、ダイヤモンド塊体の流体ケイ素に
よる注入が生ずる前に酸化されて固体シリカを形
成するからである。
The hot compaction step of the present invention is carried out in an atmosphere that does not have a significant deleterious effect on the properties of the diamond crystals or silicon intrusion. In special cases, the thermal compression step may be carried out in a substantial vacuum or in an inert gas such as argon or helium, or may be carried out in nitrogen or hydrogen. The thermal compression step of the present invention is conducted sufficiently fast so that no significant reaction between the fluid silicon and nitrogen or hydrogen occurs. The thermal compression step of the present invention cannot be carried out in air, since diamond
Rapidly turns into graphite in air over 800℃,
This is because the liquid silicon is oxidized to form solid silica before the implantation of the diamond mass with the fluid silicon occurs.

本発明の熱圧縮は、熱圧縮温度で気孔中への流
体ケイ素による侵入を防ぐダイヤモンド塊体中の
界面耐熱層を破壊するに充分なことだけが必要な
圧力の下で、ケイ素が流体になる温度から約1600
℃までの温度で行なう、このとき通常約35.2Kg/
cm2(約500psi)の最低圧力を必要とする。特に熱
圧縮の圧力は約35.2Kg/cm2〜約1406.1Kg/cm2(約
500psi〜約2000psi)の範囲であることができる
が、通常それは約70.3Kg/cm2〜約703.5Kg/cm2
(約1000psi〜約10000psi)の範囲である。約
703.5Kg/cm2(約10000psi)より大なる熱圧縮圧
力は著しい利点を与えない。同様に1600℃より高
い温度は著しい利点を提供せず、ダイヤモンドを
過度にグラフアイト化することがある。
The thermal compaction of the present invention allows the silicon to become fluid under a pressure that is only sufficient to destroy the interfacial refractory layer in the diamond mass that prevents intrusion by the fluid silicon into the pores at the hot compaction temperature. From temperature about 1600
The weight is usually about 35.2Kg/
Requires a minimum pressure of cm 2 (approximately 500 psi). In particular, the pressure of thermal compression is approximately 35.2Kg/cm 2 to approximately 1406.1Kg/cm 2 (approximately
500psi to about 2000psi), but typically it is about 70.3Kg/ cm2 to about 703.5Kg/ cm2
(ranging from about 1000psi to about 10000psi). about
Hot compression pressures greater than about 10,000 psi do not provide significant benefits. Similarly, temperatures above 1600°C do not offer significant benefits and may overgraphitize the diamond.

ケイ素が流体になる温度とは、ここではケイ素
が容易に流動性になる温度を意味する。特にケイ
素がその融点にあるとき(これは約1412℃〜約
1430℃であると当業者には知られている)、それ
は高粘度を有する、しかしその温度を上昇させる
に従つて、それは粘性が少なくなり、その融点よ
り約10℃高い温度でそれは流体になる。ケイ素が
流体である温度はそれが、65容量%より大きい結
晶密度を有するダイヤモンド結晶の本発明の圧縮
塊体の間隙または気孔の毛細管的大きさの通路を
通つて注入または侵入する温度である。更に温度
を上昇させると、流体ケイ素の流動性は増大しダ
イヤモンド結晶塊体中への侵入速度は早くなり、
約1600℃の最高熱圧縮温度で液体ケイ素は最高流
動性および結晶塊体中への最高侵入速度を有す
る。
The temperature at which silicon becomes fluid means here the temperature at which silicon becomes easily fluid. Especially when silicon is at its melting point (which ranges from about 1412°C to about
1430 °C), it has a high viscosity, but as you increase its temperature, it becomes less viscous, and at a temperature about 10 °C above its melting point it becomes a fluid. . The temperature at which silicon is fluid is the temperature at which it injects or penetrates through the capillary-sized passages of the interstices or pores of the compact mass of the present invention of diamond crystals having a crystal density greater than 65% by volume. When the temperature is further increased, the fluidity of the fluid silicon increases and its penetration speed into the diamond crystal mass becomes faster.
At the highest hot compression temperature of about 1600° C., liquid silicon has the highest fluidity and the highest rate of penetration into the crystal mass.

第1図の装置において、予め定められた大きさ
のキヤビテイは型9によつて圧力伝達粉末媒体1
9a中に圧入される。この点では、粉末19aを
少なくとも実質的に安定な形にするのに必要な充
分な圧力〔一般に約703.5Kg/cm2〜約3515.4Kg/
cm2(約10000psi〜約50000psi)〕をピストン23
aによつて付与するだけである、かくすると圧力
を除いたとき、即ちピストン23aを引いたと
き、型9を取り除いてその中に凹んだキヤビテイ
11を残すことができる。型9は、付与した圧力
に耐えることができ、圧縮された粉末から取り出
して後に凹んだキヤビテイ11を残すことのでき
る例えば不銹鋼または焼結カーバイドの如き表面
平滑仕上げされた材料のものである。
In the apparatus of FIG. 1, a cavity of predetermined size is formed by a mold 9 into a pressure transmitting powder medium
It is press-fitted into 9a. In this regard, sufficient pressure (generally from about 703.5 Kg/cm 2 to about 3515.4 Kg/cm 2
cm 2 (approximately 10,000psi to approximately 50,000psi)] to the piston 23
a, so that when the pressure is removed, ie when the piston 23a is pulled, the mold 9 can be removed, leaving a recessed cavity 11 therein. The mold 9 is of a material with a smooth surface finish, such as stainless steel or sintered carbide, which can withstand the applied pressure and leave a recessed cavity 11 after removal from the compressed powder.

第1図において型9を取り除きキヤビテイ11
を残したとき、キヤビテイ11内にケイ素の盤1
1およびケイ素と接した形でダイヤモンド結晶塊
体13を入れる。ダイヤモンド結晶塊体が形成さ
れる多結晶質ダイヤモンド体に所望される厚さを
有することを確実ならしめるため、そのキヤビテ
イは、第2図に示す如き系を寸法的に安定化する
ための次の冷間圧縮中にダイヤモンド粒子の実質
的な移動または転移を許す自由空間をその中に残
さぬような大きさにすべきである。次いでキヤビ
テイおよびその内容物上に追加の圧力伝達粉末を
入れ、第2図に示す如く粉末包覆されたセル1
0、即ちキヤビテイおよび内容物を作る。
In Fig. 1, mold 9 is removed and cavity 11 is removed.
When the silicon disk 1 is left in the cavity 11,
A diamond crystal mass 13 is placed in contact with 1 and silicon. To ensure that the diamond crystal mass has the desired thickness in the polycrystalline diamond body from which it is formed, the cavity is provided with the following steps to dimensionally stabilize the system as shown in FIG. It should be sized so as not to leave any free space within it to allow substantial movement or displacement of the diamond particles during cold compaction. Additional pressure transmitting powder is then placed over the cavity and its contents to form the powder-encased cell 1 as shown in FIG.
0, ie cavity and contents.

次に第2図に示す如く、セル10は冷間圧縮段
階を受ける、これは室温または周囲温度で行な
う、これによつて寸法的に安定化された実質的な
均衡系を作るのに必要なだけの充分な圧力を付与
する。特に第2図における加圧成形用型20のシ
リンダー状芯において、セル10は圧力伝達粉末
媒体の塊体19で取りまかれている。
As shown in FIG. 2, the cell 10 is then subjected to a cold compression step, which takes place at room or ambient temperature, as necessary to create a dimensionally stabilized, substantially balanced system. Apply sufficient pressure. In particular, in the cylindrical core of the pressing mold 20 in FIG. 2, the cells 10 are surrounded by a mass 19 of pressure transmitting powder medium.

本発明の圧力伝達粉末媒体は、本発明方法の圧
力および温度条件下で実質的に焼結しないまま残
り、流体ケイ素に対して実質的に不活性である非
常に微細な、好ましくは400メツシユ以下の圧力
伝達粉末媒体からなる。かかる粉末の代表的なも
のに六方晶形窒化硼素および窒化ケイ素がある。
この圧力伝達粒子または粉末媒体は、セル10は
大体または実質的な均衡圧を付与する役をする、
これによつてセル10およびその内容物は寸法的
に実質的に均一安定化されて即ち緻密化されて粉
末包覆されたセルの成形された実質な均衡系を作
る、このとき形成される結晶の圧縮された層の密
度は圧縮された結晶の体積の65容量%より大であ
る。圧力成形用型20(リング22およびピスト
ン23,23a)は工具鋼から作ることができ、
所望によつて、リング22は第2図に示す冷間圧
縮段階のため14061.4Kg/cm2(200000psi)という
大きな圧力の付与を可能にするため図示の如く焼
結炭化物スリーブ22aを設けてもよい。
14061.4Kg/cm2(200000psi)より大きい圧力は大
きな利点を与えない。冷間圧縮段階のため、第2
図に示す如きピストン23、スリーブ22aおよ
びピストン23aの境界内で、従来の粉末充填法
でなされている如く付与した圧力が安定化される
ようになるまで、通常の方法で作動させたピスト
ンによつて圧力伝達粉末媒体上に好ましくは約
1406.1〜約7030.7Kg/cm2(約20000〜約
100000psi)、通常は約3515.4Kg/cm2(約
50000psi)までの圧力を作用させる。
The pressure transmitting powder medium of the present invention remains substantially unsintered under the pressure and temperature conditions of the process of the present invention and is of very fine particles, preferably less than 400 mesh, that is substantially inert to fluid silicon. consisting of a pressure transmitting powder medium. Representative such powders include hexagonal boron nitride and silicon nitride.
This pressure transmitting particle or powder medium serves to provide a substantially or substantially equilibrium pressure in the cell 10.
The cell 10 and its contents are thereby dimensionally substantially homogeneously stabilized, i.e., densified to create a shaped, substantially balanced system of powder-encased cells, the crystals then forming. The density of the compacted layer is greater than 65% by volume of the compacted crystal volume. The pressure forming mold 20 (ring 22 and pistons 23, 23a) can be made from tool steel;
If desired, the ring 22 may be provided with a sintered carbide sleeve 22a as shown to enable the application of pressures as high as 200,000 psi for the cold compression stage shown in FIG. .
Pressures greater than 14061.4 Kg/cm 2 (200000 psi) do not offer significant benefits. Due to the cold compression stage, the second
Within the boundaries of piston 23, sleeve 22a and piston 23a as shown in the figure, the piston is actuated in a conventional manner until the applied pressure is stabilized as is done in conventional powder filling methods. The pressure transmitting powder medium is preferably
1406.1~Approx. 7030.7Kg/ cm2 (Approx. 20000~Approx.
100000psi), usually about 3515.4Kg/cm 2 (about
Apply pressure up to 50,000psi).

特に使用する個々の冷間圧縮は実験的に決定す
る、寸法的に安定化された実質的な均衡系を作る
圧力より大なる圧力はセル10およびその内容物
の大きなそれ以上の緻密化または寸法安定化を生
ぜしめない。
In particular, the particular cold compaction used will be determined experimentally; pressures greater than those which create a dimensionally stabilized substantially equilibrium system will result in greater densification or size of the cell 10 and its contents. Does not cause stabilization.

六方晶形窒化硼素および窒化ケイ素の如き本発
明の圧力伝達粉末媒体の性質は、セル10の全体
の上に実質的な均衡圧力を作用させるため一軸的
に付与した圧力に応答した近似静水圧作用を生ぜ
しめるようなものである。付与された圧力はセル
10に実質的に低下させられることなく伝達され
る。冷間圧縮工程は、ダイヤモンド塊体中の毛細
管的大きさの気孔の存在を最大にするため、気孔
の大きさを低下させる。そしてそれはダイヤモン
ド塊体の65容量%以上でダイヤモンド結晶の要求
される密度を生ぜしめるのに有用である。この孔
容積の減少はまたダイヤモンド塊体中の非ダイヤ
モンド材料の究極的含有率も減少させ、有効に結
合させるため置いたより並列的な結晶−結晶部域
を提供する。
The nature of the pressure transmitting powder media of the present invention, such as hexagonal boron nitride and silicon nitride, provides an approximate hydrostatic pressure response in response to uniaxially applied pressure to exert a substantially equilibrium pressure over the entire cell 10. It's like giving birth to something. The applied pressure is transmitted to the cell 10 substantially without reduction. The cold pressing process maximizes the presence of capillary sized pores in the diamond mass, thereby reducing pore size. And it is useful for producing the required density of diamond crystals in more than 65% by volume of the diamond mass. This reduction in pore volume also reduces the ultimate content of non-diamond material in the diamond mass, providing more parallel crystal-to-crystal areas for effective bonding.

この冷間圧縮段階完了後、セル10中の圧縮さ
れたダイヤモンド結晶の密度は、結晶の体積の65
容量%以上になるべきである。しばしば圧縮され
たダイヤモンド結晶のダイヤモンド密度は、圧縮
されたダイヤモンド結晶の約66容量%から約85容
量%であるがそれ以下までの範囲である。結晶の
密度が大となればなる程、結晶間に存在する非ダ
イヤモンド材料の量は少なくなり、それに比例し
て硬い研磨体を形成する。
After completing this cold compaction step, the density of the compacted diamond crystal in cell 10 is 65% of the crystal volume.
It should be at least % by volume. The diamond density of often compacted diamond crystals ranges from about 66% by volume of compacted diamond crystals to about 85% by volume, but less. The greater the density of the crystals, the less non-diamond material is present between the crystals, forming a proportionately harder abrasive body.

次いで冷間圧縮段階から形成された粉末包覆セ
ルの実質的な均衡系21は熱圧縮段階を受ける。
これによつてそれは同時に熱圧縮温度および圧力
にさらす。
The substantially isostatic system 21 of powder-encased cells formed from the cold compaction stage is then subjected to a hot compaction stage.
This exposes it to hot compression temperatures and pressures at the same time.

特に冷間圧縮段階が完了したとき、ピストン2
3,23aの何れか一つを引き抜き、形成された
団結した実質的に均衡な成形系21をライナー2
2aから取り出し、グラフアイト型30中の同一
直径の孔中に入れる、ここでは移された系21は
グラフアイトピストン32,32a間の孔31の
壁内に含有される。グラフアイト30には熱電対
33を設け、寸法的に安定化された実質的な均衡
系21に付与される温度の指示を与える。かく含
有された実質的な均衡系21を有する型30は通
常の熱圧縮炉(図示せず)内に置く。炉室は脱気
もしくは実質的に脱気してセル10を含む系21
の脱気を行ない、系21およびセル10に熱圧縮
段階を実施できる実質的な真空を与える。しかし
ながら所望によつてはこの点で窒素または水素ま
た不活性どガス例えばアルゴンを炉室に供給し、
室のみららずセル10の内部を含む系21に適当
な熱圧縮雰囲気を与えることもできる。ピストン
32,32aは系21に一軸的な圧力即ち熱圧縮
圧力を付与する間に、その温度はケイ素盤12が
流動する温度まで上昇させる。
Especially when the cold compression stage is completed, the piston 2
3, 23a and the formed unified, substantially balanced molding system 21 is removed from the liner 2.
2a and placed in a hole of the same diameter in a graphite mold 30, here the transferred system 21 is contained within the wall of the hole 31 between the graphite pistons 32, 32a. The graphite 30 is provided with a thermocouple 33 to provide an indication of the temperature imparted to the dimensionally stabilized substantially balanced system 21. The mold 30 with the substantially balanced system 21 thus contained is placed in a conventional thermal compression furnace (not shown). The furnace chamber is evacuated or substantially evacuated and the system 21 containing the cell 10 is removed.
is degassed to provide system 21 and cell 10 with a substantial vacuum in which the thermal compression step can be performed. However, if desired, nitrogen or hydrogen or an inert gas such as argon may be supplied to the furnace chamber at this point;
It is also possible to provide a suitable thermocompression atmosphere to the system 21, including not only the chamber but also the interior of the cell 10. The pistons 32, 32a apply a uniaxial pressure, that is, a thermal compression pressure, to the system 21, while raising its temperature to a temperature at which the silicon plate 12 flows.

熱圧縮段階においては、ダイヤモンド結晶塊体
中への満足できる侵入を確実にするため、通常少
なくとも1分間、熱圧縮圧力の下で熱圧縮温度を
急速に達成させて、かかる温度で維持させるべき
である。一般に約1分〜約5分の熱圧縮時間が満
足すべきものである。ダイヤモンドの非ダイヤモ
ンド元素状炭素相への変換は大きく時間および温
度によつて決まるから、即ち温度が高くなればな
る程そしてかかる温度での時間が長くなればなる
程、非ダイヤモンド元素状炭素への変換が大とな
るから、熱圧縮段階は、ダイヤモンドの5容量%
が非ダイヤモンド元素状炭素に変換される前に行
なわなければならない、これは実験的に決定でき
る。ダイヤモンドの5容量%以上の非ダイヤモン
ド元素状炭素への変換は、その機械的性質への著
しい有害な効果を有する最終製品をもたらす元素
状非ダイヤモンド炭素相を生ぜしめる。
During the hot compaction stage, the hot compaction temperature should be rapidly achieved and maintained under hot compaction pressure, usually for at least 1 minute, to ensure satisfactory penetration into the diamond crystal mass. be. Generally, heat compression times of about 1 minute to about 5 minutes are satisfactory. Since the conversion of diamond to the non-diamond elemental carbon phase is largely time and temperature dependent, the higher the temperature and the longer the time at such temperature, the faster the conversion to non-diamond elemental carbon. Due to the large conversion, the thermal compression stage is limited to 5% by volume of diamond.
must occur before it is converted to non-diamond elemental carbon, which can be determined experimentally. Conversion of more than 5% by volume of diamond to non-diamond elemental carbon produces an elemental non-diamond carbon phase that results in a final product that has a significant detrimental effect on its mechanical properties.

熱圧縮段階において、流体ケイ素への熱圧縮圧
力の付与は、通常存在するかまたは流体ケイ素と
ダイヤモンド表面の間に形成される界面耐熱層ま
たはスラグ(殆んどが酸化物および炭化物であ
る)を破壊してケイ素に対して毛細管的孔系を露
出させる、その後毛細管作用によつて注入が生ず
る。試験では、ケイ素が流体となりスラグを破壊
したとき充分な圧力を系21に付与し、熱圧縮全
体を維持しない限り、ケイ素によるダイヤモンド
塊体中への注入は生じないことを示した。
In the hot compression stage, the application of hot compression pressure to the fluid silicon removes the interfacial refractory layer or slag (mostly oxides and carbides) that is normally present or formed between the fluid silicon and the diamond surface. The fracture exposes a capillary pore system to the silicon, after which injection occurs by capillary action. Tests have shown that no injection of silicon into the diamond mass occurs unless sufficient pressure is applied to system 21 to maintain overall thermal compaction as the silicon becomes fluid and breaks the slag.

また本発明方法においては、ケイ素が液化する
とき、中に存在するかまたは中で形成されるスラ
グまたは酸化物はその中で浮遊し、流体ケイ素が
圧縮緻密化されたダイヤモンド塊体中に浸入する
とき後に残る。その結果として、本発明のダイヤ
モンド緻密体は、ダイヤモンドとケイ素原子含有
結合媒体との間に強い結合が形成されるのを阻止
するガラス相を含まない。
Also in the method of the invention, when the silicon is liquefied, the slag or oxides present or formed therein become suspended and the fluid silicon percolates into the compacted diamond mass. When will remain behind. As a result, the diamond compacts of the present invention do not contain a glass phase that prevents the formation of strong bonds between the diamond and the silicon-containing bonding medium.

熱圧縮中に、流体ケイ素はダイヤモンド塊体中
に侵入し、流動するので、それは緻密化されたダ
イヤモンド結晶の表面を包覆し、ダイヤモンド表
面または形成される非ダイヤモンド元素状炭素相
と反応してダイヤモンド結晶の表面で炭化ケイ素
が生じ、これが一体的に強く結合したダイヤモン
ド体を形成する。
During thermal compression, fluid silicon penetrates and flows into the diamond mass, so that it envelops the surface of the densified diamond crystals and reacts with the diamond surface or the non-diamond elemental carbon phase that forms. Silicon carbide forms on the surface of the diamond crystal, forming a strongly bonded diamond body.

この熱圧縮段階中、ケイ素が流体状態に変化さ
れるとき、この流体が塊体13とキヤビテイ11
の間を通過できず、認めうる程度の逃散ができな
いが、ダイヤモンド結晶の塊体13中を強制的に
移動するよう実質的に均衡された状態を保つこと
が特に重要である。キヤビテイの内容物に近接し
ているところの圧力伝達粉末の部分、即ちキヤビ
テイまたはセルの内壁から好ましくは約2.54cm
(約1in)まで延びる圧力伝達粉末の部分は、熱圧
縮中流体ケイ素の過度の漏洩を防ぐため約5μよ
り大きい連通孔を含有すべきでない。
During this thermal compression stage, when the silicon is changed into a fluid state, this fluid is transferred to the mass 13 and the cavity 11.
It is especially important to maintain a substantially balanced condition so that the diamond crystal mass 13 is forced to move through the mass 13 of diamond crystals, although it cannot pass through the diamond crystal mass 13 and cannot escape to any appreciable extent. The portion of the pressure transmitting powder that is proximate to the contents of the cavity, i.e. preferably about 2.54 cm from the interior wall of the cavity or cell.
The section of pressure transfer powder extending up to (about 1 inch) should not contain communicating pores larger than about 5 microns to prevent excessive leakage of fluid silicon during hot compaction.

熱圧縮段階が完了したとき、冷却中系21内に
保持された熱圧縮されたセル10はその寸法安定
性を保持するに充分な実質的な均衡圧を受けるよ
うに、熱圧縮系21の冷却中少なくとも充分な圧
力を維持させるべきである。好ましくは熱圧縮系
21は室温まで冷却させ、形成された本発明のダ
イヤモンド体を回収する。多結晶質ダイヤモンド
体の外面へ浸出した過剰のケイ素は研磨の如き通
常の方法で除去できる。
Cooling of the thermocompression system 21 such that when the thermocompression stage is completed, the thermocompressed cells 10 retained within the system 21 during cooling experience a substantial isostatic pressure sufficient to maintain their dimensional stability. At least sufficient pressure should be maintained during the process. Preferably, the thermocompression system 21 is allowed to cool to room temperature and recover the formed diamond bodies of the present invention. Excess silicon leached onto the outer surface of the polycrystalline diamond body can be removed by conventional methods such as polishing.

本発明の多結晶質ダイヤモンド体は、本質的に
炭化ケイ素および元素状ケイ素からなるケイ素原
子含有結合媒体によつて相互に接着結合されたダ
イヤモンド結晶の塊体からなり、上記ダイヤモン
ド結晶は約1μ〜約1000μの大きさの範囲にあ
り、上記ダイヤモンド結晶の密度は上記多結晶質
ダイヤモンド体の約65容量%から約80容量%であ
るがそれ以下の範囲、しばしば75容量%の範囲で
あり、上記ケイ素原子含有結合媒体は上記ダイヤ
モンド体の35容量%までの範囲の量で存在し、上
記結合媒体は多結晶質ダイヤモンド体全体にわた
つて少なくとも実質的に均一に分布しており、結
合したダイヤモンドの面と接している上記結合媒
体の表面または部分は少なくとも実質的な量の炭
化ケイ素である、即ちダイヤモンド結晶の表面と
直接接触している結合媒体の部分または面の少な
くとも約85容量%、好ましくは100容量%が炭化
ケイ素である。本発明のダイヤモンド体は孔不含
または実質的に孔不含である。
The polycrystalline diamond body of the present invention consists of a mass of diamond crystals adhesively bonded to each other by a silicon-containing bonding medium consisting essentially of silicon carbide and elemental silicon, said diamond crystals being about 1 μm to In the size range of about 1000μ, the density of said diamond crystals ranges from about 65% by volume to about 80% by volume of said polycrystalline diamond body, but less, often in the range of 75% by volume, and above. The silicon atom-containing bonding medium is present in an amount ranging up to 35% by volume of the diamond body, the bonding medium being at least substantially uniformly distributed throughout the polycrystalline diamond body, and the bonding medium being at least substantially uniformly distributed throughout the polycrystalline diamond body, The surface or portion of the binding medium in contact with the surface is at least a substantial amount of silicon carbide, i.e. at least about 85% by volume of the portion or surface of the binding medium in direct contact with the surface of the diamond crystal, preferably 100% by volume is silicon carbide. The diamond bodies of the present invention are pore-free or substantially pore-free.

本発明のダイヤモンド体の結合媒体中の炭化ケ
イ素およびケイ素の量は、ダイヤモンド結晶の表
面と侵入ケイ素の間の反応の程度および非ダイヤ
モンド元素状炭素相と侵入ケイ素の間の反応の程
度によつて変化させることができる。他の全ての
要因が同じであると仮定したとき、結合媒体中に
存在する炭化ケイ素のそれぞれの量は、使用した
それぞれの熱圧縮温度およびかかる温度で保つた
時間に大きく依存して決まる。特に時間および/
または温度を増大させると炭化ケイ素の含有量は
増大する。例えば一定の望ましい性質を得るため
個々の炭化ケイ素の所望量を有する結合したダイ
ヤモンド結晶の本発明のダイヤモンド体の製造は
実験的に決定することができる。特に結合媒体は
組成において炭化ケイ素の検出しうる量から元素
状ケイ素の検出しうる量までの範囲であることが
できる、ここに炭化ケイ素および元素状ケイ素の
検出しうる量とは、本発明のダイヤモンド体の薄
い部分での透過電子顕微鏡の選択面積回折分析に
よつて検出しうる量を意味する。しかしながら一
般に本発明の結合媒体は、本発明の多結晶質ダイ
ヤモンド体の約20容量%〜約30容量%の量での炭
化ケイ素、および約33容量%〜約5容量%の量で
の元素状ケイ素から本質的になる。更に本発明の
ダイヤモンド体のダイヤモンド含有率は一般に約
65容量%から約80容量%であるがそれより少ない
範囲である。
The amount of silicon carbide and silicon in the bonding medium of the diamond bodies of the present invention depends on the degree of reaction between the surface of the diamond crystal and the interstitial silicon and between the non-diamond elemental carbon phase and the interstitial silicon. It can be changed. Assuming all other factors remain the same, the respective amounts of silicon carbide present in the binding medium are highly dependent on the respective hot compression temperature used and the time held at such temperature. especially time and/or
Alternatively, increasing the temperature increases the silicon carbide content. For example, the production of diamond bodies of the present invention of bonded diamond crystals with desired amounts of individual silicon carbide to obtain certain desired properties can be determined experimentally. In particular, the binding medium can range in composition from detectable amounts of silicon carbide to detectable amounts of elemental silicon, where detectable amounts of silicon carbide and elemental silicon refer to the present invention. Refers to the amount that can be detected by selective area diffraction analysis using a transmission electron microscope in a thin section of a diamond body. Generally, however, the binding medium of the present invention comprises silicon carbide in an amount of about 20% to about 30% by volume of the polycrystalline diamond body of the present invention, and elemental silicon carbide in an amount of about 33% to about 5% by volume. Consists essentially of silicon. Additionally, the diamond content of the diamond bodies of the present invention is generally about
It ranges from 65% by volume to about 80% by volume, but less.

本発明の多結晶質ダイヤモンド体の薄い部分で
の透過電子顕微鏡の選択面積回折分析はまた結合
したダイヤモンドの面と接した結合媒体の部分が
少なくとも実質的な量の炭化ケイ素であることも
示す。
Transmission electron microscopy selected area diffraction analysis of a thin section of the polycrystalline diamond body of the present invention also shows that the portion of the bonding medium that is in contact with the surface of the bonded diamond is at least a substantial amount of silicon carbide.

本発明の結合されたダイヤモンド結晶のダイヤ
モンド体は細孔不含であるか少なくとも実質的な
細孔不含である、即ちかかる孔はあつたとしても
小さく、0.5μ以下であり、ダイヤモンド体の1
容量%より少ない量で孔を含有しうる、そしてダ
イヤモンド体中に充分均一に分布している、従つ
てそれらはその機械的性質に大きな有害な効果は
有しない。本発明のダイヤモンド体の孔含有率
は、例えばダイヤモンド体の研磨した断面を光学
的に検査する如き標準金属写真法で測定できる。
The diamond bodies of the bonded diamond crystals of the present invention are pore-free, or at least substantially pore-free, i.e., such pores, if any, are small, less than 0.5 microns, and are pore-free, or at least substantially pore-free.
They may contain pores in amounts of less than % by volume and are sufficiently uniformly distributed within the diamond body that they therefore have no significant detrimental effect on its mechanical properties. The pore content of the diamond bodies of the present invention can be determined by standard metallographic techniques, such as optically inspecting a polished cross section of the diamond body.

また本発明のダイヤモンド体は、X線回折分析
で検出しうる量で非ダイヤモンド元素状炭素相を
含有しないことで、非ダイヤモンド元素状炭素相
を含有しない。
The diamond bodies of the present invention also do not contain non-diamond elemental carbon phases in amounts detectable by X-ray diffraction analysis.

本発明方法を相互に積重した層の形でケイ素お
よびダイヤモンド結晶塊体を用いて実施したと
き、形成される製品は少なくとも一つの平らな面
を有することができ、そして盤、棒またはバーの
如き多くの形であることができる。
When the method of the invention is carried out with silicon and diamond crystal masses in the form of layers stacked on top of each other, the product formed can have at least one flat surface and is shaped like a disk, rod or bar. It can take many forms, such as:

本発明方法を中に延びる芯または穴を有する管
またはシリンダーの形でケイ素を用いて行ない、
ダイヤモンドを芯中に充填させたとき、熱圧縮中
圧縮されたダイヤモンド結晶の芯全体にケイ素が
侵入し、円形棒の形で本発明のダイヤモンドを生
ずる。
carrying out the method of the invention with silicon in the form of a tube or cylinder having a core or hole extending therein;
When the diamond is filled into the core, silicon penetrates throughout the core of the compacted diamond crystal during hot compression, resulting in the diamond of the invention in the form of a circular rod.

本発明方法をキヤビテイの中心においたケイ素
の棒と、ダイヤモンドで充填したケイ素とキヤビ
テイ壁の間の空間を用いて実施するときにはケイ
素は周りのダイヤモンド結晶塊中に侵入し、管ま
たは中空シリンダーの形で本発明のダイヤモンド
体を生ずる。
When the method of the invention is carried out with a silicon rod in the center of the cavity and the space between the diamond-filled silicon and the cavity wall, the silicon penetrates into the surrounding diamond crystal mass and forms a tube or hollow cylinder. produces the diamond body of the present invention.

本発明の一つの特別な利点は本発明の多結晶質
ダイヤモンド体が広い範囲の大きさおよび形で作
ることができることにある。例えば本発明のダイ
ヤモンド体は2.54cm(1in)またはそれ以上の長
さまたは幅として作ることができる。本発明のダ
イヤモンド密度を有し、長さ2.54cm(1in)以上
の多結晶質ダイヤモンド体は、必要な時間極度の
圧力−温度条件を継続する必要にある装置の限界
(即ち装置はその能力に限りのある程複雑で大き
く強いものである)のためダイヤモンド安定帯域
の超高圧および温度を利用する技術によつては実
際問題として作ることができないか、または全く
製造不可能である。これに対し本発明の多結晶質
ダイヤモンド体は所望する限り小さくまたは薄く
作ることができる、しかし常にダイヤモンド結晶
の単分子層以上である。
One particular advantage of the present invention is that the polycrystalline diamond bodies of the present invention can be made in a wide range of sizes and shapes. For example, diamond bodies of the present invention can be made as long or wide as 1 inch or more. A polycrystalline diamond body having the diamond density of the present invention and having a length of 2.54 cm (1 in.) or more is limited by the limitations of the equipment required to sustain extreme pressure-temperature conditions for the required time (i.e., the equipment is not at its capacity). They are so complex, large and strong that they cannot be produced practically, or at all, by techniques that take advantage of the extremely high pressures and temperatures of the diamond stability zone. In contrast, the polycrystalline diamond bodies of the present invention can be made as small or thin as desired, but always no larger than a monolayer of diamond crystals.

本発明のダイヤモンド体の一部は、例えば機械
工具中に取り付けられるようにした工具シヤンク
によつて保持できる工具埋金を形成するモリブデ
ンの如き金属、または焼結炭化物、または焼結も
しくは熱圧縮した窒化ケイ素または焼結もしくは
熱圧縮した炭化ケイ素の如き適当な支持材料にろ
う接、はんだ付また他の方法で接合することがで
きる、これによつてダイヤモンド体の露出面は直
接機械加工に使用できる。あるいは本発明のダイ
ヤモンド体は、ダイヤモンド体の露出面による直
接機械加工のためレース工具に機械的に把持する
ことができる。
A portion of the diamond body of the invention may be made of a metal such as molybdenum, or a sintered carbide, or a sintered or hot-pressed metal, forming a tool stud that can be held by a tool shank adapted to be mounted in a machine tool. It can be brazed, soldered or otherwise joined to a suitable support material such as silicon nitride or sintered or hot-pressed silicon carbide, so that the exposed surface of the diamond body can be used directly for machining. . Alternatively, the diamond body of the present invention can be mechanically gripped in a race tool for direct machining through the exposed surface of the diamond body.

以下に実施例を挙げて本発明を説明する。 The present invention will be explained below with reference to Examples.

実施例 本発明において使用した装置は第1図〜第3図
に示した装置と実質的に同じであつた。
EXAMPLE The apparatus used in the present invention was substantially the same as that shown in FIGS. 1-3.

第1図の19aおよび9によつて示した如く型
を粉末中に押し込めるとき、約2μ〜約20μの大
きさの範囲の六方晶形窒化硼素粉末をダイおよび
シリンダー中に充填した。
Hexagonal boron nitride powder ranging in size from about 2 microns to about 20 microns was filled into the die and cylinder when the mold was pressed into the powder as shown by 19a and 9 in FIG.

シリンダーは焼結金属炭化物で作り、直径8.9
mm(0.35in)、厚さ6.4mm(0.25in)であつた。シ
リンダーの軸は、ダイの中心軸と大体並列させ
た。
The cylinder is made of sintered metal carbide and has a diameter of 8.9
mm (0.35in) and thickness 6.4mm (0.25in). The axis of the cylinder was approximately parallel to the central axis of the die.

この例においては、第1図と異なり、シリンダ
ーを粉末中に挿入した後、追加の六方晶形窒化硼
素粉末をダイ中に入れてシリンダーを完全に包覆
した、そして形成された粉末包覆シリンダーを
3515.4Kg/cm2(50000psi)の圧力の下室温で押圧
した。次いでピストン23aを引き出し、ピスト
ン23を形成された圧縮粉末包覆シリンダーをダ
イから一部押し出すために使用した。圧縮された
粉末の露出部分を除き、部分的に露出されたシリ
ンダーを残した。次いでシリンダーを取り出し、
凹所を有するキヤビテイを残した。
In this example, unlike FIG. 1, after inserting the cylinder into the powder, additional hexagonal boron nitride powder was placed into the die to completely encapsulate the cylinder, and the powder encapsulated cylinder formed
It was pressed at room temperature under a pressure of 3515.4 Kg/cm 2 (50000 psi). Piston 23a was then withdrawn and piston 23 was used to partially extrude the formed compacted powder encased cylinder from the die. The exposed portion of the compacted powder was removed, leaving a partially exposed cylinder. Then take out the cylinder and
A cavity with a recess was left.

キヤビテイの内径と同じ直径を有する140mgの
ケイ素盤をキヤビテイの底に置いた。ケイ素盤の
上に、約40重量%が10μより小さい約1μ〜約60
μの範囲の分粒したダイヤモンド粉末約250mgを
充填した。
A 140 mg silicon disc with the same diameter as the inside diameter of the cavity was placed at the bottom of the cavity. On the silicon board, about 40% by weight is smaller than 10μ, about 1μ to about 60
Approximately 250 mg of diamond powder sized in the μ range was filled.

キヤビテイの内径と同じ直径を有する熱圧縮し
た六方晶形窒化硼素粉末の盤を、ダイヤモンド粉
末の上でキヤビテイ内に置き、形成される多結晶
質ダイヤモンド体の表面が平らになることを確実
にした。
A disk of hot-pressed hexagonal boron nitride powder with the same diameter as the inside diameter of the cavity was placed in the cavity on top of the diamond powder to ensure that the surface of the polycrystalline diamond body formed was flat.

次いで全塊体をピストン23aによつてダイの
中心中に押し入れ、次いで引き出した。追加量の
六方晶形窒化硼素粉末をダイ中に加え六方晶形窒
化硼素の熱圧縮された盤を覆い、第2図に19で
示す如く六方晶形窒化硼素で包覆されたキヤビテ
イおよび内容物を作つた。次いで形成された仕込
物を第2図に示す如く5624.6Kg/cm2(80000psi)
の圧力下に鋼製ダイ中で室温で圧縮した即ち冷間
圧縮した、そしてキヤビテイおよびその内容物を
圧力が安定化されるまで実質的に均衡な圧力に曝
し、粉末包覆されたキヤビテイおよび内容物の寸
法的に安定化された成形された実質的な均衡系を
作つた。先の実験から、形成された圧縮組立体即
ち形成された粉末包覆されたキヤビテイおよび内
容物の成形された実質的な均衡系において、ダイ
ヤモンド結晶の密度は圧縮されたダイヤモンド塊
体の75容量%より大であることが判つた。また存
在するケイ素の量は圧縮ダイヤモンド塊体の約40
容量%であつた。
The entire mass was then forced into the center of the die by means of the piston 23a and then withdrawn. An additional amount of hexagonal boron nitride powder was added into the die to cover the hot pressed disk of hexagonal boron nitride, creating a hexagonal boron nitride encased cavity and contents as shown at 19 in FIG. . Next, the formed charge was heated to 5624.6Kg/cm 2 (80000psi) as shown in Figure 2.
The powder-encased cavity and contents are compressed at room temperature in a steel die under the pressure of A dimensionally stabilized shaped substantially balanced system of objects was created. From previous experiments, it has been found that in the compacted assembly formed, i.e. the powder-encased cavity formed and the compacted substantially balanced system of contents, the density of the diamond crystals is 75% by volume of the compacted diamond mass. It turned out to be larger. The amount of silicon present is approximately 40% in the compressed diamond mass.
It was % by volume.

粉末包覆されたキヤビテイおよび内容物の形成
された圧縮組立体21を次いで熱圧縮した、即ち
それを第3図に示す如く、鋼製ダイと同じ直径の
グラフアイト型中に押し込み、誘導加熱器内に置
いた。キヤビテイ内部を脱気し、加熱器は10トル
まで乾燥窒素で満たす前に脱気し、その中に窒素
雰囲気を導入した。グラフアイトダイにより約
351.5Kg/cm2(約5000psi)の圧力を圧縮された組
立体21に付与し、その上に保つた、次いで誘導
加熱器によつて7分間1500℃に加熱した。この加
熱を用いて、全体の系の膨張により703.1Kg/cm2
(約10000psi)の圧力に達した。
The compacted assembly 21, formed with powder-wrapped cavities and contents, was then hot-pressed, i.e., pressed into a graphite mold of the same diameter as the steel die, as shown in FIG. 3, and placed in an induction heater. I placed it inside. The inside of the cavity was evacuated and the heater was evacuated before being filled with dry nitrogen to 10 Torr and a nitrogen atmosphere was introduced into it. Approx. by graphite die
A pressure of 351.5 Kg/cm 2 (approximately 5000 psi) was applied to and held above the compressed assembly 21 and then heated to 1500° C. for 7 minutes by an induction heater. Using this heating, the entire system expands to 703.1Kg/cm 2
(approximately 10,000 psi) pressure was reached.

1500℃でピストン23aおよび圧力は約351.5
Kg/cm2(約5000psi)に下つた、これはケイ素が
溶融し、流体になり、ダイヤモンド塊体中に侵入
したことを示す。圧力を再び703.5Kg/cm2
(10000psi)に戻し、それを1500℃で1分間保つ
て、ケイ素がダイヤモンド塊体中に完全に侵入す
ることを確実にした。次いで電力供給を止めたが
圧力の追加は付与した。これは高温での安定した
圧力を提供する。しかし低温で圧力を減じ適切な
幾何学的安定性を与えた。室温で形成された多結
晶質ダイヤモンド体を回収した。
At 1500°C, the piston 23a and pressure are approximately 351.5
Kg/cm 2 (approximately 5000 psi), indicating that the silicon has melted, become a fluid, and penetrated into the diamond mass. Pressure is increased again to 703.5Kg/cm 2
(10000psi) and held at 1500°C for 1 minute to ensure complete penetration of silicon into the diamond mass. The power supply was then cut off, but additional pressure was applied. This provides stable pressure at high temperatures. However, at low temperature, the pressure was reduced to give adequate geometrical stability. Polycrystalline diamond bodies formed at room temperature were recovered.

六方晶形窒化硼素粉末の表面スケールを除いた
後、形成された一体的な多結晶質ダイヤモンド体
は直径8.89mm(350ミル)、厚さ1.27mm(50ミル)
の盤の形を有していた。
After removing the surface scale of the hexagonal boron nitride powder, the integral polycrystalline diamond body formed is 8.89 mm (350 mils) in diameter and 1.27 mm (50 mils) thick.
It had the shape of a disk.

多結晶質ダイヤモンド盤は実質的に平滑な表面
を有し、結合媒体によつて良く侵入されているこ
とが判つた。100倍の顕微鏡での盤の光学的検査
では孔を含有しないことを示した。
It has been found that the polycrystalline diamond disk has a substantially smooth surface and is well penetrated by the binding medium. Optical examination of the disc under a 100x microscope showed that it contained no pores.

ハンマーと楔を用いて盤を実質的に半分に砕い
た。盤の破断断面の試験は、破断がインターグラ
ニユラーでなくトランスグラニユラーであること
を示した、即ちそれは粒子周囲に沿つてでなくダ
イヤモンド粒子中で破砕されたことを示した。こ
れは結合媒体が高度に接着し、ダイヤモンド粒子
または結晶それ自体と同じ強さであることを示し
ている。また破断面は孔を含まず、結合媒体は均
一にダイヤモンド体全体にわたつて分布してい
た。
Using a hammer and wedge, the board was essentially broken in half. Examination of the fracture cross-section of the disc showed that the fracture was transgranular rather than intergranular, ie, it fractured within the diamond grain rather than along the grain periphery. This indicates that the binding medium is highly adhesive and as strong as the diamond particles or crystals themselves. Furthermore, the fracture surface did not contain any pores, and the binding medium was uniformly distributed throughout the diamond body.

盤の断面破断面を鋳鉄スケイフ(scaife)上で
研磨した。研磨面の検査は、ダイヤモンド片の引
きさかれによつて形成される孔の筋を示さず、こ
れはその中に強く結合されていることおよびその
研磨材としてのその有用性を示す。研磨断面を第
4図に示す。
The cross-sectional fracture surface of the disk was polished on a cast iron scaife. Inspection of the polished surface shows no streaks of pores formed by the diamond flakes being pulled apart, indicating strong bonding therein and its usefulness as an abrasive. A polished cross section is shown in FIG.

ダイヤモンド密度は盤の約72容量%であること
が測定された。ダイヤモンド密度は約690倍の倍
率で研磨断面の顕微鏡写真を用いて標準ポイント
計数法で測定した、分析した表面は全ダイヤモン
ド体の微細組織を表わすには充分な大きさであつ
た。
The diamond density was determined to be approximately 72% by volume of the disk. Diamond density was determined using standard point counting techniques using micrographs of polished cross sections at approximately 690x magnification; the surface analyzed was large enough to represent the microstructure of the entire diamond body.

破砕体のX線回折分析はダイヤモンド、炭化ケ
イ素および元素状ケイ素からなることを示した、
これは炭化ケイ素および元素状ケイ素がダイヤモ
ンド体の少なくとも2容量%の量で存在すること
を示した。しかしながら、破砕体のX線回折分析
は元素状非ダイヤモンド炭素を検出しなかつた。
X-ray diffraction analysis of the crushed body showed it to be composed of diamond, silicon carbide and elemental silicon,
This indicated that silicon carbide and elemental silicon were present in an amount of at least 2% by volume of the diamond body. However, X-ray diffraction analysis of the crushed body did not detect any elemental non-diamond carbon.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は圧力伝達粉末媒体中にキヤビテイを形
成するための装置の断面図であり、第2図はセル
即ちキヤビテイを寸法的に安定化し実質的に均衡
な系を生ぜしめるため圧力伝達粉末媒体によつて
セル即ちキヤビテイと内容物に少なくとも実質的
な均衡圧を付与するための装置の断面図であり、
第3図は実質的な均衡系に圧力および熱を同時に
付与するためのグラフアイト型の断面図でありそ
の中に包囲されたセルを示す、第4図はダイヤモ
ンド含有率がダイヤモンド体の72容量%である本
発明方法によつて作つたダイヤモンド体の研磨断
面の690倍写真であり、明るい灰白色相は結合媒
体であり灰色相はダイヤモンド結晶であり、暗い
点は異物である。 9は型、19aは圧力伝達粉末媒体、23およ
び23aはピストン、11はキヤビテイ、12は
盤、10は粉末包覆セル即ちキヤビテイ、20は
型、19は塊体、22はリング、22aはスリー
ブ、21は均衡系、22aはライナー、30は
型、31は孔、32,32aはグラフアイトピス
トン、33は熱電対。
FIG. 1 is a cross-sectional view of an apparatus for forming cavities in a pressure-transmitting powder medium, and FIG. 2 is a cross-sectional view of an apparatus for forming cavities in a pressure-transmitting powder medium, and FIG. 1 is a cross-sectional view of an apparatus for applying at least a substantial isostatic pressure to a cell or cavity and its contents by;
Figure 3 is a cross-sectional view of a graphite type for simultaneously applying pressure and heat to a substantially balanced system showing the cells enclosed therein; Figure 4 shows a diamond content of 72 volumes of a diamond body; % is a 690x photograph of a polished cross section of a diamond body made by the method of the present invention, where the light grayish-white phase is the binding medium, the gray phase is diamond crystals, and the dark spots are foreign substances. 9 is a mold, 19a is a pressure transmitting powder medium, 23 and 23a are pistons, 11 is a cavity, 12 is a plate, 10 is a powder-covered cell or cavity, 20 is a mold, 19 is a mass, 22 is a ring, and 22a is a sleeve , 21 is a balanced system, 22a is a liner, 30 is a mold, 31 is a hole, 32, 32a is a graphite piston, and 33 is a thermocouple.

Claims (1)

【特許請求の範囲】 1 熱圧縮段階を含み、かつ (a) 付与した圧力を実質的に低下させずに伝達
し、上記熱圧縮中実質的に焼結せずに残る圧力
伝達粉末媒体中で型を圧縮すること、 (b) 上記型を除いて形成されたキヤビテイ内にケ
イ素の塊体および上記塊体と接触しているダイ
ヤモンド結晶の塊体を置くこと、 (c) 上記キヤビテイおよびその内容物を追加量の
上記圧力伝達粉末媒体で覆い、これによつて内
容物を圧力伝達粉末媒体で包覆すること、 (d) 上記粉末媒体を介して上記キヤビテイおよび
その内容物に、上記キヤビテイおよびその内容
物の寸法を実質的に安定化して、粉末包覆キヤ
ビテイおよび内容物の成形された実質的な均衡
系を均一に作るのに充分な実質的に均衡な圧力
を付与し、ダイヤモンド結晶の密度をダイヤモ
ンド結晶の形成される圧縮塊体の体積の65容量
%より大とし、上記ケイ素はダイヤモンド結晶
の上記圧縮塊体の間隙を満たすに充分な量で使
用すること、 (e) 上記キヤビテイおよび内容物を含む上記実質
的に均衡な系に、上記熱圧縮中上記ダイヤモン
ド結晶および上記ケイ素に著しく有害な効果を
有しない雰囲気を与えること、 (f) 形成された実質的な均衡系を熱圧縮して流体
ケイ素を生成させ、それをダイヤモンド結晶の
上記圧縮塊体の間隙中に侵入させ、上記熱圧縮
はダイヤモンド結晶の上記圧縮塊体の間隙中に
流体ケイ素を侵入させるに充分な圧力の下、上
記ケイ素が流体になる温度から約1600℃までの
温度範囲で行ない、上記熱圧縮が上記ダイヤモ
ンド結晶の5容量%以下を非ダイヤモンド元素
状炭素に変換させ、上記非ダイヤモンド炭素ま
たは上記ダイヤモンド結晶の表面を炭化ケイ素
を形成するケイ素と反応させること、 (g) 形成された熱圧縮された実質的な均衡系上に
その冷却中、上記熱圧縮系の寸法を少なくとも
実質的に維持するに充分な圧力を維持するこ
と、 (h) ダイヤモンド結晶が炭化ケイ素およばケイ素
からなるケイ素原子含有媒体によつて結合され
ており、ダイヤモンド結晶が上記多結晶質ダイ
ヤモンド体の少なくとも65容量%の量で存在す
る形成された多結晶質ダイヤモンド体を含有す
ること を特徴とする多結晶質ダイヤモンド体の製造法。 2 上記ダイヤモンド結晶が約1μ〜約60μの範
囲のサイズ等級である特許請求の範囲第1項記載
の方法。 3 ケイ素の量がダイヤモンド結晶の上記圧縮塊
体の約25容量%〜約60容量%の範囲にある特許請
求の範囲第1項または第2項記載の方法。 4 上記圧縮塊体ダイヤモンド結晶の密度が圧縮
された結晶の体積の約85容量%であるが85容量%
以下までの範囲にある特許請求の範囲第1項、第
2項または第3項記載の方法。 5 上記ケイ素塊体が層の形であり、上記ダイヤ
モンド結晶塊体が上記ケイ素の層上に積重してい
る層の形である特許請求の範囲第1項〜第4項の
何れか一つに記載の方法。 6 上記ケイ素塊体が上記キヤビテイ内に実質的
に中心に位置したバーの形であり、上記ダイヤモ
ンド結晶塊体が上記ケイ素および上記キヤビテイ
の間の包囲空間中に充填されている特許請求の範
囲第1項〜第4項の何れか一つに記載の方法。 7 上記ケイ素塊体がシリンダ中を延びる芯を有
するシリンダの形であり、上記ダイヤモンド結晶
塊体が上記ケイ素シリンダの上記芯内に充填され
ている特許請求の範囲第1項〜第4項の何れか一
つに記載の方法。
Claims: 1. A pressure-transmitting powder medium comprising: (a) a pressure-transferring powder medium which transmits an applied pressure substantially without reduction and which remains substantially unsintered during said thermal compression; (b) placing a mass of silicon and a mass of diamond crystals in contact with said mass in a cavity formed excluding said mold; (c) said cavity and its contents; (d) covering the object with an additional amount of said pressure-transmitting powder medium, thereby enveloping the contents with pressure-transmitting powder medium; (d) discharging said cavity and its contents through said powder medium; substantially stabilizing the dimensions of its contents and applying a substantially balanced pressure sufficient to uniformly create a shaped, substantially balanced system of the powder-encased cavity and contents; the density is greater than 65% by volume of the compacted mass of diamond crystals formed, and the silicon is used in an amount sufficient to fill the interstices of the compacted mass of diamond crystals; (f) subjecting the substantially balanced system containing the contents to an atmosphere that does not have a significantly deleterious effect on the diamond crystals and the silicon during the thermal compression; (f) thermally compressing the substantially balanced system formed; to form fluid silicon that penetrates into the interstices of the compacted mass of diamond crystal, and the thermal compression is performed under sufficient pressure to cause fluid silicon to penetrate into the interstices of the compacted mass of diamond crystal. , carried out at a temperature range from the temperature at which the silicon becomes a fluid to about 1600° C., the thermal compression converts less than 5% by volume of the diamond crystals to non-diamond elemental carbon, and the non-diamond carbon or the diamond crystals are reacting the surface with silicon to form silicon carbide; (g) depositing on the formed thermocompacted substantially isostatic system sufficient to at least substantially maintain the dimensions of said thermocompacted system during cooling thereof; (h) a formation in which diamond crystals are bound by a silicon-containing medium consisting of silicon carbide and silicon, and the diamond crystals are present in an amount of at least 65% by volume of said polycrystalline diamond body; A method for producing a polycrystalline diamond body, characterized in that the polycrystalline diamond body contains a polycrystalline diamond body. 2. The method of claim 1, wherein the diamond crystals have a size grade ranging from about 1 micron to about 60 microns. 3. The method of claim 1 or 2, wherein the amount of silicon ranges from about 25% to about 60% by volume of said compacted mass of diamond crystals. 4 The density of the compacted diamond crystal above is about 85% by volume of the volume of the compacted crystal, but it is 85% by volume.
A method as claimed in claim 1, 2 or 3 with the scope of: 5. Any one of claims 1 to 4, wherein the silicon mass is in the form of a layer, and the diamond crystal mass is in the form of a layer stacked on the silicon layer. The method described in. 6. Claim 6, wherein said silicon mass is in the form of a bar substantially centered within said cavity, and said diamond crystal mass is filled in an enclosed space between said silicon and said cavity. The method according to any one of Items 1 to 4. 7. Any one of claims 1 to 4, wherein the silicon mass is in the form of a cylinder having a core extending through the cylinder, and the diamond crystal mass is filled in the core of the silicon cylinder. The method described in one of the above.
JP12993878A 1977-10-21 1978-10-20 Polycrystalline diamond body Granted JPS5485212A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US84444677A 1977-10-21 1977-10-21

Publications (2)

Publication Number Publication Date
JPS5485212A JPS5485212A (en) 1979-07-06
JPS6213305B2 true JPS6213305B2 (en) 1987-03-25

Family

ID=25292734

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12993878A Granted JPS5485212A (en) 1977-10-21 1978-10-20 Polycrystalline diamond body

Country Status (20)

Country Link
JP (1) JPS5485212A (en)
AT (1) AT371401B (en)
AU (1) AU526018B2 (en)
BE (1) BE871433A (en)
BR (1) BR7806952A (en)
CA (1) CA1105948A (en)
CH (1) CH644090A5 (en)
DE (1) DE2845755A1 (en)
DK (1) DK154824C (en)
ES (1) ES474328A1 (en)
FR (1) FR2414031B1 (en)
GB (1) GB2006732B (en)
IE (1) IE47959B1 (en)
IL (1) IL55718A0 (en)
IN (1) IN150647B (en)
IT (1) IT1101661B (en)
MX (1) MX151724A (en)
NL (1) NL186380C (en)
SE (1) SE451378B (en)
ZA (1) ZA785931B (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4220455A (en) * 1978-10-24 1980-09-02 General Electric Company Polycrystalline diamond and/or cubic boron nitride body and process for making said body
AU7919682A (en) * 1981-01-21 1982-07-29 General Electric Company Silicon carbide-diamond/boron nitride composite
DE8509236U1 (en) * 1984-03-30 1985-09-19 De Beers Industrial Diamond Division (Proprietary) Ltd., Johannesburg, Transvaal Grinding tool with grinding insert
WO1986001433A1 (en) * 1984-08-24 1986-03-13 The Australian National University Diamond compacts and process for making same
IE57439B1 (en) * 1985-04-09 1992-09-09 De Beers Ind Diamond Wire drawing die
ZA864402B (en) * 1985-06-18 1987-02-25 De Beers Ind Diamond Abrasive tool
US5010043A (en) * 1987-03-23 1991-04-23 The Australian National University Production of diamond compacts consisting essentially of diamond crystals bonded by silicon carbide
DE68908549T2 (en) * 1988-08-17 1994-02-10 Univ Australian COMPACT DIAMOND WITH LOW ELECTRICAL SPECIFIC RESISTANCE.
CN110125390A (en) * 2018-02-08 2019-08-16 罗天珍 The padding and compacting sintering process of 3 D-printing metal powder bond blank

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2391589A (en) * 1943-04-29 1945-12-25 Hatim Attari Abrasive tool
NL129734C (en) * 1960-07-22
CA1070123A (en) * 1969-04-17 1980-01-22 Howard T. Hall Diamond compacts
US3913280A (en) * 1971-01-29 1975-10-21 Megadiamond Corp Polycrystalline diamond composites
US3912500A (en) * 1972-12-27 1975-10-14 Leonid Fedorovich Vereschagin Process for producing diamond-metallic materials
US4042347A (en) * 1974-04-15 1977-08-16 Norton Company Method of making a resin-metal composite grinding wheel

Also Published As

Publication number Publication date
AT371401B (en) 1983-06-27
ZA785931B (en) 1979-09-26
DE2845755C2 (en) 1989-09-14
IN150647B (en) 1982-11-20
JPS5485212A (en) 1979-07-06
DK468778A (en) 1979-04-22
ES474328A1 (en) 1979-11-01
SE7810970L (en) 1979-04-22
IT1101661B (en) 1985-10-07
DK154824C (en) 1989-05-29
DK154824B (en) 1988-12-27
SE451378B (en) 1987-10-05
GB2006732A (en) 1979-05-10
CH644090A5 (en) 1984-07-13
NL186380C (en) 1990-11-16
NL186380B (en) 1990-06-18
BE871433A (en) 1979-04-20
BR7806952A (en) 1979-05-08
FR2414031A1 (en) 1979-08-03
IE47959B1 (en) 1984-08-08
DE2845755A1 (en) 1979-05-10
AU526018B2 (en) 1982-12-16
IE782086L (en) 1979-04-21
ATA754078A (en) 1982-11-15
IT7828922A0 (en) 1978-10-19
NL7810522A (en) 1979-04-24
MX151724A (en) 1985-02-18
AU4117578A (en) 1980-05-08
FR2414031B1 (en) 1985-11-08
CA1105948A (en) 1981-07-28
GB2006732B (en) 1982-10-20
IL55718A0 (en) 1978-12-17

Similar Documents

Publication Publication Date Title
US4167399A (en) Process for preparing a polycrystalline diamond body
US4241135A (en) Polycrystalline diamond body/silicon carbide substrate composite
US4124401A (en) Polycrystalline diamond body
US4171339A (en) Process for preparing a polycrystalline diamond body/silicon carbide substrate composite
US4168957A (en) Process for preparing a silicon-bonded polycrystalline diamond body
US4151686A (en) Silicon carbide and silicon bonded polycrystalline diamond body and method of making it
US4110084A (en) Composite of bonded cubic boron nitride crystals on a silicon carbide substrate
EP1341865B1 (en) Method for the production of polycrystalline abrasive grit
US4173614A (en) Process for preparing a polycrystalline diamond body/silicon nitride substrate composite
US3982911A (en) Process for the preparation of a composite cubic boron nitride layer abrasive body
US5248317A (en) Method of producing a composite diamond abrasive compact
CA1136428A (en) Polycrystalline diamond body
US4626516A (en) Infiltration of Mo-containing material with silicon
JPS6213307B2 (en)
US4353714A (en) Polycrystalline silicon-bonded cubic boron nitride body and method
US4234661A (en) Polycrystalline diamond body/silicon nitride substrate composite
JPS6213305B2 (en)
US4793859A (en) Infiltration of mo-containing material with silicon
US4401443A (en) Polycrystalline silicon-bonded cubic boron nitride body and method
US4353963A (en) Process for cementing diamond to silicon-silicon carbide composite and article produced thereby
Sawai et al. Essential factors for shock compaction of diamond composites
USRE30503E (en) Composite of bonded cubic boron nitride crystals on a silicon carbide substrate
US6451385B1 (en) pressure infiltration for production of composites
CA1111664A (en) Polycrystalline diamond body/silicon carbide or silicon nitride substrate composite
CA1103940A (en) Cubic boron nitride abrasive composite