JPS6213300B2 - - Google Patents

Info

Publication number
JPS6213300B2
JPS6213300B2 JP12023583A JP12023583A JPS6213300B2 JP S6213300 B2 JPS6213300 B2 JP S6213300B2 JP 12023583 A JP12023583 A JP 12023583A JP 12023583 A JP12023583 A JP 12023583A JP S6213300 B2 JPS6213300 B2 JP S6213300B2
Authority
JP
Japan
Prior art keywords
parts
weight
raw materials
lime
silicic acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP12023583A
Other languages
Japanese (ja)
Other versions
JPS59199564A (en
Inventor
Hiroshi Asaumi
Kazuo Kubota
Hisanori Yokoo
Mitsuo Yamamoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichias Corp
Original Assignee
Nichias Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nichias Corp filed Critical Nichias Corp
Priority to JP12023583A priority Critical patent/JPS59199564A/en
Publication of JPS59199564A publication Critical patent/JPS59199564A/en
Publication of JPS6213300B2 publication Critical patent/JPS6213300B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/18Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing mixtures of the silica-lime type
    • C04B28/186Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing mixtures of the silica-lime type containing formed Ca-silicates before the final hardening step
    • C04B28/188Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing mixtures of the silica-lime type containing formed Ca-silicates before the final hardening step the Ca-silicates being present in the starting mixture

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)

Description

【発明の詳細な説明】 本発明は、切削あるいは研削などの機械加工が
可能なケイ酸カルシウム系耐熱材料の製造法に関
するものである。 機械加工可能なケイ酸カルシウム系耐熱材料は
公知であつて、溶融金属たとえば溶融アルミニウ
ムの樋、トラフ、注湯ボツクスなど、溶融体の移
送、保持、給湯のための用具として、板状のもの
をそのまま、あるいは種々の形状に加工した上
で、利用されている。このような用途において、
ケイ酸カルシウム系のものは一般に軽く、断熱性
がすぐれ、湯に濡れず、また湯を汚染しないなど
の特長を持つが、流動状態の高温溶融金属との接
触に耐え得る高度の耐熱性と機械的強度、ならび
に精度のよい機械加工を可能にする加工性が要求
されるから、通常数百度C以上での使用に耐える
とされているトバモライト系またはゾノトライト
系の断熱材であつても、そのままではこの用途に
使用できない。したがつて、たとえば従来実用化
されている市販品の代表的なものは、アモサイト
石綿とケイ藻土シリカに無機質バインダーを加え
て成形し、高圧の蒸気養生により反応硬化させた
後、更に焼成するという、特殊な製法によつたも
のである。 ところで従来の製品は、上記の例に限らず、補
強用にアスベスト繊維が多量に配合されている。
しかしながら、アスベスト繊維はその吸入が健康
に有害であるとされており、したがつて、アスベ
スト繊維を補強に使用することは、製造上も製品
の加工上も、好ましいことではない。そこでアス
ベスト繊維を使用しない製法および製品の出現が
望まれていたのであるが、要求される特性が上述
のように高度であるところから、補強用繊維を他
の繊維で完全に代替し得た例はまだなかつた。 本発明者らは、このような現状を背景に、溶融
金属の収理に使用可能なケイ酸カルシウム系耐熱
材料をアスベスト繊維を用いずに製造する方法を
見いだすべく研究を重ねた結果、以下に述べるよ
うな本発明を完成するに至つたのである。 本発明につきまずその概要を述べると、 (A) CaO/SiO2モル比が0.6〜1.2である石灰原料
およびケイ酸原料の混合物 100重量部 (B) 水熱合成により得られたゾノトライト(固形
分として) 36重量部以上50重量部未満 (C) 繊維状ウオラストナイト 15〜150重量部 (D) 水 全固形物の2〜8倍量 以上(A)〜(D)の均一混合物からなるスラリーを脱
水成形し、得られた成形物を6Kg/cm2以上の加圧
水蒸気下で蒸熱処理してケイ酸原料と石灰原料と
を反応させた後、大気圧下、330℃以上に加熱し
て成形物より離脱する水を除去することにより、
目的とする耐熱材料を得るのである。 以下、上記本発明による製造法につき詳述す
る。 上記原料(A)のためのケイ酸原料および石灰原料
は特に限定されるものではなく、通常ケイ酸カル
シウム系成形体の製造原料として使用されている
ものをいずれも使用することができる。特に好ま
しいケイ酸原料の例としては、ケイ藻土、ケイ
石、フエロシリコンダスト、ケイ華等を、また石
灰原料の例としては、消石灰、生石灰、カーバイ
ト滓等を、それぞれ挙げることができる。これら
の原料の配合比は、CaO/SiO2モル比が0.6〜1.2
の範囲にあればよいが、特に好ましいモル比は
0.7〜1.0である。 ゾノトライトの水熱合成も常法に従つて行えば
よいが、本発明の方法における原料として特に好
ましいゾノトライトは、ケイ酸原料と石灰原料の
混合物に10〜30倍量の水を加えて、14〜20Kg/cm2
の蒸気圧下、撹拌しながら2〜8時間加熱反応さ
せて得られたものである。 このようなゾノトライトは、粉末状のケイ酸原
料および石灰原料を吸着し、脱水成形時のこれら
粉末原料の流失を少なくする(アスベスト繊維を
用いた場合は該繊維が粉末原料を吸着するが、繊
維状ウオラストナイトにはこのような能力がな
い。したがつて、成形工程におけるゾノトライト
の上記作用は重要である。)。 ゾノトライトはまた、脱水成形後の生成形体の
ハンドリング性をよくし、最終製品の耐熱性や強
度の向上にも関係するなど、本発明の製造法にお
いて多くの重要な役割を果すものである。 ゾノトライトの配合量は、少なすぎては十分な
効果が期待できないことはもちろんであるが、逆
に過剰量の使用は、成形を困難にし、また不必要
に低比重で強度の低い製品を与えるので好ましく
ない。好適使用量は、前記石灰原料とケイ酸原料
との混合物100重量部当り36〜170重量部である。
但し、ゾノトライト50〜170重量部を使用する同
様の製法の発明は、特願昭54−58689号により特
許請求されている。 繊維状ウオラストナイトとしては、市販の、た
とえば米国インターペース社のNYARD−Gを、
そのまま使用することができる。この繊維状ウオ
ラストナイトをケイ酸カルシウム系断熱材等の製
造に際し使用することは公知であるが、繊維状と
はいうものの、アスベスト繊維と比べるとはるか
に短く、また比表面積も小さいから、補強材料と
してアスベスト繊維の代替品になり得るものでは
ない。本発明の製法においても、繊維状ウオラス
トナイトを配合する理由はアスベスト繊維を配合
した場合と同じ補強効果を期待するからではな
く、配合によつて成形物焼成工程における亀裂発
生が抑止されるとともに極めて良好な機械加工性
を有する製品が得られるからである。更に、繊維
状ウオラストナイトは結晶水を持たないため、結
晶水を持つアスベスト繊維を用いた場合よりも焼
成時間が短くてすむことも、繊維状ウオラストナ
イトを用いることの利点の一つである。 繊維状ウオラストナイトは、製品のマトリツク
ス部分と化学的には同じケイ酸カルシウムである
ものの、過剰に配合することは製品の強度低下の
原因となるので、避けなければならない。 本発明の製法においては、必要ならば少量の耐
アルカリ性ガラス繊維、岩綿等の無機繊維を補強
用に用いてもよく、また、脱水成形時の濾水性お
よび焼成前の成形物の強度を向上させるため、レ
ーヨン、パルプ等の有機繊維を併用してもよい
が、有機繊維は多量に配合すると最終製品の強度
低下を招くので、全固形原料の2%以下とするこ
とが望ましい。 以上のような諸原料を均一に混合して得られた
スラリーを適当な形状に脱水成形するが、成形
は、最終製品の密度が0.5〜0.9g/cm3程度になる
よう、成形面圧および脱水度を調節して行うこと
が望ましい(強度は密度が高いほど大きくなる
が、密度が高すぎると加工性および断熱性が悪化
する。本発明で採用した原料およびその配合比で
成形を行うならば、上記製品密度で、物性面にお
いても加工性の点でもすぐれた製品を得ることが
できる。)。 脱水成形物の加圧水蒸気下処理(蒸熱処理)
は、ケイ酸原料と石灰原料とを反応させ、そして
恐らくはこれらの原料とゾノトライト粒子の表面
との反応も起こさせることにより、ケイ酸カルシ
ウム結晶からなるマトリツクスを形成させるもの
である。処理は6〜20Kg/cm2の蒸気圧下で3〜10
時間、ケイ酸原料と石灰原料とについてみればト
バモライトまたはゾノトライトが生成するまで行
う(一部がCSH−やCSH−となつて混晶を
形成しても差支えない。)。 この後、乾燥工程を経て、大気圧下の高温熱処
理(焼成)を行う。焼成は、通常330〜600℃で、
必要ならば約1000℃まで昇温して、処理温度にお
ける成形物からの水の離脱が実質上終上するま
で、通気しながら行う。但し、有機繊維を配合し
た場合は、該繊維を焼失させるため、約500℃以
上で焼成する必要がある。 この工程では、CSH−やCSH−の結合水
が除去され(焼成温度が約700℃以上のときは更
にトバモライトの結晶水も除去され)、それに伴
いマトリツクス部分の微細構造の変化が起こる。
そして焼成後の成形物は、もはや高温の溶融金属
と接触してもガスを発生せず、また変形を起こさ
ない、安定性のすぐれたものとなる。 本発明による耐熱材料の製造法は、上述のよう
な焼成処理が比較的低温度かつ短時間ですみ、ま
た、焼成中、成形物の変形や亀裂発生が少なく歩
留りがよいという長所がある。 以上のような本発明の製法による耐熱材料は、
前記溶融金属の処理装置の構成材料として必要な
特性をすべて備えてものであり、しかもアスベス
ト繊維を含まないから、機械加工を行う場合の環
境上の対策も簡単ですむという特長を持つ。 以下、実施例および比較例を示して本発明を説
明するが、各例において「部」とあるのは重量部
を意味する。また用いたゾノトライトは、ケイ石
粉と石灰乳(生石灰を12倍量の水で消化したも
の)とをCaO/SiO2(モル比)が0.98となるよう
調合し、12倍量の水を加えた後、16Kg/cm2の水蒸
気圧下で5時間、撹拌しながら反応させて得られ
たものであり、ウオラストナイトは米国インター
ペース社の繊維状のもの(NYARD−G)であ
る。 実施例 1 ケイ石20部、消石灰21部、ゾノトライト15部
(ケイ石および消石灰の合計量100部当り36.6
部)、ウオラストナイト40部(ケイ石および消石
灰の合計量100部当り97.6部)、耐アルカリ性ガラ
ス繊維4部および水500部の混合物を、面圧15
Kg/cm2で、30×300×300mmの板状に成形し、成形
物を9Kg/cm2の蒸気圧下で10時間蒸熱処理した。
この処理によつてケイ石と消石灰は反応し、主と
してゾノトライトからなるケイ酸カルシウムを生
じた。次いで成形物を550℃で6時間焼成した。
焼成による成形物の反りや亀裂の発生および外観
の変化は認められなかつた。 製品の性能値は第1表のとおりであつた。 実施例 2 ケイ石21部、消石灰22部、ゾノトライト20部
(ケイ石および消石灰の合計量100部当り46.5
部)、ウオラストナイト35部(ケイ石および消石
灰の合計量100部当り81.4部)、パルプ2部および
水400部の混合物を実施例1の場合と同様に処理
して耐熱材料を製造した(但し成形時の面圧を10
Kg/cm2に変更した)。焼成工程における反りや亀
裂の発生および外観の変化は認められなかつた。 製品の性能値を第1表に示す。 比較例 1 ウオラストナイト35部、ケイ藻土32部、消石灰
33部および水300部の混合物を、成形時の面圧を
5Kg/cm2に変更した以外は実施例1の場合と同様
に処理した。焼成工程における反りや亀裂の発生
は認められなかつたが、製品は、第1表に示した
ように、強度が低く、また耐熱性の悪いものであ
つた。 比較例 2 ゾノトライト15部、ケイ石41部、消石灰40部、
耐アルカリ性ガラス繊維4部および水500部の混
合物を実施例1の場合と同様に処理した。この場
合、製品(その性能値を第1表に示す)の一部に
はヘアークラツクが認められた。 【表】
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing a heat-resistant calcium silicate material that can be machined by cutting or grinding. Machineable calcium silicate-based heat-resistant materials are known and can be used in sheet form as devices for transporting, holding, and dispensing molten metal, such as troughs, troughs, and pouring boxes for molten aluminum. It is used as is or after being processed into various shapes. In such applications,
Calcium silicate-based materials are generally light, have excellent insulation properties, do not get wet with hot water, and do not contaminate hot water, but they also have a high degree of heat resistance and mechanical properties that can withstand contact with high-temperature molten metal in a fluid state. Physical strength and workability that enables precise machining are required. It cannot be used for this purpose. Therefore, for example, a typical commercially available product that has been put to practical use is formed by adding an inorganic binder to amosite asbestos and diatomaceous earth silica, reacting and hardening it by high-pressure steam curing, and then firing it. It is made using a special manufacturing method. By the way, conventional products, not only the above example, contain a large amount of asbestos fiber for reinforcement.
However, inhalation of asbestos fibers is considered to be harmful to health, and therefore, the use of asbestos fibers for reinforcement is not desirable from both manufacturing and product processing standpoints. Therefore, there was a desire for a manufacturing method and product that did not use asbestos fibers, but since the required properties are as high as described above, it is possible to completely replace reinforcing fibers with other fibers. It wasn't long yet. Against this background, the inventors of the present invention have conducted repeated research to find a method for manufacturing a calcium silicate-based heat-resistant material that can be used to store molten metal without using asbestos fibers, and have found the following. This led to the completion of the present invention as described. First, an outline of the present invention will be described. (A) 100 parts by weight of a mixture of lime raw materials and silicic acid raw materials with a CaO/SiO 2 molar ratio of 0.6 to 1.2 (B) Zonotlite obtained by hydrothermal synthesis (solid content 36 parts by weight or more and less than 50 parts by weight (C) Fibrous wollastonite 15 to 150 parts by weight (D) Water 2 to 8 times the amount of total solids Slurry consisting of a homogeneous mixture of (A) to (D) The obtained molded product is steam-treated under pressurized steam of 6 kg/cm 2 or more to react the silicic acid raw material and the lime raw material, and then heated to 330°C or higher under atmospheric pressure and molded. By removing water that separates from objects,
The desired heat-resistant material is obtained. The manufacturing method according to the present invention will be described in detail below. The silicic acid raw material and lime raw material for the above raw material (A) are not particularly limited, and any of those commonly used as raw materials for producing calcium silicate molded bodies can be used. Particularly preferred examples of silicic acid raw materials include diatomaceous earth, silica stone, ferrosilicon dust, silica, etc., and examples of lime raw materials include slaked lime, quicklime, carbide slag, etc. . The blending ratio of these raw materials is such that the CaO/SiO 2 molar ratio is 0.6 to 1.2.
It is sufficient that the molar ratio is within the range of
It is between 0.7 and 1.0. Although the hydrothermal synthesis of xonotlite may be carried out according to a conventional method, xonotlite is particularly preferable as a raw material in the method of the present invention. 20Kg/ cm2
It was obtained by heating and reacting for 2 to 8 hours with stirring under a vapor pressure of . Such xonotlite adsorbs powdered silicic acid raw materials and lime raw materials, and reduces the loss of these powdered raw materials during dehydration molding (when asbestos fibers are used, the fibers adsorb the powdered raw materials, but the fibers Wollastonite does not have this ability. Therefore, the above-mentioned effect of xonotlite in the forming process is important.) Zonotlite also plays many important roles in the manufacturing method of the present invention, such as improving the handling properties of the formed body after dehydration molding and improving the heat resistance and strength of the final product. It goes without saying that if the amount of xonotlite is too small, sufficient effects cannot be expected, but on the other hand, using an excessive amount will make molding difficult and give a product with an unnecessarily low specific gravity and low strength. Undesirable. The preferred amount used is 36 to 170 parts by weight per 100 parts by weight of the mixture of lime raw material and silicic acid raw material.
However, the invention of a similar manufacturing method using 50 to 170 parts by weight of xonotlite is claimed in Japanese Patent Application No. 58689/1989. As the fibrous wollastonite, commercially available products such as NYARD-G manufactured by Interspace Co., Ltd. in the United States,
It can be used as is. It is well known that this fibrous wollastonite is used in the production of calcium silicate-based insulation materials, etc., but although it is fibrous, it is much shorter than asbestos fibers and has a small specific surface area, so it can be used for reinforcement. It cannot be used as a substitute for asbestos fibers as a material. In the manufacturing method of the present invention, the reason why fibrous wollastonite is blended is not because we expect the same reinforcing effect as when asbestos fibers are blended, but because the blend suppresses the occurrence of cracks during the molding firing process. This is because a product having extremely good machinability can be obtained. Furthermore, since fibrous wollastonite does not have crystallization water, one of the advantages of using fibrous wollastonite is that the firing time is shorter than when using asbestos fibers that have crystallization water. be. Although fibrous wollastonite is chemically the same calcium silicate as the matrix part of the product, adding too much of it will cause a decrease in the strength of the product, so it must be avoided. In the manufacturing method of the present invention, if necessary, a small amount of alkali-resistant glass fiber, inorganic fiber such as rock wool may be used for reinforcement, and it also improves the freeness during dehydration molding and the strength of the molded product before firing. To achieve this, organic fibers such as rayon and pulp may be used in combination, but since adding a large amount of organic fibers leads to a decrease in the strength of the final product, it is desirable that the amount of organic fibers be 2% or less of the total solid raw materials. The slurry obtained by uniformly mixing the above raw materials is dehydrated and molded into an appropriate shape. During the molding process, the molding surface pressure and It is desirable to adjust the degree of dehydration (the higher the density, the greater the strength, but if the density is too high, the workability and heat insulation properties will deteriorate.If molding is carried out using the raw materials and their blending ratio adopted in the present invention) For example, with the above-mentioned product density, a product with excellent physical properties and processability can be obtained.) Pressurized steam treatment (steam treatment) of dehydrated molded products
involves the formation of a matrix of calcium silicate crystals by reacting the silicic acid raw materials with the lime raw materials and possibly also the reaction of these raw materials with the surfaces of the xonotlite particles. Treatment is 3-10 under steam pressure of 6-20Kg/ cm2
Regarding the silicic acid raw material and the lime raw material, the treatment is carried out until tobermorite or xonotlite is produced (it is possible that a part of it becomes CSH- or CSH- to form a mixed crystal). After that, a drying process is performed, and then high-temperature heat treatment (calcination) under atmospheric pressure is performed. Firing is usually at 330-600℃,
If necessary, the temperature is increased to about 1000° C., and the process is carried out with ventilation until the separation of water from the molded product at the processing temperature has substantially ceased. However, when organic fibers are blended, it is necessary to bake at about 500° C. or higher in order to burn out the fibers. In this step, CSH- and CSH- bound water are removed (when the firing temperature is about 700°C or higher, tobermorite crystal water is also removed), and the microstructure of the matrix portion changes accordingly.
The molded product after firing no longer generates gas or deforms even when it comes into contact with high-temperature molten metal, and has excellent stability. The method for producing a heat-resistant material according to the present invention has the advantage that the above-described firing process can be performed at a relatively low temperature and in a short time, and that the molded product is not deformed or cracked during firing, resulting in a high yield. The heat-resistant material produced by the method of the present invention as described above is
It has all the properties necessary as a constituent material for the molten metal processing equipment, and since it does not contain asbestos fibers, it has the advantage of requiring simple environmental measures when performing machining. The present invention will be described below with reference to Examples and Comparative Examples, and in each example, "parts" means parts by weight. The xonotlite used was prepared by mixing silica powder and milk of lime (quicklime digested with 12 times the amount of water) so that the CaO/SiO 2 (molar ratio) was 0.98, and adding 12 times the amount of water. The wollastonite was then reacted under a water vapor pressure of 16 kg/cm 2 with stirring for 5 hours, and the wollastonite was a fibrous one (NYARD-G) manufactured by Interpace, USA. Example 1 20 parts of silica stone, 21 parts of slaked lime, 15 parts of xonotlite (36.6 parts per 100 parts of total amount of silica stone and slaked lime)
), 40 parts of wollastonite (97.6 parts per 100 parts of total amount of silica stone and slaked lime), 4 parts of alkali-resistant glass fiber, and 500 parts of water were mixed under a surface pressure of 15
Kg/cm 2 and molded into a plate shape of 30×300×300 mm, and the molded product was steam-treated for 10 hours under a steam pressure of 9 Kg/cm 2 .
This treatment caused the silica and slaked lime to react, producing calcium silicate consisting primarily of xonotlite. The molded product was then fired at 550°C for 6 hours.
No warpage, cracking, or change in appearance of the molded product due to firing was observed. The performance values of the product were as shown in Table 1. Example 2 21 parts of silica, 22 parts of slaked lime, 20 parts of xonotlite (46.5 parts per 100 parts of total amount of silica and slaked lime)
A heat-resistant material was produced by treating a mixture of 35 parts of wollastonite (81.4 parts per 100 parts of total amount of silica stone and slaked lime), 2 parts of pulp, and 400 parts of water in the same manner as in Example 1. However, the surface pressure during molding is 10
(changed to Kg/ cm2 ). No warpage, cracking, or change in appearance was observed during the firing process. Product performance values are shown in Table 1. Comparative example 1 35 parts of wollastonite, 32 parts of diatomaceous earth, slaked lime
A mixture of 33 parts and 300 parts of water was treated in the same manner as in Example 1, except that the surface pressure during molding was changed to 5 kg/cm 2 . Although no warping or cracking was observed during the firing process, the product had low strength and poor heat resistance, as shown in Table 1. Comparative example 2 15 parts of zonotrite, 41 parts of silica, 40 parts of slaked lime,
A mixture of 4 parts of alkali-resistant glass fibers and 500 parts of water was treated as in Example 1. In this case, hair cracks were observed in some of the products (the performance values of which are shown in Table 1). 【table】

Claims (1)

【特許請求の範囲】 1 下記(A)〜(D)の均一混合物からなるスラリーを
脱水成形し、得られた成形物を6Kg/cm2以上の加
圧水蒸気下で蒸熱処理してケイ酸原料と石灰原料
とを反応させた後、大気圧下、330℃以上に加熱
して成形物より離脱する水を除去することを特徴
とするケイ酸カルシウム系耐熱材料の製造法。 (A) CaO/SiO2モル比が0.6〜1.2である石灰原料
およびケイ酸原料の混合物 100重量部 (B) 水熱合成により得られたゾノトライト
36重量部以上50重量部未満 (C) 繊維状ウオラストナイト 15〜150重量部 (D) 水 全固形物の2〜8倍量
[Claims] 1 A slurry consisting of a homogeneous mixture of the following (A) to (D) is dehydrated and molded, and the resulting molded product is steam-treated under pressurized steam of 6 kg/cm 2 or more to form a silicic acid raw material. A method for producing a heat-resistant calcium silicate material, which comprises reacting it with a lime raw material and then heating it to 330°C or higher under atmospheric pressure to remove water released from the molded product. (A) 100 parts by weight of a mixture of lime raw materials and silicic acid raw materials with a CaO/SiO 2 molar ratio of 0.6 to 1.2 (B) Zonotlite obtained by hydrothermal synthesis
36 parts by weight or more but less than 50 parts by weight (C) Fibrous wollastonite 15 to 150 parts by weight (D) Water 2 to 8 times the amount of total solids
JP12023583A 1983-07-04 1983-07-04 Manufacture of calcium silicate type heat resistant material Granted JPS59199564A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12023583A JPS59199564A (en) 1983-07-04 1983-07-04 Manufacture of calcium silicate type heat resistant material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12023583A JPS59199564A (en) 1983-07-04 1983-07-04 Manufacture of calcium silicate type heat resistant material

Publications (2)

Publication Number Publication Date
JPS59199564A JPS59199564A (en) 1984-11-12
JPS6213300B2 true JPS6213300B2 (en) 1987-03-25

Family

ID=14781186

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12023583A Granted JPS59199564A (en) 1983-07-04 1983-07-04 Manufacture of calcium silicate type heat resistant material

Country Status (1)

Country Link
JP (1) JPS59199564A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62223051A (en) * 1986-03-25 1987-10-01 三菱鉱業セメント株式会社 Formed body for glazing and manufacture of glazed formed body
JPS63295796A (en) * 1987-05-26 1988-12-02 ニチアス株式会社 Low density calcium silicate plate and its production
JP5420815B2 (en) * 2006-03-27 2014-02-19 ニチアス株式会社 Heat resistant material for low melting point metal casting equipment
CN102781879B (en) * 2010-03-05 2016-01-20 霓佳斯株式会社 The manufacture method of fire-resistant formed body, fire-resistant formed body and metal casting component
JP5639243B2 (en) * 2013-09-05 2014-12-10 ニチアス株式会社 Heat resistant material for low melting point metal casting equipment

Also Published As

Publication number Publication date
JPS59199564A (en) 1984-11-12

Similar Documents

Publication Publication Date Title
US4144121A (en) Method for producing asbestos-free calcium silicate board and the board produced thereby
US3501324A (en) Manufacturing aqueous slurry of hydrous calcium silicate and products thereof
WO1997049645A1 (en) Calcium silicate plate and process for producing the plate
US4334931A (en) Method for producing asbestos free machinable calcium silicate high heat-resistant material
US4447380A (en) Expanded inorganic aggregate bonded with calcium silicate hydrate as thermal insulation
US4647499A (en) Shaped body of calcium silicate and process for producing same
JP5190399B2 (en) Method for producing calcium silicate plate
US5334242A (en) Baking stone and method of manufacture thereof
US3367871A (en) Molded precision-dimensioned high temperature insulation material
JPS6250430B2 (en)
JPS6213300B2 (en)
JPS6353145B2 (en)
JPS5926957A (en) Manufacture of calcium silicate hydrate hardened body
JP2956039B2 (en) Manufacturing method of wet cement board
US4179303A (en) Method of producing structural insulation materials containing at least 50 percent xonotlite
JPH0139981B2 (en)
JP4001478B2 (en) Composition for building materials
CN1307083A (en) Method for mfg. thermal insulation and fireproof calcium silicate material
JPS58176159A (en) Manufacture of amorphous calcium silicate formed body
JPS62143854A (en) Manufacture of calcium silicate base formed body
JP2773904B2 (en) Manufacturing method of lightweight refractories
JP2004123409A (en) Method for manufacturing calcium silicate hydrate
JP4694708B2 (en) Method for producing calcium silicate molded body
JP2022148720A (en) Method for manufacturing calcium silicate molding
JPS5969460A (en) Manufacture of refractory heat insulative material