JPS62132606A - Method of molding ceramics and carbon material - Google Patents

Method of molding ceramics and carbon material

Info

Publication number
JPS62132606A
JPS62132606A JP27160385A JP27160385A JPS62132606A JP S62132606 A JPS62132606 A JP S62132606A JP 27160385 A JP27160385 A JP 27160385A JP 27160385 A JP27160385 A JP 27160385A JP S62132606 A JPS62132606 A JP S62132606A
Authority
JP
Japan
Prior art keywords
molding
mold
formwork
metal
paper
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP27160385A
Other languages
Japanese (ja)
Other versions
JPH0442164B2 (en
Inventor
紘一 高田
和弘 藤本
努 斉藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Light Metal Co Ltd
Original Assignee
Nippon Light Metal Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Light Metal Co Ltd filed Critical Nippon Light Metal Co Ltd
Priority to JP27160385A priority Critical patent/JPS62132606A/en
Publication of JPS62132606A publication Critical patent/JPS62132606A/en
Publication of JPH0442164B2 publication Critical patent/JPH0442164B2/ja
Granted legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は振動成型法ないしは衝撃荷重成型法によって型
枠を用いて各種セラミックス、炭素材等の耐火材の成型
法に関し、a型性に優れ。
[Detailed Description of the Invention] [Industrial Field of Application] The present invention relates to a method of molding refractory materials such as various ceramics and carbon materials using a formwork by vibration molding or impact load molding, and which has excellent a-shape properties. .

表面剥離欠陥がなく、充填密度が高くかつ均一な成型体
をうる方法に係わる。
The present invention relates to a method for obtaining a uniform molded product with no surface peeling defects, high packing density, and uniformity.

〔従来の技術および発明が解決しようとする問題点〕[Problems to be solved by conventional technology and invention]

セラミックスの円筒2円柱あるいは多角筒。 Ceramic cylinder 2 cylinders or polygonal cylinder.

多角柱などを成型する方法としては、泥漿鋳込み成型法
、押出成型法、振動成型法、タンピング成型法などがあ
る。
Examples of methods for molding polygonal columns include slurry casting, extrusion molding, vibration molding, and tamping molding.

ところで、泥漿鋳込み成形法は大葉の水を用いるので原
料粉の粒度分布を広くすることができず、厚内、高密度
で大型の成形体を得ることが困難である。
By the way, since the slurry casting method uses large-scale water, it is not possible to widen the particle size distribution of the raw material powder, and it is difficult to obtain a thick, high-density, and large-sized molded body.

押出成形法は連続した同一断面形状品にのみしか適用で
きず、従って、フランジ付き、底付き、テーパー付き構
造や厚肉構造品には適用できない。また水、バインダー
、添加剤などの含有率が高いので成形体内部に空孔が残
留しやすく、高密度の成形体が得られ難い。
The extrusion method can only be applied to continuous products with the same cross-sectional shape, and therefore cannot be applied to flanged, bottomed, tapered or thick-walled structures. Furthermore, since the content of water, binder, additives, etc. is high, pores tend to remain inside the molded product, making it difficult to obtain a high-density molded product.

振動成形法・タンピング成形法は通常、木型もしくは金
型の割り型が用いられるが2次のような問題がある。
In the vibration molding method and tamping molding method, a split mold of a wooden mold or a metal mold is usually used, but there are the following problems.

1)原料の密充填化に伴なって水と結合剤が成形体と型
枠の境界付近に移動し、粘着もしくは固化するために離
型性が悪くなり、離型剤の使用により離型ができたとし
ても原料杯土の一部が剥離して型枠側へ固着して持ち去
されるため、成形体の表面に欠陥が生じゃすい。
1) As the raw materials become densely packed, water and binder move near the boundary between the molded product and the mold and stick or solidify, resulting in poor mold release. Even if it is possible, some of the raw clay will peel off, stick to the formwork, and be carried away, resulting in defects on the surface of the molded body.

2)従来一般的に用いられている成形用型枠は金属製も
しくは硬質木枠であって通気性を有さないために、原料
粒子の空隙部の空気および水蒸気などの気体が充填の進
行に伴なって成形体の内部や成形体と型枠との境界に集
合して残留するため、空孔や層状剥離等の欠陥を生じ、
成形体が到達しうる密充填度には所定の限度が存在し、
もしも成形体の一部の充填密度がこの限界点に到達した
ならば他に低充填密度の部分が残っていたとしてもその
時点で成形操作を終了せねば過充填が起こる。
2) Conventionally commonly used molding frames are made of metal or hard wood and do not have air permeability, so gases such as air and water vapor in the voids of raw material particles interfere with the filling process. As a result, they collect and remain inside the molded body or at the boundary between the molded body and the formwork, causing defects such as voids and delamination.
There is a predetermined limit to the degree of dense packing that a molded body can reach.
If the packing density of a part of the molded body reaches this limit point, overfilling will occur if the molding operation is not terminated at that point even if other parts with low packing density remain.

したがって長尺品等の大型成形体の場合には充填密度が
不均一化する問題があった。
Therefore, in the case of large molded products such as long products, there is a problem that the packing density becomes non-uniform.

3)従来用いられて来た木型もしくは金型で過度の圧密
充填を行なうと、成形体と型枠との固着が起って離型が
困難となったり、成形体の内部にエネルギーが残留応力
として蓄積され、離型時に成形体が膨張破壊したり、乾
燥もしくは焼成時に破壊する問題があった。
3) Excessive compaction filling using conventional wooden molds or metal molds may cause the molded product to stick to the mold, making it difficult to release from the mold or causing energy to remain inside the molded product. This accumulates as stress, causing problems such as the molded body expanding and breaking during demolding, or breaking during drying or firing.

4)振動成型法では水、結合剤を用いないと高密度の充
填ができない。
4) High-density filling cannot be achieved with the vibration molding method without using water or a binder.

〔問題を解決するための手段及び作用〕本発明者らは、
振動成形法ないしは衝撃荷重成型法によって離型性が良
好で表面剥離欠陥がなく、充填密度が均一な成形体を得
べく多くの研究を重ねた結果、型枠(筒体を成形する場
合の芯体をも含む意で用いる)とセラミックスないしは
炭素材料との間に特定の性質を有する紙製枠体(筒体を
成形する場合の芯体の外周に用いる枠体をも含む)を介
在させて成形することによって目的を達し得ることを認
めて本発明をなしたものである。即ち2本発明は振動成
型法る方法において、吸水性1通気性および塑性変形性
を有する軟質材料から成る型枠体と高強度を有する支持
体とを組み合わせた成型用枠体を用いることを特徴とす
るものである。
[Means and effects for solving the problem] The present inventors
As a result of extensive research in order to obtain a molded product with good mold releasability, no surface peeling defects, and a uniform packing density using the vibration molding method or the impact load molding method, we have developed A paper frame with specific properties (including the frame used for the outer periphery of the core when forming a cylinder) is interposed between the ceramic or carbon material (also used to include the body) and the ceramic or carbon material. The present invention was made based on the recognition that the object could be achieved by molding. That is, 2. The present invention is characterized in that a vibration molding method uses a molding frame that combines a mold body made of a soft material with water absorption, air permeability, and plastic deformability, and a support having high strength. That is.

原料杯土に接する部分に軟質材から成る型枠体と、この
型枠を支持する高強度木枠体もしくは金属枠体とを組み
合わせて用いる。この場合の高強度支持枠体には筒体を
成形する場合の芯体をも含んでいる。
A form body made of a soft material is used in combination with a high-strength wooden frame body or a metal frame body that supports the form body in the portion that comes into contact with the raw potted soil. The high-strength support frame in this case also includes a core for forming the cylinder.

軟質材料からなる型枠体は次に述べる通り適度の吸水性
(吸油性を含む)1通気性および塑性変形性を有するも
のでなければならない。
The form body made of a soft material must have appropriate water absorption (including oil absorption), air permeability, and plastic deformability as described below.

■ 吸水率 成形の進行に伴なって成形体とこれに接する型枠との境
界面へ移動して来る結合剤を含有する水を型枠自体が吸
収して成形体表面が低水分状態に保たれる。吸水率ない
しは吸油率は1%以上あることが必要であり、好ましく
は5%以上である。1%以下であると、離型性がよく9
表面欠陥のない健全な成型体が得られに(くなる。
■Water Absorption As molding progresses, the mold itself absorbs the water containing the binder that moves to the interface between the molded body and the mold in contact with it, keeping the surface of the molded body in a low-moisture state. dripping The water absorption rate or oil absorption rate must be 1% or more, preferably 5% or more. When it is 1% or less, the mold release property is good9
A healthy molded product with no surface defects can be obtained.

■ 通気性 成形体の充填密度を上げるためには原料坏土の粒子間の
空隙に存在する空気、水蒸気および結合剤の気化等によ
り発生するガスなどの気体成分を軟質材型枠体を介して
系外へ排出することが効果的である。通気率はO,Xミ
リダルシー以上あることが必要であり、好ましくは1ミ
リダルン一以上である。0.1ミルダルシー以下である
と成型体の内部や表面付近に粗大気孔が残留したり2層
状の剥離を生じやすくなる。なお、1ダルシーとは1橡
/−の圧力差において体積1立方センチメートルあたり
1秒間に1ミリリツトルの空気が透過することを意味す
る。
■ In order to increase the packing density of the breathable molded body, gas components such as air, water vapor, and gas generated by vaporization of the binder, existing in the voids between the particles of the raw material clay, are removed through the soft material formwork. It is effective to discharge it out of the system. The air permeability must be O,X millidarc or more, preferably 1 millidarcy or more. If it is less than 0.1 mil darcy, coarse pores remain inside or near the surface of the molded product, or two-layer peeling tends to occur. Note that 1 darcy means that 1 milliliter of air permeates per second per 1 cubic centimeter of volume at a pressure difference of 1 square meter/-.

■ 塑性変形性 成形体の充填密度の増大に伴なって成形体内部にエネル
ギー(内部応力)が蓄積され。
■ Plastic deformability As the packing density of the compact increases, energy (internal stress) accumulates inside the compact.

型枠の脱型によって拘束方が解放された時に膨張が起る
。成形体を高強度で高剛性の型枠で完全に拘束しつつ過
度の密充填を行なうと脱型時に大きな膨張(弾性復元作
用と呼ぶ)が起こり、成形体が破壊してしまう。しかる
に本発明では成形体の密充填化が進み、成形体の内部に
蓄積されるエネルギーが過大になるとこの成形体を拘束
している型枠自体が微小な変形をしてこの過剰なエネル
ギーを解放し、さらに密充填操作を継続することができ
る。一般に物質の応力塑性変形性は応力−ひすみ曲線に
よって与えられるが、このような2次元上の特性に対し
て本発明の適正範囲を規定するのは難しいのでそれに代
えて目安値として弾性率と引張り強度で示めすと1次記
の値を満足するのが好ましい。
Expansion occurs when the restraints are released by demolding the formwork. If the molded body is completely restrained by a high-strength, high-rigidity formwork and packed too tightly, a large expansion (called elastic restoring effect) will occur upon demolding, and the molded body will be destroyed. However, in the present invention, as the compact is packed more closely and the energy accumulated inside the compact becomes excessive, the mold itself that restrains the compact deforms slightly to release this excess energy. Then, the close packing operation can be continued. In general, the stress-plastic deformability of a material is given by a stress-strain curve, but since it is difficult to define the appropriate range of the present invention for such two-dimensional properties, the elastic modulus and elastic modulus are used as a guideline instead. In terms of tensile strength, it is preferable that the following value is satisfied.

乾燥時  吸水時 弾性率100〜5,000kf/j 50〜5,000
 kf/d引張強度    50呻/C−以上   2
0吟/cJ以上吸水時の強度については成形時に型枠に
加えられる最大圧力に対して適量以上の変形を起さない
ことが必要であり、圧力と変形量との二次元的相関性に
おいて適正範囲が存在する。すなわち本発明にかかる振
動成形法もしくは衝撃荷重成形法においては一般に原料
坏土と型枠に対して1001V/ca 〜10001’
f / CIAの範囲で瞬間衝撃圧力が印加されるが、
このような力学負荷条件の下で型枠の変形量は0.01
%〜1%の範囲であることが望ましく。
When dry, elastic modulus when absorbing water: 100 to 5,000 kf/j 50 to 5,000
kf/d tensile strength 50 groan/C- or more 2
Regarding the strength when absorbing water of 0 gin/cJ or more, it is necessary to not cause more than an appropriate amount of deformation with respect to the maximum pressure applied to the mold during molding, and it is necessary to ensure that the two-dimensional correlation between pressure and deformation amount is appropriate. A range exists. That is, in the vibration molding method or the impact load molding method according to the present invention, the voltage is generally 1001 V/ca to 10001' for the raw material clay and the mold.
An instantaneous impact pressure is applied in the range of f/CIA, but
Under such mechanical load conditions, the amount of deformation of the formwork is 0.01
It is desirable that the content be in the range of % to 1%.

第1図に変形量の適正範囲を示めす。Figure 1 shows the appropriate range of deformation.

吸水時の強度が小さいと成形体の寸法精度や寸法再現性
が悪くなり、また成形時に成形体と型枠との間に生ずる
ぜん断力によって型枠の部分的な損傷が起こり、これが
成形体自体の表面仕上り状態も悪化させる。型枠の変形
1が0.01%未満だと原料坏土の密充填化に伴なって
成形体内部に蓄積される応力を解放することができず、
脱型時に成形体の弾性膨張が起り破壊や内部欠陥が発生
する。また強度が過大であると変形量が小さすぎて成形
体内部の応力を解放することができなくなり。
If the strength during water absorption is low, the dimensional accuracy and dimensional reproducibility of the molded product will deteriorate, and the shearing force generated between the molded product and the mold during molding will cause partial damage to the mold, which can cause damage to the molded product. It also deteriorates the surface finish of the product itself. If the deformation 1 of the formwork is less than 0.01%, it will not be possible to release the stress accumulated inside the molded body due to the dense packing of the raw material clay.
When demolding, elastic expansion of the molded product occurs, causing breakage and internal defects. Furthermore, if the strength is too high, the amount of deformation will be too small, making it impossible to release the stress inside the molded body.

成形体の充填密度が上らず、また所望の寸法精度を得る
ことができない。
The packing density of the molded body cannot be increased, and the desired dimensional accuracy cannot be obtained.

ただし成形体に接する軟質劇の型枠の吸水時強度が低く
てもせん断破壊が起らなければ過大変形についてはこの
型枠に密接する高強度支持体枠の使用によって回避する
ことができる。
However, even if the strength of the flexible formwork in contact with the molded body is low upon absorption of water, if shear failure does not occur, excessive deformation can be avoided by using a high-strength support frame in close contact with the formwork.

前記の特性を有し、実用に供し得る軟質材としては2例
えばクラフト紙、硬質ポリウレタンシート1合成繊維織
布、硬質ポリエチレンシート、軟質木材などがある。こ
れらを成形用型枠として用いる場合には、あらかじめ適
当な接着剤を用いて所望の形状に積層して成形しても良
く、あるいは金属、木2合成樹脂などの^強度材料から
成る型枠の内面もしくは外面に張り合わせて用いても良
い。この場合の軟質材の厚さは成形するセラミックスも
しくは耐火材の形状に応じて適宜選定すれば良く1例え
ば円筒成形体の外径が50〜600闘のときに2〜30
mとするものであり、所要の成形体の形状に応じて円形
、立方体、直方体、多角形もしくは異形状に成形し、そ
扛ぞ扛筒状とするときには外枠体、内枠体とを形成して
使用する。
Examples of soft materials that have the above-mentioned characteristics and can be put to practical use include kraft paper, hard polyurethane sheet, synthetic fiber woven fabric, hard polyethylene sheet, and soft wood. When using these as a molding form, they may be laminated in advance into the desired shape using an appropriate adhesive and molded, or they may be made of a formwork made of a strong material such as metal, wood or synthetic resin. It may be used by pasting it on the inner or outer surface. In this case, the thickness of the soft material may be appropriately selected depending on the shape of the ceramic or refractory material to be molded.1For example, when the outer diameter of the cylindrical molded body is 50 to 600 mm, the thickness of the soft material is 2 to 30 mm.
m, and is formed into a circle, cube, rectangular parallelepiped, polygon, or irregular shape depending on the shape of the desired molded object, and when it is made into a cylindrical shape, an outer frame body and an inner frame body are formed. and use it.

本発明で使用する成形方法と17ては振動成形法もしく
は空気圧11撃子(ランマー)全相いる衝撃加圧成形法
が一般的である。
The molding method used in the present invention is generally a vibration molding method or an impact pressure molding method using a pneumatic rammer.

振動成形法における加振条件は成形体の形状、大きさ、
型枠全台めた全重菫によって適宜選択されるが、7tと
えば外径80■、内径55■、長さ1200  ■の円
筒体を成形する場合には原料材土倉充填した型枠の上部
に5〜1oKtの荷重錘を載荷し、横方向の振動が最小
となるように調整した損動台の上に型枠全載荷し次のち
5通常2〜6■の振幅で5〜30分間加損成形するもの
である。
The vibration conditions in the vibration molding method depend on the shape, size, and shape of the molded object.
The weight of the entire formwork is selected as appropriate, but when molding a cylindrical body of 7 tons, for example, with an outer diameter of 80 cm, an inner diameter of 55 cm, and a length of 1200 cm, the upper part of the formwork filled with raw materials is A load weight of 5 to 1 oKt is loaded on the plate, and the formwork is fully loaded onto a damage table adjusted to minimize lateral vibration.Then, the formwork is applied for 5 to 30 minutes at an amplitude of 2 to 6 cm. It is intended to be damaged.

空気圧衝撃子音用いるタンピング成形においては荷重錘
は用いず、外型枠と内型枠の空隙部へ逐次原料坏土を充
填しながら空気圧衝撃子の端部を型枠空隙部へ挿入して
衝撃加圧を行なう。この時空気圧衝撃子は人手によって
操作されても良く2機械操作によって自動的に操作され
ても良い。
In tamping molding using pneumatic impact consonants, no load weight is used, and the end of the pneumatic impactor is inserted into the mold cavity while filling the raw material clay into the voids between the outer and inner molds to apply impact. Apply pressure. At this time, the pneumatic impactor may be operated manually or automatically by two mechanical operations.

本発明では成形終了後の成形体の養生乾燥段階において
、吸水性と通気性を有する軟質材を介して成形体から外
部への水分およびガス状分子の緩やかな移動が行なわれ
る。成形後の成形体は通常軟質材の型枠を配置したまま
で24時間以上の室温養生を行ない、十分な保形強度が
発現したのちに型枠を除去し。
In the present invention, during the curing and drying stage of the molded product after completion of molding, moisture and gaseous molecules are slowly transferred from the molded product to the outside through the soft material having water absorption and air permeability. After molding, the molded product is usually cured at room temperature for 24 hours or more with the soft material mold still in place, and after developing sufficient shape retention strength, the mold is removed.

次いで乾燥機に入れて温度30〜150℃、好ましくは
40〜120℃で24時間以上乾燥して水分を完全に除
去するとともに結合剤の硬化を完了させるものである。
Then, it is placed in a dryer and dried at a temperature of 30 to 150°C, preferably 40 to 120°C, for 24 hours or more to completely remove moisture and complete curing of the binder.

なお軟質型枠は必ずしも完全に取り外す必要はなく、成
形体に固定したまま養生、乾燥を行なったのち。
Note that the soft formwork does not necessarily have to be completely removed; it can be left fixed to the molded body after curing and drying.

たとえ焼成工程まで施行したとしても焼失して何ら支障
はない。
Even if the firing process were carried out, there would be no problem in burning it down.

本発明方法の実施態様例として第1図にセラミック円筒
を成形する場合を示めす。即ち。
As an embodiment of the method of the present invention, FIG. 1 shows a case where a ceramic cylinder is formed. That is.

金属製又は木製の型外枠(1)の内側に適度の吸水性2
通気性および塑性変形強度を有する紙製外枠体(2)を
密接して設置し、金属製又は木製の芯体(8)の外周に
同じく適度の吸水性2通気性および塑性変形強度を有す
る紙製内枠体(4)を密接して被覆させ、これらを金属
もしくは木製の台座(5)上に組み立てて振動台(6)
上に設置し1紙製外枠体(2)と紙製内枠体(4)との
空隙部にセラミック原料坏土を充填し、上部から金属製
荷重鉾(7)を挿入して振動を加え、所定時間後、成形
体(8)を紙製外枠体(2)2紙製内枠体(4)をつけ
たまま芯体(8)とともに型外枠(1)から取りはずし
たのち、芯体(8)を引き抜く。
Appropriate water absorption inside the metal or wooden mold frame (1)
A paper outer frame body (2) having air permeability and plastic deformation strength is installed in close contact with the outer periphery of a metal or wooden core body (8), which also has appropriate water absorbency 2 air permeability and plastic deformation strength. A paper inner frame body (4) is closely covered, and these are assembled on a metal or wooden base (5) to create a vibration table (6).
The gap between the paper outer frame (2) and the paper inner frame (4) is filled with ceramic raw material clay, and a metal load hoop (7) is inserted from the top to generate vibrations. In addition, after a predetermined period of time, the molded body (8) is removed from the mold outer frame (1) along with the core body (8) with the paper outer frame (2) and paper inner frame (4) still attached. Pull out the core (8).

次に成形体(8)を紙製外枠体(2)2紙製内枠体(4
)とともに十分養生乾燥を行なって保形強度を発現した
のち紙製外枠体(2)及び紙製内枠体(4)を除いて十
分に乾燥を行ない健全な成形体製品を得るものである。
Next, the molded body (8) is attached to the paper outer frame (2) and the paper inner frame (4).
) and sufficiently curing and drying to develop shape-retaining strength, and then drying thoroughly except for the paper outer frame (2) and the paper inner frame (4) to obtain a sound molded product. .

本発明方法において原料粉として使用し得る原料坏土と
しては1通常一般に使用されているたとえばアルミナ、
マグネシア、ジルコニア、ケイ石粉、陶土9本節粘土、
炭化ケイ素、窒化ケイ素などのようなセラオックス粉。
The raw material clay that can be used as the raw material powder in the method of the present invention includes 1 commonly used materials such as alumina,
Magnesia, zirconia, silica powder, china clay,
Celaox powder like silicon carbide, silicon nitride etc.

黒鉛粉、コークス粉、炭素粉、ピッチ粉などのような炭
素質粉およびケイ素粉のような金属粉がある。これらを
単味であるいは二種以上を混合したもの100重量部に
対して水3〜20重量部、好ましくは5〜15重量部。
There are carbonaceous powders such as graphite powder, coke powder, carbon powder, pitch powder, etc. and metal powders such as silicon powder. 3 to 20 parts by weight, preferably 5 to 15 parts by weight of water per 100 parts by weight of these alone or in a mixture of two or more.

有機結合剤たとえばメチルセルローズ、ポリビニールア
ルコール、ホ+)アクリル酸二、X fル、フェノール
樹脂、熱処理タール等を0.05〜5重量部、好ましく
は0.5〜3重量部、さらに添加剤としてたとえばグリ
セリン、フックスエマルジョン、アルギン酸塩等を0.
05〜5重1部を加えて十分に混合したものを用いる。
0.05 to 5 parts by weight, preferably 0.5 to 3 parts by weight, of an organic binder such as methyl cellulose, polyvinyl alcohol, diacrylic acid (Xf), phenol resin, heat-treated tar, and further additives. For example, glycerin, Fuchs emulsion, alginate, etc.
Add 1 part of 05-5 weight and mix thoroughly.

効  果 本発明方法によって、成型体と型枠体との離型性が著し
く改善されるとともに、成形体の内部や表面に残留する
気孔や欠陥を極めて少なくすることができ、充填密度が
高く、均一な成形体を得るものであり、従来の金型もし
くは硬質木型を用いる方法に対して著しい改善効果が得
られる。
Effects By the method of the present invention, the releasability between the molded body and the mold body is significantly improved, pores and defects remaining inside and on the surface of the molded body can be extremely reduced, and the packing density is high. A uniform molded body can be obtained, which is a significant improvement over conventional methods using molds or hard wooden molds.

次に実施例および比較例について述べる。Next, examples and comparative examples will be described.

実施例1 粒子径が4w以下の炭化ケイ素70重量部に純度が98
゜5%以上で粒子径が74μm以下の金属ケイ素粉30
重量部を加え、さらに10%ポリビニルアルコール水溶
液7.5重量部を加えてニーダ−で十分に混合してセラ
ミック原料坏土を調製した。一方、第2図に示めす構成
によって、振動台(6)上に金属製台座(6)を載荷し
、内径95m、長さ1500mの金属製外枠(1)、吸
水率35%1通気率8ミリダルシー、9%吸水時の引張
強度240kf/−の紙管原紙で外径90m。
Example 1 70 parts by weight of silicon carbide with a particle size of 4w or less and a purity of 98%
゜Metallic silicon powder 30 with a particle size of 5% or more and a particle size of 74 μm or less
7.5 parts by weight of a 10% polyvinyl alcohol aqueous solution were added and thoroughly mixed in a kneader to prepare a ceramic raw clay. On the other hand, with the configuration shown in Figure 2, a metal pedestal (6) is loaded on a vibration table (6), a metal outer frame (1) with an inner diameter of 95 m and a length of 1500 m, water absorption rate of 35%, air permeability rate of Paper tube base paper with 8 mm darcy and tensile strength of 240 kf/- at 9% water absorption, outer diameter 90 m.

内径80m、長さ1500mに積層成形した紙製外枠体
(2)、同様の紙管原紙を用いて外径55−内径50■
、長さ1500■に積層成形した紙製属性芯体(8)を
組み立てた。
A paper outer frame (2) laminated and molded to an inner diameter of 80 m and a length of 1500 m, using the same paper tube base paper to create a frame with an outer diameter of 55 mm and an inner diameter of 50 mm.
A laminated paper core (8) having a length of 1500 mm was assembled.

次に型の紙製外枠体(2)と紙製内枠体(4)との間の
空隙部に前記セラミック原料坏土を充填し。
Next, the gap between the paper outer frame (2) and the paper inner frame (4) of the mold is filled with the ceramic raw material clay.

」二部から外径79闘、内径59m、長さ300■の金
属製荷重軸(7)を挿入し、振幅2〜5■で30分間加
振成形を行なった。ついで成形体(8)を紙製外枠体(
2)及び紙製内枠体(4)とともに金属製台座(5)、
金属製外枠(1)及び金属製芯金(8)から抜き取り、
24時間室温で風乾養生した後、最高105℃で24時
間乾燥した。乾燥後紙製外枠体(2)及び紙製内枠体(
4)を取り外して得られた円筒状成形体は外径80謳、
内径55m、長さ1200■に成形した。得られた結果
を第1表に示めす。
A metal load shaft (7) with an outer diameter of 79 mm, an inner diameter of 59 m, and a length of 300 mm was inserted from the second part, and vibration molding was performed for 30 minutes at an amplitude of 2 to 5 mm. Next, the molded body (8) is attached to a paper outer frame body (
2) and a metal pedestal (5) together with a paper inner frame body (4),
Remove from the metal outer frame (1) and metal core (8),
After being air-dried at room temperature for 24 hours, it was dried at a maximum temperature of 105°C for 24 hours. After drying, the paper outer frame (2) and the paper inner frame (
The cylindrical molded body obtained by removing 4) has an outer diameter of 80 cm,
It was molded to have an inner diameter of 55 m and a length of 1200 mm. The results obtained are shown in Table 1.

実施例2 粒度が120メツシユ以下の電融アルミナ70重量部、
平均粒子径が80μmのアルミナ30重量部に対して固
形分濃度30%のシリカゾル10重量部を加えてニーダ
−で十分に混合してセラミック原料坏土を調整した。一
方、外面が200■X200mm、内径が125m、高
さが1000鶴で2分割構造の硬質木質製外枠の内面お
よび直径が75m、高さが100(lu+の硬質木質製
芯体の外面に吸水率22%2通気率1ミリダルシー、引
張強度5 kg / cdで厚さ2.5 wmの硬質ポ
リウレタン発泡体シートを接着して円筒体成形用型枠と
して組み立て、外枠体と芯体との間の空隙部へ前記のセ
ラミック原料坏土を充填しながら空気圧を用いた衝撃加
圧子(ランマー)の先端部を該空隙部へ挿入(、て加圧
充填を行なった。
Example 2 70 parts by weight of fused alumina with a particle size of 120 mesh or less,
10 parts by weight of silica sol having a solid content concentration of 30% was added to 30 parts by weight of alumina having an average particle diameter of 80 μm, and thoroughly mixed in a kneader to prepare a ceramic raw clay. On the other hand, the inner surface of the hard wooden outer frame has an outer surface of 200 mm x 200 mm, the inner diameter of 125 m, and the height of 1000 cranes. A rigid polyurethane foam sheet with a rate of 22%2 air permeability of 1 millidarcy, a tensile strength of 5 kg/cd, and a thickness of 2.5 wm is assembled as a formwork for forming a cylindrical body, and between the outer frame body and the core body. While filling the above-mentioned ceramic raw material clay into the void, the tip of an impact pressurizer (rammer) using air pressure was inserted into the void to perform pressure filling.

次に成形体を外枠体と芯体から取り外し、室温で24時
時間化乾燥を行なったのち最高105℃で24時間乾燥
を行なった。得られた結果を第1表に示めす。
Next, the molded body was removed from the outer frame and core body, dried at room temperature for 24 hours, and then at a maximum temperature of 105° C. for 24 hours. The results obtained are shown in Table 1.

実施例3 粒径が8m以下の人造黒鉛粉70重量部1粒径が74μ
m以下のピッチコークス粉30重景部。
Example 3 70 parts by weight of artificial graphite powder with a particle size of 8 m or less 1 particle size is 74 μ
Pitch coke powder of 30 m or less.

および粒径が74μm以下の高軟化点ピッチ粉9重量部
に対してフェノール樹脂5重量部を加えて加圧ニーダ−
で十分に混合を行ない、炭素質原料坏土を調製した。一
方性径545■、内径505m、長さ1500■の金属
製外筒の内面および外径395+ai、内径355m、
長さ1500■の金属製内筒の外面に吸水率90%9通
気率40ミリダルシー、9%吸水時の引張強度550橡
/−のクラフト紙を厚さ2.5 vmに積層して製造し
たシートを接着して円筒用成形型枠として組み立て、外
筒と内筒との空隙部へ前記した炭素質原料坏土を充填し
ながら空気圧衝撃加圧子の先端部を該空隙部へ挿入して
充填成形を行な実施例1で用いたと同一のセラミック原
料坏土を撮動台上に設置した金属製台座上に組み付けた
直径55m、長さ1500■の金属製芯金と内径80m
m、厚さ3簡、長さ1500mの金属製円筒外枠体との
空隙部へ充填l−1上部から内径57m、外径78m、
長さ300mの金属装荷重錘を挿入し、振幅2〜5mで
30分間加振成形を行なった。金属製外枠体としては成
形体と芯金外表面および外枠体との脱型を容易にするた
めに2分割型を用いた。セラミック原料100重量部に
対して10%ポリビニール水溶液を5.5重量部を添加
混合した原料坏土を用いて実施例1と同様の方法によっ
て振動成形を行なった。得られた結果を第1表に示めす
Then, 5 parts by weight of phenolic resin was added to 9 parts by weight of high softening point pitch powder with a particle size of 74 μm or less, and the mixture was heated in a pressure kneader.
The mixture was thoroughly mixed to prepare a carbonaceous raw material clay. The inner surface of a metal outer cylinder with a one-sided diameter of 545 mm, an inner diameter of 505 m, and a length of 1500 mm, an outer diameter of 395+ai, an inner diameter of 355 m,
A sheet manufactured by laminating kraft paper with a water absorption rate of 90%, air permeability of 40 mdarcy, and a tensile strength of 550 mm/- at 9% water absorption to a thickness of 2.5 vm on the outer surface of a metal inner cylinder with a length of 1500 mm. are assembled as a cylindrical mold by gluing them together, and while filling the above-mentioned carbonaceous material clay into the gap between the outer cylinder and the inner cylinder, the tip of the pneumatic impact pressurizer is inserted into the gap to perform filling molding. A metal core with a diameter of 55 m and a length of 1,500 cm and an inner diameter of 80 m were assembled on a metal pedestal that was set on an imaging stand using the same ceramic raw clay used in Example 1.
Filling the gap between the metal cylindrical outer frame with a thickness of 3 cm and a length of 1500 m. From the top of l-1, the inner diameter is 57 m, the outer diameter is 78 m,
A metal loading weight with a length of 300 m was inserted, and vibration forming was performed for 30 minutes at an amplitude of 2 to 5 m. A two-part mold was used as the metal outer frame in order to facilitate demolding of the molded body, the outer surface of the core bar, and the outer frame. Vibration molding was performed in the same manner as in Example 1 using a raw material clay prepared by adding and mixing 5.5 parts by weight of a 10% polyvinyl aqueous solution to 100 parts by weight of the ceramic raw material. The results obtained are shown in Table 1.

比較例2 実施例2で用いたセラミック原料坏土と同一の原料を用
い、また実施例2と同じ硬質木製芯体および硬質木製外
枠体を用い2両者の空隙部へ直接充填しながら空気圧衝
撃子を用いるランマー成形を行なった。嵩密度が2.7
0以上となるまで密充填成形を行なったところ脱型の際
に亀裂を生じ、健全な成形体を得ることができなかった
。脱型時に亀裂や枠体との固着を生じないように空気圧
衝撃条件を緩和して行った時の結果を第1表に示めす。
Comparative Example 2 Using the same raw material as the ceramic raw clay used in Example 2, and using the same hard wooden core and hard wooden outer frame as in Example 2, pneumatic impact was applied while directly filling the gap between the two. Rammer molding was performed using a mold. Bulk density is 2.7
When close-packing molding was performed until the temperature became 0 or more, cracks occurred during demolding, and a sound molded product could not be obtained. Table 1 shows the results when the pneumatic impact conditions were relaxed to prevent cracking or adhesion to the frame during demolding.

比較例3 実施例3と同一の炭素質原料坏土を用い、実施例3と同
じ金属製内筒と金属製外筒とを用いて9両者の空隙部へ
該原料坏土を充填しつつ。
Comparative Example 3 Using the same carbonaceous raw material clay as in Example 3, and using the same metal inner cylinder and metal outer cylinder as in Example 3, the raw material clay was filled into the gap between the two.

空気圧衝撃子を用いたランマー成形を行なった。Rammer molding was performed using a pneumatic impactor.

成形体の嵩密度が1.80以上となるように密充填成形
を行なったところ、脱型時に亀裂が発生1−で健全な成
形体を得ることはできなかった。
When close-packing molding was performed so that the bulk density of the molded product was 1.80 or more, cracks occurred during demolding, and a healthy molded product could not be obtained.

脱型時に亀裂を生じないように密充填条件を緩和して行
った時の結果を第1表に示めす。
Table 1 shows the results when the close packing conditions were relaxed to prevent cracking during demolding.

第1表Table 1

【図面の簡単な説明】[Brief explanation of drawings]

第1図は型枠材の応力変形における適正範囲を示めす。 また、第2図は本発明方法の一実施態様を示めす。 %杵出願人 日本軽金属株式会社 図面の浄書(内容に変更なし) ズ1図 第2図 手続補正書(方式) 昭和61年3月5 日 %許庁長官  殿 14!件の宍示 昭和60年特FF願第271603号 2、発明の名称 セラミックスおよび炭素材の成形方法 五補正をする者 事件との関係   特許出願人 Figure 1 shows the appropriate range of stress deformation of formwork material. Moreover, FIG. 2 shows one embodiment of the method of the present invention. % Pestle applicant: Nippon Light Metal Co., Ltd. Engraving of drawings (no changes to content) Figure 1 Figure 2 Procedural amendment (formality) March 5, 1986 Director General of the Permanent Authority 14! proof of the matter 1985 Special FF Application No. 271603 2. Name of the invention Method of forming ceramics and carbon materials person who makes the five amendments Relationship to the case Patent applicant

Claims (1)

【特許請求の範囲】[Claims] 振動成形法ないしは衝撃荷重成形法によって型枠にセラ
ミックスおよび/ないしは炭素材用原料粉を充填し、成
型する方法において、吸水性、通気性および塑性変形性
を有する軟質材料から成る型枠体と高強度を有する支持
体とを組み合わせた成型用枠体を用いることを特徴とす
るセラミックスおよび炭素材の成型方法。
In a method of filling a formwork with raw material powder for ceramics and/or carbon material and molding it by vibration forming method or impact load forming method, a formwork body made of a soft material having water absorption, air permeability and plastic deformability and a high A method for molding ceramics and carbon materials, characterized by using a molding frame combined with a support having strength.
JP27160385A 1985-12-04 1985-12-04 Method of molding ceramics and carbon material Granted JPS62132606A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27160385A JPS62132606A (en) 1985-12-04 1985-12-04 Method of molding ceramics and carbon material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27160385A JPS62132606A (en) 1985-12-04 1985-12-04 Method of molding ceramics and carbon material

Publications (2)

Publication Number Publication Date
JPS62132606A true JPS62132606A (en) 1987-06-15
JPH0442164B2 JPH0442164B2 (en) 1992-07-10

Family

ID=17502375

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27160385A Granted JPS62132606A (en) 1985-12-04 1985-12-04 Method of molding ceramics and carbon material

Country Status (1)

Country Link
JP (1) JPS62132606A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62227448A (en) * 1986-03-31 1987-10-06 Nippon Kinzoku Kk Preparation of catalyst carrier made of ceramic
JPH0232807A (en) * 1988-07-22 1990-02-02 Asahi Optical Co Ltd Manufacture of ceramics molding product
US5385701A (en) * 1991-07-26 1995-01-31 Sumitomo Electric Industries, Ltd. Method of molding silicon nitride ceramics
JP2016141133A (en) * 2015-02-05 2016-08-08 日立金属株式会社 Molding die for casting, method for producing sintered compact, sintered compact and oxide target
CN112441835A (en) * 2020-12-04 2021-03-05 拓米(成都)应用技术研究院有限公司 High-strength high-density carbon material and preparation method and application thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5542901U (en) * 1978-09-14 1980-03-19
JPS57133012A (en) * 1981-02-10 1982-08-17 Nippon Sheet Glass Co Ltd Vibration pressing type cement product manufacture

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5542901U (en) * 1978-09-14 1980-03-19
JPS57133012A (en) * 1981-02-10 1982-08-17 Nippon Sheet Glass Co Ltd Vibration pressing type cement product manufacture

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62227448A (en) * 1986-03-31 1987-10-06 Nippon Kinzoku Kk Preparation of catalyst carrier made of ceramic
JPH0232807A (en) * 1988-07-22 1990-02-02 Asahi Optical Co Ltd Manufacture of ceramics molding product
US5385701A (en) * 1991-07-26 1995-01-31 Sumitomo Electric Industries, Ltd. Method of molding silicon nitride ceramics
JP2016141133A (en) * 2015-02-05 2016-08-08 日立金属株式会社 Molding die for casting, method for producing sintered compact, sintered compact and oxide target
CN112441835A (en) * 2020-12-04 2021-03-05 拓米(成都)应用技术研究院有限公司 High-strength high-density carbon material and preparation method and application thereof

Also Published As

Publication number Publication date
JPH0442164B2 (en) 1992-07-10

Similar Documents

Publication Publication Date Title
US6833012B2 (en) Petroleum pitch-based carbon foam
JP4409834B2 (en) Method for producing carbon foam induced by process vacuum
JPS6158860A (en) Fiber composite material and forming process
JP2012024841A (en) Structure for production of casting
CN107716843B (en) The structural bodies such as the manufacturing method of structure for casting production and casting mold
US8535587B2 (en) Method for manufacturing plugged honeycomb structure
ATE157681T1 (en) OPEN-CELL POROUS MATERIAL, METHOD FOR PRODUCING IT AND MOLD FOR PRESSURE-CASTING CERAMIC ARTICLES FROM THIS MATERIAL
JPS62132606A (en) Method of molding ceramics and carbon material
JPS63213602A (en) Plastic foam container for densifying powder substance
JP7048048B2 (en) Formulation design standard value setting method and cured product compounding test method
JPS6239639A (en) Production of porous matter
RU2001100720A (en) METHOD FOR PRODUCING THIN-WALLED ARTICLES FROM SILICTED CARBON COMPOSITE MATERIAL
US4081168A (en) Hot top lining slabs and sleeves
JP2005153003A (en) Mold or structural body for producing casting
JPS59209109A (en) Manufacture of shape made of curable molding material
RU96122444A (en) METHOD FOR PRODUCING CARBON MATERIAL
JPH034007B2 (en)
JP3175455B2 (en) Ceramics molding method
JPH0121768B2 (en)
JPH0567581B2 (en)
JP3224645B2 (en) Ceramics molding method
JP2826203B2 (en) Refractory manufacturing method
KR101349726B1 (en) Preparation method of high strength organic-inorganic composite using inorganic platy particle
JPH08217556A (en) Light-weight carbon material and its production
JPS5837122B2 (en) Manufacturing method of centrifugal concrete pipe

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees