JPS62132706A - Ozonizer - Google Patents

Ozonizer

Info

Publication number
JPS62132706A
JPS62132706A JP27289985A JP27289985A JPS62132706A JP S62132706 A JPS62132706 A JP S62132706A JP 27289985 A JP27289985 A JP 27289985A JP 27289985 A JP27289985 A JP 27289985A JP S62132706 A JPS62132706 A JP S62132706A
Authority
JP
Japan
Prior art keywords
ozone
electrodes
insulating material
discharge
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27289985A
Other languages
Japanese (ja)
Inventor
Takaaki Noda
隆明 野田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Heavy Industries Ltd
Original Assignee
Sumitomo Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Heavy Industries Ltd filed Critical Sumitomo Heavy Industries Ltd
Priority to JP27289985A priority Critical patent/JPS62132706A/en
Publication of JPS62132706A publication Critical patent/JPS62132706A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To improve the ozone formation efficiency, by providing a construction in which a porous insulating material is installed in a direction perpendicular to the original gas flow in a box where the original gas flows and ozone forming reaction by silent discharge is carried out in the porous insulating material. CONSTITUTION:A porous insulating material 12 is provided in a direction perpendicular to the flow of an original flow gas 7 in a box 11 where the original gas 7 flows. Plural high-voltage electrodes 13 and earthing electrodes 14 are alternately placed in the direction perpendicular to the original gas flow 7 in or on the surface of the insulating material 12. A high voltage is applied from a high-voltage electric power source 15 across the high-voltage electrodes 13 and earthing electrodes 14 to carry out discharge in minute voids in the porous insulating material 12 between both electrodes and the original gas 7 is introduced into the box 11 to cause ozone forming reaction in the porous insulating material 12 and give the aimed ozone gas 8. Thereby the ozone forming reaction can be accelerated and ozone decomposing reaction can be suppressed to improve the ozone formation efficiency.

Description

【発明の詳細な説明】 産業上の利用分野 この発明はオゾン発生装置に関するものである。[Detailed description of the invention] Industrial applications This invention relates to an ozone generator.

従来技術 従来型のオゾナイザとしては第1図及び第2図に例示し
た様に電極を平行平板状に配置した平板型と同意円筒状
に配置した円筒型とがあり、原理的には双方共に、対向
する電極1,2の高圧側電極1にガラス、マイカ、セラ
ミックス等の誘電体層3を密着させて形成し、空隙5に
おいて無声放電6を発生させて、原料ガス7をオゾン化
するものである。
PRIOR ART Conventional ozonizers include a flat type in which electrodes are arranged in a parallel plate shape and a cylindrical type in which electrodes are arranged in a cylindrical shape, as illustrated in FIGS. 1 and 2. In principle, both A dielectric layer 3 made of glass, mica, ceramics, etc. is formed in close contact with the high-voltage side electrode 1 of the opposing electrodes 1 and 2, and a silent discharge 6 is generated in the gap 5 to ozone the raw material gas 7. be.

この発明が解決すべき問題点 こうした従来型のオゾナイザのオゾン生成効率η、即ち
オゾン発生量対消費電力比は熱化学式から期待される理
論値に比べて著るしく低く、消費電力量のうち、オゾン
生成に利用されたものは約数チにすぎない。
Problems to be Solved by this Invention The ozone generation efficiency η, that is, the ratio of ozone generation to power consumption, of these conventional ozonizers is significantly lower than the theoretical value expected from the thermochemical equation, and the amount of power consumed is Only about a few square meters are used for ozone production.

これは放電により生じた電子がオゾン生成反応 02+e→O+O+e    (Fl)0−1−02−
1−M→Oa+M   (F’2)だけではなく、オゾ
ン分解反応 Os+e−+02+o+e  (D2)もひき起こすこ
とや、放電によりガス温度が上昇し、下記のオゾン分解
反応 03+0→202     (DI )も活発になるこ
とが主な原因となっている。
This is because the electrons generated by the discharge cause the ozone production reaction02+e→O+O+e (Fl)0-1-02-
Not only 1-M→Oa+M (F'2) but also the ozone decomposition reaction Os+e-+02+o+e (D2) is caused, and the gas temperature rises due to the discharge, and the following ozone decomposition reaction 03+0→202 (DI) is also active. The main reason is that.

この様に、従来型オゾナイザの第1の欠点は電力効率η
の低いこと、即ちランニングコストの高いことがあげら
れる。
In this way, the first drawback of conventional ozonizers is the power efficiency η
In other words, the running cost is high.

また、安定な無声放電を発生させるためには放電空隙5
の間隔を数n以下にする必要があり、更に少しでもオゾ
ン生成効率を高めようとするならば、約1nの放電空隙
長が望ましいとされている。
In addition, in order to generate stable silent discharge, the discharge gap 5
It is necessary to keep the interval between the two electrodes to a few nanometers or less, and if the ozone generation efficiency is to be improved even slightly, it is said that a discharge gap length of about 1 nanometer is desirable.

しかし、工業用オゾナイザの如き大型器でわずか1mの
均一な空隙を形成することは極めて困難であり、製作コ
ストが高いことがあげられる。
However, it is extremely difficult to form a uniform gap of only 1 m in a large device such as an industrial ozonizer, and the manufacturing cost is high.

そこでこの発明は、前記の様な従来型オゾナイザの問題
点を解決して、構造的に製作コストが低減されると共に
オゾン生成反応(FM、F2)を促進してオゾン分解反
応を抑制し、オゾン生成効率を飛躍的に向上させること
が出来るオゾン発生装置を提供することを目的とする。
Therefore, this invention solves the problems of the conventional ozonizer as described above, reduces the manufacturing cost structurally, promotes the ozone production reaction (FM, F2), suppresses the ozone decomposition reaction, and ozone The purpose of the present invention is to provide an ozone generator that can dramatically improve generation efficiency.

発明の効果 この発明によるオゾン発生装置は、原流ガスが流通する
函体内に原流ガス流と直交する方向に多孔性絶縁物を設
け、この絶縁物内又は表面に前記ガス流と直交する方向
に複数個の高圧電極と接地電極とを交互に配置し、これ
ら両電極間に高電圧電源より高電圧を印加するよう構成
された点に特徴がある。
Effects of the Invention The ozone generator according to the present invention provides a porous insulator in a direction perpendicular to the original gas flow within the box through which the original gas flows, and a porous insulator in the direction perpendicular to the gas flow within or on the surface of the insulator. The device is characterized in that a plurality of high-voltage electrodes and a ground electrode are arranged alternately, and a high voltage is applied between these two electrodes from a high-voltage power source.

実施例 以下、図示するこの発明の実施例により説明する。Example DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be explained below with reference to illustrated embodiments.

第3図(a)に、この発明によるオゾン発生装置の第1
実施例を示した。ここで、函体11の内部には原料ガス
7の流れ方向と直交するよう多孔性絶縁物12が設けら
れており、この多孔性絶縁物12内には複数個の高圧電
極13と接地電極14がガス7の流れと直交する一直線
上に一定間隔で交互に配置されている。そして、高圧電
極13と接地電極14との間には高圧電源15が設置さ
れている。
FIG. 3(a) shows the first part of the ozone generator according to the present invention.
An example was shown. Here, a porous insulator 12 is provided inside the box 11 so as to be perpendicular to the flow direction of the raw material gas 7, and inside this porous insulator 12, a plurality of high voltage electrodes 13 and a ground electrode 14 are provided. are arranged alternately at regular intervals on a straight line perpendicular to the flow of gas 7. A high voltage power source 15 is installed between the high voltage electrode 13 and the ground electrode 14.

この高圧電源15は交流(商用周波数〜数KHz )の
他、直流、脈流、パルス状電圧等、任意の波形を用いる
ことができるが、電力効率の観点からはパルス状電圧が
最も望ましい°。
The high-voltage power supply 15 can use any waveform such as alternating current (commercial frequency to several KHz), direct current, pulsating current, pulsed voltage, etc., but from the viewpoint of power efficiency, pulsed voltage is most desirable.

また前記電極13.14の材質は生成されたオゾンに化
学的に侵されないものならば、ステンレススチール等の
金属、導電性プラスチックス等の材料が使用可能である
Further, the electrodes 13 and 14 may be made of metals such as stainless steel, conductive plastics, etc. as long as they are not chemically attacked by the generated ozone.

また電極の形状は一般に不平等電界型(曲率半径の小さ
いもの)と平等電界型(曲率半径が大きいもの)に大別
されるが、この装置の場合には後述する様に多孔性絶縁
物内の微少空隙で放電が生ずるため、電極の曲率の大小
によらず安定な放電を得ることができ、電極の形状寸法
による制限を受けない。
The shape of the electrode is generally divided into unequal electric field type (those with a small radius of curvature) and uniform electric field type (those with a large radius of curvature). Since the discharge occurs in the minute voids in the electrode, a stable discharge can be obtained regardless of the size of the curvature of the electrode, and is not limited by the shape and size of the electrode.

多孔性絶縁物12の材質としては、絶縁性を有するもの
であれば放電に対して物理的、化学的、熱的に安全な全
ての材料を用いることができる。
As the material for the porous insulator 12, any material that is physically, chemically, and thermally safe against discharge can be used as long as it has insulating properties.

後段の作用の項で詳述するが、オゾン生成反応はもっば
ら絶縁物質、1,2内で行なわれるため、酸化反応に対
して触媒作用を有するC!uzo、V2O5゜Mo5s
 、MnO2,Oo2eg 、白金、銀等の成分を含有
した材料を用いることが望ましい。
As will be explained in detail in the section on effects below, since the ozone production reaction takes place mostly within the insulating materials 1 and 2, C! has a catalytic effect on the oxidation reaction. uzo, V2O5゜Mo5s
It is desirable to use a material containing components such as , MnO2, Oo2eg, platinum, and silver.

多孔性絶縁物は、その内部に多数の孔(微小放電空隙)
を有することが重要であるため、その構成態様としては
、いわゆるバルク状の多孔性絶縁物(セラミックス・フ
オーム等)でもよいし、粉粒体の充填層、せんい状物体
の形成物等種々の態様が使用出来、形状の限定も受けな
い0 また、第3図(1))に示した第2実施例では電極13
.14を多孔性絶縁物質12の原料ガス側表面近傍に設
置したものである。
Porous insulators have many pores (micro discharge voids) inside them.
Since it is important to have the following characteristics, its structure may be a so-called bulk porous insulator (ceramic foam, etc.), a packed layer of powder or granules, a spiral-shaped object, etc. In addition, in the second embodiment shown in FIG. 3 (1), the electrode 13
.. 14 is installed near the surface of the porous insulating material 12 on the source gas side.

この場合には、多孔性絶縁物の内部微小空隙のみでなく
絶縁物表面でも放電が生ずることになる。
In this case, discharge will occur not only in the internal micropores of the porous insulator but also on the surface of the insulator.

また、第3図(C)に示した第3実施例では電極13.
14を多孔性絶縁物質12の内部に複数列配置したもの
であり、高圧電極16と接地電極14はいわゆる千鳥形
に配置されている。この場合には放電は隣接する全ての
高圧電極16と接地電極14との間で生ずるため放電発
生範囲が広くなり、ひいてはオゾン生成量が増大する。
Further, in the third embodiment shown in FIG. 3(C), the electrode 13.
14 are arranged in a plurality of rows inside the porous insulating material 12, and the high voltage electrodes 16 and the ground electrodes 14 are arranged in a so-called staggered pattern. In this case, discharge occurs between all adjacent high-voltage electrodes 16 and ground electrodes 14, so the range in which discharge occurs becomes wider, and as a result, the amount of ozone produced increases.

以上の構成において、この発明による装置のオゾン発生
原理及び電力効率向上効果について第3図(a)の実施
例に基づいて説明する。
In the above configuration, the principle of ozone generation and the power efficiency improvement effect of the apparatus according to the present invention will be explained based on the embodiment shown in FIG. 3(a).

電極13.14間に高圧電源15より高電圧を印加する
と、電極間、正確には電極間の多孔性絶縁物質12内の
微小空隙で放電が生じる。この放電により発生した電子
の作用により、式(Fl)により原料ガス中の酸素分子
が解離され、酸素原子を生ずる。
When a high voltage is applied between the electrodes 13 and 14 from the high-voltage power supply 15, a discharge occurs between the electrodes, more precisely, in the minute voids in the porous insulating material 12 between the electrodes. Due to the action of electrons generated by this discharge, oxygen molecules in the source gas are dissociated according to formula (Fl), producing oxygen atoms.

この酸素原子は、主に電極を含む面よりも後流側の多孔
性絶縁物質内の微小空隙内で酸素分子と反応しくF2)
式によりオゾンが生成される。
These oxygen atoms react with oxygen molecules mainly within the micropores in the porous insulating material on the downstream side of the surface containing the electrode (F2).
Ozone is produced by the formula.

第1図及び第2図に示した従来型のオゾン発生器では、
ガス流れ方向の放電空隙全体で電子が生じるため、ガス
上流側では(Fl)式の反応のみが起こるが、下流側で
は(Fl)式の反応と共に(Dl)式の反応も生ずるた
め、放電によるオゾン生成反応と分解反応が同時に起こ
っている。
In the conventional ozone generator shown in Figures 1 and 2,
Since electrons are generated throughout the discharge gap in the gas flow direction, only the reaction of the formula (Fl) occurs on the gas upstream side, but the reaction of the formula (Dl) as well as the reaction of the (Fl) formula occurs on the downstream side, so the reaction due to the discharge Ozone production and decomposition reactions occur simultaneously.

これに対して、この発明によれば(F2)式によりオゾ
ンの生成される電極を含む面より下流側部分では、電子
は殆ど存在しないため(Dl)式の反応は殆ど起こらず
、従ってオゾン分解反応を抑制することができる。
On the other hand, according to the present invention, in the downstream part of the surface including the electrode where ozone is generated according to the equation (F2), since there are almost no electrons, the reaction of the equation (Dl) hardly occurs, and therefore ozone decomposition Reactions can be suppressed.

また、(F2)式に示したオゾン生成反応では第6物体
Mの存在が重要である。従来型のオゾン発生器ではこの
Mとして酸素分子や窒素分子が重要であるが、この実施
例の場合には、これら酸素分子や窒素分子の他に多孔性
絶縁物の表面が第3物体として有効に作用する。
Furthermore, the presence of the sixth object M is important in the ozone production reaction shown in equation (F2). In conventional ozone generators, oxygen molecules and nitrogen molecules are important as M, but in this embodiment, in addition to these oxygen molecules and nitrogen molecules, the surface of the porous insulator is effective as the third object. It acts on

これは多孔性絶縁物質12が極めて大きい比表面積(単
位体積当たりの表面積)を有することに起因する。こう
してこの方式では(F2)式によるオゾン生成反応が促
進される。
This is because the porous insulating material 12 has an extremely large specific surface area (surface area per unit volume). Thus, in this method, the ozone production reaction according to equation (F2) is promoted.

更に、多孔性絶縁物質12として酸化反応に対する触媒
作用を有する物質(Cu20.σ205 、Mo5s。
Furthermore, the porous insulating material 12 is a material having a catalytic effect on oxidation reactions (Cu20.σ205, Mo5s).

MnO2,Co20a、白金、銀等)を含有する材料を
使用すれば、上記比表面積の大なることと相まつてオゾ
ン生成効率は著しく向上する。
If a material containing MnO2, Co20a, platinum, silver, etc.) is used, the ozone generation efficiency will be significantly improved in conjunction with the increase in the specific surface area.

次に放電領域、即ち電極を含む面の近傍で生ずる放電は
、微小空隙放電の形態をとるため、従来型のオゾン発生
器で望ましいとされていた「放電空隙を小さくすること
」が容易に実現されていることになる。
Next, the discharge that occurs in the discharge region, that is, near the surface containing the electrode, takes the form of a microgap discharge, so it is easy to achieve "reducing the discharge gap," which is desirable in conventional ozone generators. This means that it has been done.

この実施例では、こうした微小放電が極めて多数の場所
で発生するため、酸素分子の解離(Fl)式も促進され
ることになる。一方、各々の微小空隙に加わる電圧は低
いため、放電エネルギーも小さくなる。従って、放電エ
ネルギーによるガス温度の上昇に起因するところのオゾ
ン分解反応(Dl)式も抑制される。
In this embodiment, since such microdischarges occur in an extremely large number of locations, the dissociation (Fl) equation of oxygen molecules is also promoted. On the other hand, since the voltage applied to each microgap is low, the discharge energy is also small. Therefore, the ozone decomposition reaction (Dl) equation, which is caused by an increase in gas temperature due to discharge energy, is also suppressed.

こうして、放電化学反応によるオゾン生成過程(Fl 
、F2 、DI 、Dl )のうち、オゾン生成に関係
する反応(Fl 、F2)式を促進し、オゾン分解反応
(DI 、Dl)式を抑制することにより、オゾン発生
効率を飛躍的に高めることができる。
In this way, the ozone generation process (Fl
, F2, DI, Dl), the ozone generation efficiency can be dramatically increased by promoting the reaction (Fl, F2) related to ozone production and suppressing the ozone decomposition reaction (DI, Dl). I can do it.

前述した現象は印加電圧波形に依らないので交流(数1
0〜数KHz )、直流、脈流、パルス電圧等、任意の
電圧波形を有する高圧電源を用いることができるが、効
率の向上という観点からは、パルス状電圧を用いるのが
最も望ましい。
The above-mentioned phenomenon does not depend on the applied voltage waveform, so it is
Although it is possible to use a high-voltage power source having any voltage waveform, such as DC, pulsating current, or pulsed voltage (0 to several KHz), it is most desirable to use pulsed voltage from the viewpoint of improving efficiency.

パルス状電圧を用いれば極めて短時間だけ高い電場を形
成することができ、エネルギーの大きな放電(火花、ア
ーク等)に移行しにくくなるため、放電空隙内のガス温
度を上昇させることなく、多量の電子を供給することが
できるだけでなく、イオン電流による無駄な電力消費を
抑制することが出来る。
By using a pulsed voltage, it is possible to create a high electric field for an extremely short period of time, making it difficult for the transition to a high-energy discharge (spark, arc, etc.). Not only can electrons be supplied, but wasteful power consumption due to ion current can be suppressed.

これら、作用に関する記載は第6図(b)、(C)に示
した実施例にも同様に当てはまる。
These descriptions regarding the operation similarly apply to the embodiments shown in FIGS. 6(b) and 6(C).

発明の効果 この発明によるオゾン発生装置実施例は以上の通りであ
り、次に述べる効果を挙げることができる。
Effects of the Invention The embodiment of the ozone generator according to the present invention is as described above, and the following effects can be achieved.

オゾン生成に関与する反応を促進すると共にオゾン分解
に関与する反応を抑制してオゾン生成効率を飛躍的に向
上させることができる。
By promoting reactions involved in ozone production and suppressing reactions involved in ozone decomposition, it is possible to dramatically improve ozone production efficiency.

また、機器製作の立場からは多孔性絶縁物中に電極を挿
入するだけなので製作コストが低減される。
Furthermore, from the standpoint of device manufacturing, manufacturing costs are reduced because the electrodes are simply inserted into the porous insulator.

【図面の簡単な説明】[Brief explanation of drawings]

第1図及び第2図は従来例を示す構造図、第3図(a)
、(b)、(C)はこの発明によるオゾン発生装置の構
造を示す実施例図である。 1・・高圧電極、2・・接地電極、3・・誘電体、4・
・交流高圧電源、5・・放電空隙、6・・無声放電、7
・・原料ガス、8・・オゾン化ガス、11・・函体、1
2・・多孔性絶縁物質、13・・高圧側電極、14・・
接地側電極、15・・高圧電源。 第1図 (a) 第2図 第3図 (b)      (C)
Figures 1 and 2 are structural diagrams showing the conventional example, Figure 3 (a)
, (b) and (C) are embodiment diagrams showing the structure of an ozone generator according to the present invention. 1. High voltage electrode, 2. Ground electrode, 3. Dielectric, 4.
・AC high voltage power supply, 5..Discharge gap, 6..Silent discharge, 7.
... Raw material gas, 8... Ozonated gas, 11... Box, 1
2. Porous insulating material, 13. High voltage side electrode, 14.
Ground side electrode, 15... High voltage power supply. Figure 1 (a) Figure 2 Figure 3 (b) (C)

Claims (1)

【特許請求の範囲】[Claims] 原流ガスが流通する函体と、当該函体内の原流ガスの流
れと直交する方向に設けられた多孔性絶縁物と、当該絶
縁物内又は表面でかつ前記原流ガスの流れと直交する方
向に交互に配置された複数個の高圧電極と接地電極と、
これら両電極間に高電圧を印加する高電圧電源とを備え
たオゾン発生装置。
A box through which the raw gas flows, a porous insulator provided in a direction perpendicular to the flow of the raw gas inside the box, and a porous insulator provided within or on the surface of the insulator and perpendicular to the flow of the raw gas. a plurality of high voltage electrodes and ground electrodes arranged alternately in the direction;
An ozone generator equipped with a high voltage power supply that applies a high voltage between these two electrodes.
JP27289985A 1985-12-04 1985-12-04 Ozonizer Pending JPS62132706A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27289985A JPS62132706A (en) 1985-12-04 1985-12-04 Ozonizer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27289985A JPS62132706A (en) 1985-12-04 1985-12-04 Ozonizer

Publications (1)

Publication Number Publication Date
JPS62132706A true JPS62132706A (en) 1987-06-16

Family

ID=17520308

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27289985A Pending JPS62132706A (en) 1985-12-04 1985-12-04 Ozonizer

Country Status (1)

Country Link
JP (1) JPS62132706A (en)

Similar Documents

Publication Publication Date Title
Kogelschatz et al. Ozone generation from oxygen and air: discharge physics and reaction mechanisms
Malik et al. Comparison of catalytic activity of aluminum oxide and silica gel for decomposition of volatile organic compounds (VOCs) in a plasmacatalytic reactor
AU581554B2 (en) Method of removing so2, nox and particles from gas mixtures using streamer corona
US4960570A (en) Ozone generator
US6471932B1 (en) Process for the plasma-catalytic production of ammonia
JPH11128728A (en) Electric discharge reactor
Jodzis et al. Ozone synthesis under surface discharges in oxygen: application of a concentric actuator
WO2018205758A1 (en) Apparatus for producing oxygen active substance by means of mesh-shaped creeping discharge plasma
CN103861435B (en) A kind of dielectric barrier plasma discharge elementary cell with holes and reactor
JP2007216193A (en) Plasma discharge reactor with heating function
CN203790807U (en) Basic discharge unit and reactor of plasmas blocked by porous dielectrics
RU2346886C2 (en) Ozone generator
US10577261B2 (en) Water treatment apparatus and water treatment method
KR100461516B1 (en) multistage structured barrier plasma discharge apparatus with dielectric-embedded type electrodes
JPS62132706A (en) Ozonizer
JP5438818B2 (en) Ozone generator and ozone generation method
JP4036600B2 (en) Plasma decomposition apparatus and gas plasma decomposition method
JP3121105B2 (en) Glow discharge plasma generating electrode and reactor using this electrode
JPS63291804A (en) Ozone generator
KR100472751B1 (en) Mixture and one-body type purification apparatus with dielectric barrier structure
JPS62278105A (en) Ozone-generator
JPH0741303A (en) Ozone generator
JPH0822726B2 (en) Method of generating corona discharge reaction
Wei et al. Experimental study on ozone generation and ozone oxidation to removal multi-pollutant of flue gas
JP3187877B2 (en) Discharge reactor