JPS62133054A - Antioxidant for heat treatment of titanium - Google Patents

Antioxidant for heat treatment of titanium

Info

Publication number
JPS62133054A
JPS62133054A JP27330785A JP27330785A JPS62133054A JP S62133054 A JPS62133054 A JP S62133054A JP 27330785 A JP27330785 A JP 27330785A JP 27330785 A JP27330785 A JP 27330785A JP S62133054 A JPS62133054 A JP S62133054A
Authority
JP
Japan
Prior art keywords
titanium
heat treatment
coat
oxides
antioxidant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27330785A
Other languages
Japanese (ja)
Inventor
Akira Tamura
明 田村
Eiichi Tsunetomi
常富 栄一
Koji Kishida
岸田 宏司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Nippon Steel Metal Products Co Ltd
Original Assignee
Nippon Steel Corp
Nippon Steel Metal Products Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp, Nippon Steel Metal Products Co Ltd filed Critical Nippon Steel Corp
Priority to JP27330785A priority Critical patent/JPS62133054A/en
Publication of JPS62133054A publication Critical patent/JPS62133054A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To prevent oxide scales from occurring on the surface of a Ti material by applying a top coat composed mainly of oxides of high-m.p. metals and an under coat having SiO2 and B2O3 as matrix in heating a Ti material in a heating furnace, etc. CONSTITUTION:The Ti material is heated to 890-930 deg.C in a heating furnace with oxidizing atmosphere as in the case of hot rolling. At this time, in order to prevent the formation of oxide scales on the Ti material surface, the inner coat prepared by forming a powder of oxides of high-m.p. metals such as MgO, ZrO2, Al2O3, etc., into slurry condition by use of a binder such as starch, PVA, water glass, etc., is applied and then dried. Next, a powder mixture having, by weight, 35-70% (SiO2+B2O3) as matrix and further containing two or more kinds among 0-20% F, 0-30% oxides of alkaline earths, 0-40% oxides of alkali metals, and 0-15% (Al2O3+ZrO2) is formed into slurry condition by use of above-mentioned binder, which is applied as outer coat onto the above- mentioned coat. In this way, formation of oxide scales of Ti caused by heating in an oxidizing atmosphere can be prevented.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、一般の酸化雰囲気炉におけるチタンの加熱時
に、チタンの酸化スケール発生防止に適した酸化防止剤
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to an antioxidant suitable for preventing the formation of oxide scale on titanium during heating of titanium in a general oxidizing atmosphere furnace.

(従来の技術) チタンは、一般の鋼と同様に、圧延加1等に先立ち、加
熱炉てα→β変態温度(882°C)以上の加熱処理温
度(一般には890〜930°C)に加熱されるか、一
般の酸化雰囲気炉を使用する場合は、鋼等に比較し、酸
化の速度か非常に早く、#化スケール層か形成される。
(Prior art) Like general steel, titanium is heated to a heat treatment temperature (generally 890 to 930°C) higher than the α→β transformation temperature (882°C) in a heating furnace prior to rolling. When heated or when using a general oxidizing atmosphere furnace, the oxidation rate is much faster than that of steel, and a # scale layer is formed.

このスケールは圧延前のデスケーリングて完全には剥離
し難く、地金に比較し硬度は高く、展伸性に乏しく、圧
延時製品表1頂にスケール疵を生じる原因となることか
ら、仕上げ研削工程なる余分の作業か必要となるし、同
時に研削に伴う歩留り低下も避けられなくなり。
This scale is difficult to completely peel off during descaling before rolling, has higher hardness than base metal, has poor malleability, and causes scale defects on the top of the product surface during rolling. This requires extra work in the process, and at the same time, a drop in yield due to grinding becomes unavoidable.

かかるロスは多大である。Such losses are significant.

このためチタンにおいても、鋼におけるように加熱前の
酸化防止剤の使用か種々試みられたが、チタンは鋼に比
較し酸化速度か非常に早く、酸化防止剤の効果は無く、
現在まで実用化されていない。従ってチタンの加熱は、
真空中又は無酸化の雰囲気調整炉で行なわれるのか通例
となっている。
For this reason, various attempts have been made to use antioxidants before heating for titanium, as in steel, but titanium oxidizes at a much faster rate than steel, and antioxidants have no effect.
It has not been put into practical use until now. Therefore, heating titanium is
It is customary to carry out the process in a vacuum or in a non-oxidizing atmosphere-controlled furnace.

(発明の課題・構成) 本発明の目的は、上記した点に鑑み、特殊な酸化防止剤
によりチタンの加熱時の酸化スケールの発生を防止しよ
うとするもので、その構成は次の通りである。すなわち
、 (1)高融点金属酸化物を−を成分とする下塗剤と、5
iOz+ I12島をフ、(材としかつ流動点かチタン
の加熱処理温度以下である上塗剤とからなるチタン熱処
理用酸化防止剤 (2)高融点金属酸化物を主成分とする下塗剤と、Si
O2+8%、0++ 35〜70wtX、及びフッ素0
〜20wt$、アルカリ金属酸化物O〜40wt$、ア
ルカリ土類酸化′jJ1g。
(Problems and Structure of the Invention) In view of the above-mentioned points, an object of the present invention is to prevent the generation of oxide scale during heating of titanium using a special antioxidant, and its structure is as follows. . That is, (1) a primer containing a high melting point metal oxide;
An antioxidant for titanium heat treatment consisting of iOz+ I12 island (material and a topcoat whose pour point is below the heat treatment temperature of titanium) (2) a basecoat whose main component is a high melting point metal oxide, and Si
O2+8%, 0++ 35-70wtX, and 0 fluorine
~20wt$, alkali metal oxide O~40wt$, alkaline earth oxide'jJ1g.

〜30wt%、 AI□0*”Zr0z O〜15wt
$のいずれか2種以上を主成分とするもので流動点かチ
タンの加熱処理温度以下である上塗剤とからなるチタン
熱処理用酸化防止剤 である。
~30wt%, AI□0*”Zr0z O~15wt
This is an antioxidant for titanium heat treatment consisting of an overcoating agent whose main components are any two or more of the following: and whose pour point is below the heat treatment temperature of titanium.

(作用) 本発明の酸化防止剤は、上述のように上塗剤と下塗剤と
から成り、上塗剤が加熱炉中で溶融することにより、チ
タン地金と雰囲気ガスをその溶融フィルムて完全に遮蔽
して酸化を防止し、また高融点の上塗剤か加熱炉中て溶
融せず、上層溶融フィルムとチタン地金との融着及び反
応を防止し、しかもデスケ−リンク時には高融点の下塗
剤の層の存在により、酸化防止剤の剥離除去か容易に、
完全に行なえることになる。
(Function) As mentioned above, the antioxidant of the present invention is composed of a top coat and a base coat, and by melting the top coat in a heating furnace, the molten film completely shields the titanium base metal and atmospheric gas. In addition, the high-melting point top coat does not melt in the heating furnace, preventing fusion and reaction between the upper molten film and the titanium base metal, and also prevents the high-melting point undercoat from melting in the heating furnace. Due to the presence of the layer, the antioxidant can be easily peeled off and removed.
It will be completely doable.

(発明の詳細) 以下本発明の詳細な説明する6 本発明の酸化防止剤は、基本的には高融点金属酸化物を
主成分とする下塗剤と、SiO2+8゜0.3を基材と
し流動点かチタンの加熱処理温度以下である上塗剤との
二層から成るものである。特に上塗剤は、チタン地金に
本発明の酸化防止剤を塗布し加熱炉に入れた場合、溶融
してフィルム層をすみやかに形成し、下塗剤の層に対し
適度の濡れ性(表面張力)を持つと共に、加熱炉雰囲気
中の酸素(及び窒素や酸化炭素ガス)とチタン地金との
接触を遮蔽し、チタンの酸化を防止する性質を有するも
のである。
(Details of the Invention) The present invention will be explained in detail below. 6 The antioxidant of the present invention basically consists of a primer containing a high-melting point metal oxide as a main component and a flowable material based on SiO2+8°0.3. It consists of two layers with a topcoat that is below the heat treatment temperature of titanium. In particular, when the antioxidant of the present invention is applied to a titanium base metal and placed in a heating furnace, the topcoat quickly melts to form a film layer, and has appropriate wettability (surface tension) for the basecoat layer. It also has the property of shielding the titanium metal from contact with oxygen (and nitrogen and carbon oxide gas) in the heating furnace atmosphere and preventing oxidation of titanium.

上塗剤の好ましい成分は、基材として5i02+ 11
20゜35〜70wt、χを含有し、さらにフッ素0〜
20wt$、アルカリ金属酸化糊O〜40wt$、アル
カリ上類酸化物0〜:10wt$、 Al2O:+”Z
rO20〜15wt$のいずれか2補具りを含有したち
のである。しかも、この上塗剤は流動点がチタンの加熱
処理温度以下にすることか必要である。
A preferred component of the top coat is 5i02+ 11 as the base material.
20° Contains 35 to 70 wt, χ, and 0 to fluorine
20wt$, alkali metal oxide glue O~40wt$, upper alkali oxide 0~:10wt$, Al2O:+”Z
It contains any two components of rO20~15wt$. Furthermore, the pour point of this top coat must be lower than the heat treatment temperature of titanium.

基材としてのS i02 + 8203は、:15wt
1未満では溶融フィルム形成か困難となり、70wt$
超では他の成分配合との関係て困難となる。また、フッ
素。
S i02 + 8203 as a base material is: 15wt
If it is less than 1, it will be difficult to form a melted film, and 70wt$
If the amount is too high, it will be difficult due to the relationship with other ingredients. Also, fluorine.

アルカリ金属酸化物、アルカリ土類酸化物は、波動点、
粘度1表面張力調整のため配合するものであるが、それ
ぞれの上限値を超えると流動点ならびに粘度が低くなり
、加熱炉中で十分な厚さの均一な溶融フィルムか維持出
来なくなり、酸化防止か期待出来なくなる。更に、溶融
フィルムと下塗剤との反応が起こり、適正な溶融フィル
ムか維持出来なくなったり、更に進んてチタン地金と溶
融フィルムとの融着が発生して、加熱処理以降のデスケ
−リンクにおいて酸化防止剤の完全剥離か困難となるた
め、各上限を前記の如く規定した。
Alkali metal oxides and alkaline earth oxides have wave points,
Viscosity 1: These are added to adjust the surface tension, but if each upper limit is exceeded, the pour point and viscosity will decrease, making it impossible to maintain a sufficiently thick and uniform molten film in the heating furnace, and preventing oxidation. I can't wait anymore. Furthermore, a reaction occurs between the molten film and the primer, making it impossible to maintain a proper molten film, and furthermore, fusion between the titanium metal and the molten film occurs, resulting in oxidation in the deska link after heat treatment. Since it would be difficult to completely remove the inhibitor, each upper limit was defined as described above.

AIz03.ZrO2は主に流動点や粘度を高める時の
調整用として配合するものであるか、−ヒ限値超ては結
晶か析出し易くなり、溶融フィルムの維持か困難になる
。このような理由から上塗剤は上記の成分に限定してい
る。
AIz03. ZrO2 is mainly blended to adjust the pour point and viscosity, and if it exceeds the limit value, crystals tend to precipitate, making it difficult to maintain a molten film. For these reasons, the top coating agent is limited to the above components.

また、」二塗剤を塗布したチタン地金を加熱炉て処理後
、デスケ−リンク工程に送って冷却する時、」二塗剤が
適冷現象を行うにしても上塗剤の凝固点か加熱処理温度
から 300°Cを減した温度よりも高ければ、デスケ
ーソンつて酸化防止剤の剥離か問題なく行われることか
実験により確認されている。尚、配合物中のフッ素はN
aF、CaF、、Na5AII’6笠の化合物の形で配
合される。
In addition, when titanium metal coated with a second coat is processed in a heating furnace and then sent to the descaling process to be cooled, even if the second coat cools down properly, the freezing point of the top coat may be affected by the heat treatment. It has been experimentally confirmed that if the temperature is higher than 300°C subtracted from the temperature, the antioxidant can be removed without any problems using the descason. In addition, the fluorine in the formulation is N
It is formulated in the form of compounds such as aF, CaF, and Na5AII'6.

下塗剤は加熱炉中で溶融した上塗剤とチタン地金との融
着を防IIニジて、加熱炉以降のテスケーリングにおい
て酸化防止剤の完全剥離かなされるように及び、ト塗剤
とチタン地金が反応してスケールか発生するのを防止す
るように、地金と上塗剤の間に使用されるものである。
The primer is used to prevent fusion between the top coat and the titanium base metal melted in the heating furnace, and to completely remove the antioxidant during the scaling after the heating furnace. It is used between the base metal and the top coat to prevent the base metal from reacting and forming scale.

従って、上塗剤とは反応性に乏しく、溶融した上塗剤か
適度な表面張力を持つようなものてあり、チタン地金と
焼きイ・1きを起さないような、即ち酸化チタンよりも
エネルギー準位か低い高融点金属酸化物であることか8
黄である。このようなものとしては、例えばMgO,Z
rO□、へ1203等か望ましい。なお、Mg0,2r
02゜Δ1203は、 &、li粋物質である必要はな
く、高融点金属酸化物としての特性を満足するものであ
れば。
Therefore, the top coat is a molten top coat that has poor reactivity and has a moderate surface tension. Is it a high melting point metal oxide with a low level?8
It is yellow. Examples of such materials include MgO, Z
rO□, he1203, etc. are desirable. In addition, Mg0,2r
02°Δ1203 does not need to be a pure substance, as long as it satisfies the characteristics of a high melting point metal oxide.

他の物質との混合物であっても差し支えない。It may be a mixture with other substances.

に記の下塗剤、上塗剤の主成分の他に粘結剤、界面活性
剤等を必要に応じて配合する。粘結剤としてはスターチ
、p、v、Δ6、水ガラス等を使用する。
In addition to the main components of the undercoat and topcoat described above, binders, surfactants, etc. may be added as necessary. As the binder, starch, p, v, Δ6, water glass, etc. are used.

酸化防11Z剤の塗布方法は、上塗剤、下塗剤の各/l
の微粉末に粘結剤を外割って0.5〜5wt$加え、木
てスラリー化し、チタン地金に下塗剤を塗布し1乾燥後
次に上塗剤を塗!Ii シて乾燥後、加熱炉に挿入する
The method of applying the antioxidant 11Z agent is to apply the top coat and base coat each per liter.
Add 0.5 to 5 wt$ of binder to the fine powder, make a slurry, apply a primer to the titanium metal, and after drying, apply a top coat! Ii After being washed and dried, it is inserted into a heating furnace.

(実施例) 本発明酸化防止剤被覆後900°Cで3時間の加熱を一
般加熱炉にて処理したチタンスラブの実施例を下記表1
に示す。
(Example) Table 1 below shows an example of a titanium slab that was coated with the antioxidant of the present invention and then heated at 900°C for 3 hours in a general heating furnace.
Shown below.

表1においてNo、 A〜Dは本発明例、No、 E〜
には比l咬例てあって、E〜Hは下塗剤のみの場合、■
はド塗剤の溶融点か低い場合、Jはり、塗剤の流動点か
チタンの加熱処理温度以北である場合、Kは」−塗剤の
成分にSiO2+ 820:lか含有されていなり・場
合を示す。比較例はいずれも総合評価は不合格であった
In Table 1, No. A to D are examples of the present invention, and No. E to D are examples of the present invention.
There are comparative bite examples, and E to H are cases where only the primer is used, ■
If the melting point of the paint is lower than the melting point of the paint, and if the pour point of the paint is higher than the heat treatment temperature of titanium, then the K is - the paint contains 820:1 of SiO2+. Indicate the case. All of the comparative examples failed in the overall evaluation.

(95Ifの効果) 以上説明した如く本発明の耐化防止剤によれは、チタン
の加熱の際に、良好にチタン地金を被覆して酸化を防止
し、かつデスケ−リンク時にも容易に剥離することかて
き、その実用上および工業」−の価値は極めて大きい。
(Effects of 95If) As explained above, the anti-oxidation agent of the present invention can coat the titanium base metal well to prevent oxidation when the titanium is heated, and can be easily peeled off during descaling. Its practical and industrial value is enormous.

Claims (2)

【特許請求の範囲】[Claims] (1)高融点金属酸化物を主成分とする下塗剤と、Si
O_2+B_2O_3を基材としかつ流動点がチタンの
加熱処理温度以下である上塗剤とからなるチタン熱処理
用酸化防止剤。
(1) An undercoat mainly composed of a high melting point metal oxide and a Si
An antioxidant for titanium heat treatment consisting of O_2+B_2O_3 as a base material and a top coating agent having a pour point below the heat treatment temperature of titanium.
(2)高融点金属酸化物を主成分とする下塗剤と、Si
O_2+B_2O_335〜70wt%、及びフッ素0
〜20wt%、アルカリ金属酸化物0〜40wt%、ア
ルカリ土類酸化物0〜30wt%、Al_2O_3+Z
rO_20〜15wt%のいずれか2種以上を主成分と
するもので流動点がチタンの加熱処理温度以下である上
塗剤とからなるチタン熱処理用酸化防止剤。
(2) Undercoating agent mainly composed of high melting point metal oxide and Si
O_2+B_2O_335-70wt%, and 0 fluorine
~20wt%, alkali metal oxides 0-40wt%, alkaline earth oxides 0-30wt%, Al_2O_3+Z
An antioxidant for titanium heat treatment consisting of an overcoating agent which mainly contains any two or more of rO_20 to 15 wt% and has a pour point below the heat treatment temperature of titanium.
JP27330785A 1985-12-06 1985-12-06 Antioxidant for heat treatment of titanium Pending JPS62133054A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27330785A JPS62133054A (en) 1985-12-06 1985-12-06 Antioxidant for heat treatment of titanium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27330785A JPS62133054A (en) 1985-12-06 1985-12-06 Antioxidant for heat treatment of titanium

Publications (1)

Publication Number Publication Date
JPS62133054A true JPS62133054A (en) 1987-06-16

Family

ID=17526042

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27330785A Pending JPS62133054A (en) 1985-12-06 1985-12-06 Antioxidant for heat treatment of titanium

Country Status (1)

Country Link
JP (1) JPS62133054A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02163354A (en) * 1988-12-16 1990-06-22 Raimuzu:Kk Manufacture of clad titanium-base alloy member
US7320238B1 (en) 2004-07-28 2008-01-22 Rolls-Royce Plc Method of forging a titanium alloy

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02163354A (en) * 1988-12-16 1990-06-22 Raimuzu:Kk Manufacture of clad titanium-base alloy member
US7320238B1 (en) 2004-07-28 2008-01-22 Rolls-Royce Plc Method of forging a titanium alloy

Similar Documents

Publication Publication Date Title
US5298332A (en) Glass-ceramic coatings for titanium-based metal surfaces
NO166875B (en) ENZYMATIC DETERGENT MIXTURE.
US2889238A (en) Coating for cleaning and protecting metals
JP3723753B2 (en) Method for producing a coating on a fire-resistant component and use of such a coating
US1977625A (en) Process of decorating glass
JP2937369B2 (en) Glass coating method
US2959503A (en) Method for treating titanium metal
US3037878A (en) Process for coating and heat treating a metal article and coating composition
JPS62133054A (en) Antioxidant for heat treatment of titanium
US2848349A (en) Flame spraying process
JPH04232246A (en) Method and composition for protecting alpha-aluminide alloy sample to be exposed to high temperature oxidation
US3827922A (en) Method of retarding metal scale formation with carbon-containing mgo-b2o3 coatings
JP2007314875A (en) Antioxidant composition for heat-treatment of steel pipe
US3431141A (en) High temperature oxidation resistant articles
JPH03291325A (en) Method for preventing high-temperature oxidation of metallic material
US2715765A (en) Hot working vanadium
US3698943A (en) Protective coating
JPH02209420A (en) Antioxidant for high temperature use for steel stock
JPS63255352A (en) Coated roll for conveying high-temperature steel sheet
JP3076888B2 (en) 2 melting point heat-resistant sprayed material and heat-resistant member processed by thermal spraying
JPS6326993A (en) Particle material for protecting graphite electrode and method of protection employing the same
JPH06248474A (en) Composition for removing scale for high cr or high cr-ni alloy
US3806357A (en) Coated casting nozzles
US3523013A (en) Crystalline glass container with a cermet coat and a metal coat
JPS6193510A (en) Inorganic insulated wire