JPH0442164B2 - - Google Patents

Info

Publication number
JPH0442164B2
JPH0442164B2 JP60271603A JP27160385A JPH0442164B2 JP H0442164 B2 JPH0442164 B2 JP H0442164B2 JP 60271603 A JP60271603 A JP 60271603A JP 27160385 A JP27160385 A JP 27160385A JP H0442164 B2 JPH0442164 B2 JP H0442164B2
Authority
JP
Japan
Prior art keywords
molding
raw material
mold
molded
molded body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60271603A
Other languages
Japanese (ja)
Other versions
JPS62132606A (en
Inventor
Koichi Takada
Kazuhiro Fujimoto
Tsutomu Saito
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Light Metal Co Ltd
Original Assignee
Nippon Light Metal Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Light Metal Co Ltd filed Critical Nippon Light Metal Co Ltd
Priority to JP27160385A priority Critical patent/JPS62132606A/en
Publication of JPS62132606A publication Critical patent/JPS62132606A/en
Publication of JPH0442164B2 publication Critical patent/JPH0442164B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Producing Shaped Articles From Materials (AREA)
  • Moulds, Cores, Or Mandrels (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明は振動成形法または衝撃荷重成形法によ
つて型枠を用いて各種セラミツクス、炭素材等の
耐火材の焼成成形法に関し、充填密度が高くかつ
均一な充填密度を有し、しかも表面剥離欠陥のな
い長さ50cmを越える長尺成形体を得る方法に係
る。 〔従来の技術〕 保護管やルツボ等として用いられる長さ20〜30
cmの比較適短尺のセラミツクス製円筒あるいは円
柱、多角筒、多角柱等の焼成品を最終形状に近い
形に成形する方法としては、泥漿鋳込み成形法、
押出成形法、振動成形法、タンピング成形法など
がある。 また、実公昭55−42901号公報には生コンクリ
ートを型枠に流し込んで硬化させ、コンクリート
成形体を得る際に、たとえば紙類からなる脱気性
がありかつコンクリート成分を通さないシート
を、流し込んだ生コンクリートの上面と型枠の間
に介在させてコンクリート打ちする技術が開示さ
れている。 また、特開昭57−133012号公報には、セメント
モルタルを型枠に流し込み硬化させたセメントモ
ルタル成形体を得る際に、モルタル内の余剰水を
脱水するためのフイルターとこれに対面する該モ
ルタルとの間に、濾過性能を有しかつ可撓性、屈
曲性に優れた離型材を介在させ、該フイルターに
振動加圧を加えながらモルタル打ちする技術が開
示されている。 〔発明の課題〕 ところで、泥漿鋳込み成形法は多量の水を用い
るので、原料粉が原料粉の粘度ないし比重に基づ
いて上下方向に分布し易く、上下方向に均一な密
度を有する成形体が得られず長尺になればなるほ
ど不均一になる欠点を有する。 また、上方から荷重を印加し成形しても原料粉
が流動化してしまい高密度化は期待できない。こ
れを改良するためにフイルターを用いて徐水しな
がら加圧成形する場合は、ある程度の高密度化が
期待できる高密度化までには相当の時間を要し生
産性を損い実用的な成形性ではない。いずれにし
ても泥漿鋳込み成形法は充填密度から均一で高密
度の長尺成形体を得ることが困難である。 押出成形法は連続した同一断面形状品にのみし
か適用できず、従つて、フランジ付き、底付き、
テーパー付き構造や厚肉構造品には適用できな
い。また水、バインダー、添加剤などの含有率が
高いので成形体内部に空孔が残留しやすく、高密
度の成形体が得られ難い。 振動成形法・タンピング成形法は通常、木型も
しくは金型の割り型が用いられるが、次のような
問題がある。 (1) 原料の密充填化に伴なつて水と結合剤が成形
体と型枠の境界付近に移動し、粘着もしくは固
化するために離型性が悪くなり、離型剤の使用
により離型ができたとしても原料抔土の一部が
剥離して型枠側へ固着して持ち去られるため、
成形体の表面に剥離欠陥を生じやすい。 (2) 従来一般的に用いられている成形用型枠は金
属製もしくは硬質木枠であつて通気性を有さな
いために、原料粒子の空〓部の空気および水蒸
気などの気体が充填の進行に伴なつて成形体の
内部や成形体と型枠との境界に集合して残留
し、空孔や層状剥離等の欠陥を生じやすい。し
たがつて成形体が到達しうる密充填度には所定
の限度が存在した。すなわち成形体の一部の充
填密度がこの限界点に到達したならば他に低充
填密度部分が残つていたとしてもその時点で成
形操作を終了せねば過充填が起こり上述の欠陥
が生じるので、特に長尺品等の大型成形体の場
合には充填密度が不均一化する問題があつた。 (3) 従来用いられて来た木枠もしくは金型で過度
の圧密充填を行うと、成形体と型枠との固着が
起こつて脱型が困難となつたり、成形体の内部
にエネルギーが残留応力として蓄積され、脱型
時に成形体の局部が膨張破壊したり、乾燥もし
くは焼成時に破壊する問題があつた。 また、実公昭55−42901号公報および特開昭
57−133012号公報に開示されている前述した方
法は、セメントに多量の水を含有させて水和反
応させ硬化させようとするもので、焼成体とは
異なり、このように多量の水を含有させてセラ
ミツクスまたは炭素材の成形体を成形した場合
は前述の泥漿鋳込法と同様に均一で高密度の長
尺成形体を得ることができない。 〔課題を解決するための手段〕 本発明者らは、振動成形法または衝撃荷重成形
法によつて離型性が良好で表面剥離欠陥がなく、
充填密度が高くかつ均一な充填密度を有するセラ
ミツクスまたは炭素材の焼成体用の長尺成形体を
得るべく多くの研究を行つた結果、原料粉を成形
した後成形体の内部に過度に蓄積された残留応力
が適切に開放されるならば、その部分が成形後に
復元し膨張することによつてその部分に割れまた
は破壊が発生するという現象を解決できるという
考えを基にさらに研究を重ねた結果本発明をなし
たものであつて、その目的とするところは、充填
密度が高くかつ均一な充填密度を有する長尺セラ
ミツクスまたは炭素材の焼成体成形法を提供する
ことである。即ち、本発明は振動成形法または衝
撃荷重成形法によつて型枠にセラミツクスまたは
炭素材原料粉を充填し長尺の成形体を成形し、養
生、乾燥、焼成するものであつて、前記原料粉の
水分含有量が該原料粉の100重量部に対して3〜
20重量部であり、かつ前記型枠が吸水性、通気性
および塑性変形性を有する軟質材料から成る型枠
体と高強度を有する支持体とを組み合わせた成形
用枠体であり、しかも前記軟質材料から成る型枠
体の厚さが2mm〜30mmであり、該軟質材料から成
る型枠体の塑性変形性が、添付面第1図の点A
(P100Kg/cm2、δ0.01%)、点B(P100Kg/cm2、δ0.
1
%)、点C(1000Kg/cm2、δ1.0%)、点D(P1000
Kg/cm2、δ0.1%)で囲まれた範囲にあることを特
徴とするセラミツクスまたは炭素材の焼成体成形
方法である。ここでPは成形時の瞬間衝撃圧力、
δは前記衝撃圧力で成形された成形体によつて変
形した型枠体の乾燥時または吸水時の変形量を表
す。 〔作用〕 原料抔土に接する部分に軟質材料から成る型枠
体とこの型枠体を支持する高強度木枠体もしくは
金属枠体とを組み合わせて用いる。この場合の高
強度支持体には筒体を成形する場合の芯体をも含
んでいる。 軟質材料からなる型枠体は次に述べる通り適度
の吸水性(吸油性を含む)、通気性および塑性変
形性を有するものでなければならない。 吸水率 成形の進行に伴なつて成形体とこれに接する
型枠との境界面へ移動して来る結合剤を含有す
る水を型枠体自体が吸収して成形体表面が低水
分状態に保たれる。吸水率または吸油率は1%
以上あることが必要であり、好ましくは5%以
上である。1%以下であると、離型性が悪く、
表面欠陥のない健全な成形体が得られにくくな
る。 通気性 成形体の充填密度を上げるために原料抔土の
粒子間の空〓に存在する空気、水蒸気および結
合剤の気化等により発生するガスなどの気体成
分を軟質材型枠体を介して成形体の外へ排出す
ることが効果的である。通気率は0.1ミリダル
シー以上あることが必要であり、好ましくは1
ミリダルシー以上である。0.1ミリダルシー以
下であると成形体の内部や表面付近に粗大気孔
が残留したり、層状の剥離を生じやすくなる。
なお、1ダルシーとは1Kg/cm2の圧力差におい
て体積1立方センチメートルあたり1秒間に1
ミリリツトルの空気が透過することを意味す
る。 塑性変形性 成形体の充填密度の増大に伴なつて成形体内
部にエネルギー(内部応力)が蓄積され、型枠
の脱型によつて拘束力が開放された時に膨張が
起る。即ち、成形体を本発明の如き軟質材料か
らなる型枠体を使用しないで高強度で高鋼性の
型枠のみで完全に拘束しつつ過度の密充填を行
なうと脱型時に大きな膨張(弾性復元作用と呼
ぶ)が起こり、成形体が破壊してしまう。しか
るに本発明では成形体の密充填化が進み、成形
体の内部に蓄積されるエネルギーが過大になる
とこの成形体を拘束している型枠体自体が微小
な変形をしてこの過剰なエネルギーを適切に開
放するので、従来のように低充填密度部分を残
すことなく高密度成形することができ、一層の
密充填操作を可能とすることができる。一般に
物質の応力塑性変形性は応力−ひずみ曲線によ
つて与えられるが、このような2次元上の特性
に対して本発明の適正範囲を規定するのは難し
いのでそれに代えて目安箱として弾性率と引張
り強度で示すと、次記の値を満足するのが好ま
しい。
[Industrial Application Field] The present invention relates to a firing molding method for refractory materials such as various ceramics and carbon materials using a mold by vibration molding method or impact load molding method. The present invention relates to a method for obtaining a long molded article having a length of more than 50 cm and having no surface peeling defects. [Conventional technology] Length 20 to 30 mm used as protection tube, crucible, etc.
Methods for molding fired products such as relatively short ceramic cylinders, cylinders, polygonal tubes, and polygonal pillars into shapes close to the final shape include slurry casting,
Examples include extrusion molding, vibration molding, and tamping molding. In addition, in Japanese Utility Model Publication No. 55-42901, when fresh concrete is poured into a mold and hardened to obtain a concrete molded body, a sheet made of paper that has deaerating properties and does not allow concrete components to pass through is poured. A technique is disclosed in which concrete is placed between the upper surface of fresh concrete and formwork. In addition, Japanese Patent Application Laid-Open No. 57-133012 discloses that when obtaining a cement mortar molded body by pouring cement mortar into a formwork and hardening it, a filter is used to dehydrate excess water in the mortar, and the mortar facing the filter is used to remove excess water from the mortar. A technique has been disclosed in which a mold release material having filtration performance and excellent flexibility and bendability is interposed between the filter and the filter, and the filter is mortared while applying vibration pressure. [Problem to be solved by the invention] By the way, since the slurry casting method uses a large amount of water, the raw material powder tends to be distributed in the vertical direction based on the viscosity or specific gravity of the raw material powder, and it is difficult to obtain a molded product having a uniform density in the vertical direction. The disadvantage is that the longer the length is, the more uneven the surface becomes. Moreover, even if a load is applied from above and the molding is performed, the raw material powder becomes fluidized and high density cannot be expected. In order to improve this, if pressure molding is performed while slowing water using a filter, a certain degree of high density can be expected, but it takes a considerable amount of time to achieve high density, which impairs productivity and makes practical molding difficult. It's not about sex. In any case, with the slurry casting method, it is difficult to obtain a uniform and high-density elongated molded body due to the filling density. Extrusion molding can only be applied to continuous products with the same cross-sectional shape;
It cannot be applied to tapered or thick-walled structures. Furthermore, since the content of water, binder, additives, etc. is high, pores tend to remain inside the molded product, making it difficult to obtain a high-density molded product. The vibration molding method and the tamping molding method usually use split wooden molds or metal molds, but they have the following problems. (1) As the raw materials are tightly packed, water and binder move near the boundary between the molded product and the mold and stick or solidify, resulting in poor mold releasability. Even if this is done, some of the raw material will peel off, stick to the formwork, and be carried away.
Peeling defects are likely to occur on the surface of the molded product. (2) Conventionally commonly used molding frames are made of metal or hard wood and do not have air permeability, so gases such as air and water vapor in the voids of raw material particles As it progresses, it collects and remains inside the molded body or at the boundary between the molded body and the mold, and tends to cause defects such as voids and delamination. Therefore, there was a certain limit to the degree of compactness that a molded body could reach. In other words, if the packing density of a part of the molded body reaches this limit point, even if there are other low-packing-density parts remaining, if the molding operation is not finished at that point, overfilling will occur and the above-mentioned defects will occur. In particular, in the case of large molded products such as long products, there was a problem that the packing density became non-uniform. (3) Excessive compaction filling using conventional wooden frames or molds may cause the molded product to stick to the mold, making demolding difficult or causing energy to remain inside the molded product. This accumulates as stress, causing problems such as local expansion failure of the molded body during demolding or destruction during drying or firing. Also, Publication No. 55-42901 and Japanese Unexamined Patent Publication No.
The above-mentioned method disclosed in Publication No. 57-133012 attempts to cause cement to contain a large amount of water and cause a hydration reaction to harden. If a ceramic or carbon material molded body is molded using this method, it is impossible to obtain a uniform, high-density elongated molded body as in the slurry casting method described above. [Means for Solving the Problems] The present inventors have developed a mold that has good mold releasability and no surface peeling defects by using a vibration molding method or an impact load molding method.
As a result of much research in order to obtain a long molded body for fired ceramics or carbon materials with a high and uniform packing density, we found that after the raw material powder was molded, excessive accumulation occurred inside the molded body. As a result of further research based on the idea that if the residual stress is appropriately released, the phenomenon of cracking or destruction occurring in that part due to the part restoring and expanding after forming can be solved. The object of the present invention is to provide a method for forming a fired body of elongated ceramic or carbon material having a high and uniform packing density. That is, the present invention is a method of filling a mold with ceramic or carbon material raw material powder to form a long molded body using a vibration molding method or an impact load molding method, and then curing, drying, and firing the raw material powder. The moisture content of the flour is 3 to 100 parts by weight of the raw material flour.
20 parts by weight, and the molding frame is a combination of a mold body made of a soft material having water absorption, air permeability, and plastic deformability, and a support having high strength, and The thickness of the form body made of the material is 2 mm to 30 mm, and the plastic deformability of the form body made of the soft material is at point A in Figure 1 of the attached surface.
(P100Kg/cm 2 , δ0.01%), Point B (P100Kg/cm 2 , δ0.
1
%), point C (1000Kg/cm 2 , δ1.0%), point D (P1000
Kg/cm 2 , δ0.1%) is a method for forming a fired body of ceramics or carbon material. Here, P is the instantaneous impact pressure during molding,
δ represents the amount of deformation of the frame body deformed by the molded body formed by the impact pressure upon drying or water absorption. [Function] A form body made of a soft material is used in combination with a high-strength wooden or metal frame body that supports the form body in the portion that comes into contact with the raw material excavated soil. In this case, the high-strength support also includes a core for forming a cylinder. The form body made of a soft material must have appropriate water absorption (including oil absorption), air permeability, and plastic deformability as described below. Water absorption rate As molding progresses, the mold body itself absorbs the water containing the binder that moves to the interface between the molded body and the mold in contact with it, keeping the surface of the molded body in a low-moisture state. dripping Water absorption rate or oil absorption rate is 1%
It is necessary that the amount is at least 5%, and preferably at least 5%. If it is less than 1%, the mold releasability is poor;
It becomes difficult to obtain a healthy molded product without surface defects. Air permeability In order to increase the packing density of the molded body, gaseous components such as air, water vapor, and gas generated by vaporization of the binder existing in the spaces between the particles of the raw clay are molded through a soft material formwork. Excreting it from the body is effective. The air permeability must be 0.1 millidarcy or more, preferably 1
It is more than millidarcy. If it is less than 0.1 millidarcy, coarse pores may remain inside or near the surface of the molded product, or layers may easily peel off.
Furthermore, 1 darcy means 1 darcy per second per 1 cubic centimeter of volume at a pressure difference of 1 kg/ cm2 .
This means that milliliters of air can pass through it. Plastic deformability Energy (internal stress) is accumulated inside the molded body as the packing density of the molded body increases, and expansion occurs when the restraining force is released by demolding the mold. In other words, if the molded body is completely constrained only by a high-strength, high-steel mold without using a mold body made of a soft material as in the present invention and is packed excessively tightly, large expansion (elasticity) occurs upon demolding. (referred to as a restoring effect) occurs, and the molded object is destroyed. However, in the present invention, as the molded body becomes more closely packed and the energy accumulated inside the molded body becomes excessive, the mold itself that restrains the molded body deforms minutely and absorbs this excess energy. Since it is opened appropriately, it is possible to perform high-density molding without leaving a low-filling-density portion as in the conventional method, and it is possible to perform a more densely-packed operation. Generally, the stress-plastic deformability of a material is given by a stress-strain curve, but since it is difficult to define the appropriate range of the present invention for such two-dimensional properties, we have used the elastic modulus as a guideline instead. When expressed as tensile strength, it is preferable that the following values are satisfied.

【表】 吸水時の強度については成形時に成形体から型
枠体に加えられる最大圧力に対して変形する変形
量が適量以上の変形を起さないことが必要であ
り、応力と変形量との二次元的相関性において適
正範囲が存在する。すなわち本発明にかかる振動
成形法もしくは衝撃荷重成形法においては一般に
原料抔土と型枠に対して100Kg/cm2〜1000Kg/cm2
の範囲で瞬間衝撃圧力が印加されるが、このよう
な力学負荷条件の下で成形体から型枠体に力が加
えられ、型枠体の変形する変形量は吸水した時の
型枠体の厚さ方向の変形量で0.01%〜1%の範囲
であることがよく、その瞬間衝撃圧力と型枠体の
変形量の適正範囲を第1図に示す。すなわち点A
(P100Kg/cm2、δ0.01%)、点B(P100Kg/cm2、δ0.
1
%)、点C(P100Kg/cm2、δ1.0%)、点D(P1000
Kg/cm2、δ0.1%)で囲まれた範囲で示される。こ
こでPは成形時の瞬間衝撃圧力、δは前記衝撃圧
力で成形された成形体によつて変形した型枠体の
乾燥時または吸水時の変形量を表す。この変形量
は成形前の型枠体の厚さと成形養生後の型枠体の
厚さを測定することで得られる。 すなわち吸水時の強度が小さく原料粉にかかる
成形時の圧力によつて変形する型枠体の変形量が
厚みで1%以上減少、即ち薄くなるようなもので
あると成形体の寸法精度や寸法再現性が悪くな
り、また成形時に成形体と型枠体との間に生ずる
せん断力によつて型枠体の部分的な損傷が起こ
り、これが成形体自体の表面仕上がり状態も悪化
させる。また乾燥時の強度が高く変形量が0.01%
未満の型枠体は吸水力が低く、原料抔土の蜜充填
化に伴つて成形体内部に蓄積された応力を適切に
解放することが困難で上述の欠陥が生じやすい。 本発明においては成形にあたつて成形体に接す
る軟質材料の型枠体として吸水時の強度が低くて
もせん断破壊が起らなければ座屈等の過大変形に
ついてはこの型枠体に密接する高強度支持体の使
用によつて回避することができる。また軟質材料
の比較的厚いものを使用し型枠体の強度が高い場
合は、型枠体の一部分たとえば下方のみを支持す
る支持体を使用してもよい。 このような特性を有する型枠体を用いて成形さ
れた成形体は型枠体に拘束されながら局部が膨張
し変形するが型枠体の特性が上述の適正範囲内に
あれば変形量も小さく、しかも焼成体の性能を左
右する欠陥とはならないので不都合ではない。 前記の特性を有し、実用に供し得る軟質材料と
しては、例えばクラフト紙、硬質ポリウレタンシ
ート、硬質ポリエチレンシート、硬質木材などが
ある。これらを型枠体として用いる場合には、あ
らかじめ適当な接着剤を用いて所望の形状に積層
して成形しても良く、あるいは金属、木、合成樹
脂などの高強度材料から成る型枠の内面もしくは
外面に張り合わせて用いても良い。 この場合の硬質材料の厚さと粉体に負荷する瞬
間衝撃圧力の大きさは成形するセラミツクスもし
くは耐火材の形状に応じて適宜選択すれば良く、
例えば円筒成形体の外形が50〜600mmのときに2
mm〜30mmとするものであり、その厚さが2mm以下
で上記変形量が得られないばかりか瞬間衝撃圧力
に耐えられず変形もしくは崩壊し成形体表面の平
滑度を損ない30mm以上としても効果は飽和する。
また所要の成形体の形状に応じて円柱、立方体、
多角中おしくは異形柱状に成形し、それぞれ筒状
とするときは外枠体、内枠体とを形成して使用す
る。 本発明で使用する成形方法としては振動成形法
もしくは空気圧衝撃子(ランマー)を用いる衝撃
加圧成形法が一般的である。 振動成形法における加振条件は成形体の形状、
大きさ、成形用枠体を含めた全重量によつて適宜
選択されるが、たとえば外形80mm、内径55mm、流
さ1200mmの円筒体を成形する場合には原料抔土を
充填した型枠の上部に5〜10Kgの荷重錐を載荷
し、横方向の振動が最小となるように調整した振
動台の上に型枠を載荷したのち、通常2〜6mmの
振幅で5〜30分間加振成形するものである。 空気圧衝撃子を用いるタンピング成形において
は荷重錐は用いず、外型枠と内型枠の空〓部へ逐
次原料抔土を充填しながら空気圧衝撃子の端部を
型枠空〓部へ挿入して衝撃加圧を行なう。この時
空気圧衝撃子は人手によつて操作されても良く、
機械操作によつて自動的に操作されても良い。 本発明では成形終了後の成形体の養生乾燥段階
において、成形体中の水分およびガス状分子およ
びガス状分子が吸水性と通気性を有する軟質材料
からなる型枠体中へ緩やかな移動が行なわれて成
形体の外部へ排出されると共に過度に蓄積された
残留応力が解放される。成形後の成形体は通常軟
質材の型枠体を配置したままで24時間以上の室温
養生を行ない、十分な保形強度が発現したのちに
型枠体を除去し、次いで乾燥機に入れて温度30〜
150℃、好ましくは40〜120℃で24時間以上乾燥し
て水分を完全に除去するとともに結合剤の硬化を
完了させ、しかるのち高温で焼成させるものであ
る。なお軟質型枠体は必ずしも完全に取り外す必
要はなく、成形体に固定したまま養生、乾燥を行
なつたのち、取り外してもよく、またたとえ焼成
工程まで施行したとしても焼失しても何ら支障は
ない。 本発明方法の実施態様例として第2図にセラミ
ツクス円筒を成形する場合を示す。即ち、金属製
は木製の型外枠(支持体)1の内側に適度の吸水
性、通気性および塑性変形強度を有する紙製外枠
体(型枠体)2を設置し、金属製又は木製の芯体
(支持体)3の外周に同じく吸水性、通気性およ
び塑性変形強度を有する紙製内枠体(型枠体)4
を被覆させ、これらを金属もしくは木製の台座5
に組み立てて振動台6上に設置し、紙製外枠体
(型枠体)2と紙製内枠体(型枠体)4との空〓
部にセラミツクス原料抔上を充填し、上部から金
属製荷重錐7を挿入して振動を加え、所定時間
後、成形体8を紙製外枠体(型枠体)2、紙製内
枠体(型枠体)4をつけたまま芯体(支持体)3
とともに型外枠(支持体)1から取りはずしたの
ち、芯体(支持体)3を引き抜く。 次に成形体8を紙製外枠体(型枠体)2、紙製
内枠体(型枠体)4とともに十分養生乾燥を行な
つて保形強度を発現したのち紙製外枠体(型枠
体)2及び紙製内枠体(型枠体)4を除いて十分
に乾燥を行ない健全な成形体製品を得るものであ
る。 本発明方法において原料粉として使用し得る原
料抔土としては、通常一般に使用されているたと
えばアルミナ、マグネシア、ジルコニア、ケイ石
粉、陶土、木節粘土、炭化ケイ素、窒化ケイ素な
どのようなセラミツクス粉、黒鉛粉、コークス
粉、炭素粉、ピツチ粉などのような炭素質粉およ
びケイ素粉のような金属粉がある。これらを単味
あるいは二種以上混合したもの100重量部に対し
て水3〜20重量部、好ましくは5〜15重量部、有
機結合剤たとえばメチルセルローズ、ポリビニー
ルアルコール、ポリアクリル酸エステル、フエノ
ール樹脂、熱処理タール等を0.05〜5重量部、好
ましくは0.5〜3重量部、さらに添加剤としてた
とえばグリセリン、フツクスエマルジヨン、アル
ギン酸塩等を0.05〜5重量部を加えて十分に混合
したものを用いる。 水の含有量が3重量部以下では粉体の充填密度
が低く、また20重量部以上となると成形中に粉体
が型粉体の途中で引つ掛かり易くなり、さらに多
くなると流動化して充填密度が高くならない。ま
た乾燥工程で脱水し、その部分が空孔を形成し均
一で高充填密度の成形体が得られない。 実施例 1 粒子径が4mm以下の炭化ケイ素70重量部に純度
が98.5%以上で粒子径が74μm以下の金属ケイ素
粉30重量部を加え、さらに10%ポリビニルアルコ
ール水溶液7.5重量部を加えてニーダーで十分に
混合してセラミツクス原料抔土を調製した(水分
含有量6.8重量部)。一方、第2図に示す構成によ
つて、振動台6上に金属製台座5を載荷し、内径
95mm、長さ1500mmの金属製外枠(支持体)1、吸
水率35%、通気率8ミリダルシー、9%吸水時の
引張強度240Kg/cm2紙管原紙で外径90mm、内径80
mm(圧さ5mm)、長さ1500mmに積層成形した紙製
外枠体(型枠体)2(吸水時の変形量0.6%)、同
様の紙管原紙を用いて外径55mm、内径50mm、長さ
1500mmに積層成形した紙製内枠体(型枠体)4、
および直径48mm、長さ1500mmの金属製芯体(支持
体)3を組み立てた。 次に型の紙製外枠体(型枠体)2と紙製内枠体
(型枠体)4との間の空〓部に前記セラミツクス
原料抔土を充填し、上部から外径79mm、内径59
mm、長さ300mmの金属製荷重錐7を挿入し、振幅
2〜5mmで30分間加振成形を行なつた。この時の
瞬間衝撃圧力は600Kg/cm2であつた。ついで成形
体8を紙製外枠体(型枠体)2及び紙製内枠体
(型枠体)4とともに金属製台座5、金属製外枠
(支持体)1及び金属製芯金(支持体)3から抜
き取り、24時間室温で風乾養生した後、紙製外枠
体(型枠体)2及び紙製内枠体(型枠体)4を取
り外し、最高105℃で24時間乾燥した。乾燥後得
られた円筒状成形体は外径80mm、内径55mm、長さ
120mmに形成した。得られた結果を第1表に示す。 実施例 2 粒度が120メツシユ以下の電融アルミナ70重量
部、平均粒子径80μmのアルミナ30重量部に対し
て固形分濃度30%のシリカゾル10重量部(水分含
有量7重量部)を加えてニーダーで十分に混合し
てセラミツクス原料抔土を調整した。一方、外面
が200mm×200mm、内径が125mm、高さが1000mmで
2分割構造の硬質木質製外枠(支持体)の内面お
よび直径が75mm、高さが1000mmの硬質木質製芯体
(支持体)の外面に吸水率22%、通気率1ミリダ
ルシー、引張強度5Kg/cm2で厚さ2.5mmの硬質ポ
リウレタン発泡体シート(吸水時の変形量0.3%)
を接着して円筒体成形用枠体として組み立て、立
枠体と芯体との間の空〓部へ前記のセラミツクス
原料抔土を充填しながら空気圧を用いた衝撃加圧
子(ランマー)の先端部を該空〓部へ挿入して加
圧充填を行なつた。この時の瞬間衝撃圧力は500
Kg/cm2であつた。次に室温で24時間養生乾燥を行
なつた後成形体を外枠体と芯体から取り外し、最
高105℃で24時間乾燥を行なつた。得られた結果
を第1表に示す。 実施例 3 粒径が8mm以下の人造黒鉛粉70重量部、粒径が
74μm以下のピツチコークス粉30重量部、および
粒径が74μm以下の高軟化点ピツチ粉9重量部に
対して水分5重量部を加えて加圧ニーダーで十分
に混合を行ない、炭素質原料抔土を調整した。一
方外径545mm、内径505mm、長さ1500mmの金属製外
筒(支持体)の内面および外径395mm、内径355
mm、長さ1500mmの金属内筒(支持体)の外面に吸
水率90%、通気率40ミリダルシー、9%吸水時の
引張強度550Kg/cm2のクラフト紙を厚さ2.5mmに積
層して製造したシート(吸水時の変形量0.2%)
を接着して円筒用成形型枠として組み立て、外筒
と内筒との空〓部へ前記した炭素質原料抔土を撹
拌しながら空気圧衝撃加圧子の先端部の該空〓部
へ挿入して充填成形を行なつた。この時の瞬間衝
撃圧力は300Kg/cm2であつた。得られた結果を第
1表に示す。 比較例 1 実施例1で用いたと同一セラミツクス原料抔土
を振動台上に設置した金属製台座上に組み付けた
直径55mm、長さ1500mmの金属製芯金と内径80mm、
厚さ3mm、長さ1500mmの金属製円筒外枠体との空
〓部へ充填し、上部から内径57mm、外径78mm、長
さ300mmの金属製荷重錐を挿入し、振幅2〜5mm
で、30分間加振成形を行なつた。金属製外枠体と
しては成形体と芯金外表面および外枠体との脱型
を容易にするために2分割型を用いた。得られた
結果を台1表に示す。 比較例 2 実施例2で用いたセラミツクス原料抔土と同一
の原料を用い、また実施例2と同じ空〓部寸法の
硬質木製芯体および硬質木製外枠体を用い、両者
の空〓部へ直接充填しながら空気圧衝撃子を用い
るランマー成形を行なつた。嵩密度が2.70以上と
なるまで密充填成形を行なつたところ脱型の際に
亀裂を生じ、健全な成形体を得ることができなか
つた。脱型時に亀裂や枠体との固着を生じないよ
うに空気圧衝撃条件を緩和(瞬間衝撃圧力500
Kg/cm2)して行つた時の結果を第1表に示す。 比較例 3 実施例3と同一の炭素質原料抔土を用い、実施
例3と同じ金属内筒と金属製外筒とを用いて、両
者の空〓部へ該原料抔土を充填しつつ、空気圧衝
撃子を用いたランマー成形を行つた。成形体の嵩
密度が1.60以上となるように密充填成形を行なつ
たところ、脱型時に亀裂が発生して健全な成形体
を得ることができなかつた。脱型時に亀裂を生じ
ないように密充填条件を緩和(瞬間衝撃圧力300
Kg/cm2)して行つた時の結果を第1表に示す。 比較例 1−1 実施例1において厚さ0.5mmの型枠体を使用し、
その他実施例1と同じ条件で成形した。得られた
結果を第1表に示す。 比較例 1−2 実施例1において吸水時の変形量3%、厚さ5
mmの型枠体を使用し、その他実施例1と同じ条件
で成形した。得られた結果を第1表に示す。 比較例 1−3 実施例1において原料粉の水分含有量を30重量
部とし、その他実施例1と同じ条件で成形した。
得られた結果を第1表に示す。
[Table] Regarding the strength during water absorption, it is necessary that the amount of deformation that deforms in response to the maximum pressure applied from the molded object to the form body during molding does not exceed an appropriate amount, and the relationship between stress and amount of deformation must be determined. There is an appropriate range for two-dimensional correlation. In other words, in the vibration molding method or the impact load molding method according to the present invention, the raw material and the formwork are generally 100Kg/cm 2 to 1000Kg/cm 2 .
An instantaneous impact pressure is applied in the range of The amount of deformation in the thickness direction is preferably in the range of 0.01% to 1%, and the appropriate range of the instantaneous impact pressure and the amount of deformation of the form body is shown in FIG. That is, point A
(P100Kg/cm 2 , δ0.01%), Point B (P100Kg/cm 2 , δ0.
1
%), point C (P100Kg/cm 2 , δ1.0%), point D (P1000
Kg/cm 2 , δ0.1%). Here, P represents the instantaneous impact pressure during molding, and δ represents the amount of deformation during drying or water absorption of the frame body deformed by the molded body formed by the impact pressure. This amount of deformation can be obtained by measuring the thickness of the mold body before molding and the thickness of the mold body after molding and curing. In other words, the dimensional accuracy and dimensions of the molded body should be reduced by 1% or more in thickness, that is, become thinner, because its strength during water absorption is low and the amount of deformation of the mold body that deforms due to the pressure applied to the raw material powder during molding is reduced by 1% or more in thickness. The reproducibility deteriorates, and the shear force generated between the molded body and the mold body during molding causes partial damage to the mold body, which also deteriorates the surface finish of the molded body itself. In addition, the strength when dry is high and the amount of deformation is 0.01%.
A mold body of less than 100 mm has a low water absorption ability, and it is difficult to appropriately release the stress accumulated inside the molded body due to the filling of the raw material slough, and the above-mentioned defects are likely to occur. In the present invention, as a formwork made of a soft material that is in contact with the molded body during molding, if shear failure does not occur even if the strength at the time of water absorption is low, excessive deformation such as buckling will be prevented by contacting the formwork body. This can be avoided by using high strength supports. Further, when a relatively thick soft material is used and the frame body has high strength, a support body that supports only a portion of the frame body, for example, the lower part, may be used. A molded object formed using a form body with such characteristics will expand and deform locally while being restrained by the form body, but if the characteristics of the form body are within the above-mentioned appropriate range, the amount of deformation will be small. Furthermore, this is not a disadvantage since it does not become a defect that affects the performance of the fired product. Examples of soft materials that have the above-mentioned characteristics and can be put to practical use include kraft paper, rigid polyurethane sheets, rigid polyethylene sheets, and hard wood. When using these as a formwork, they may be laminated in advance into the desired shape using an appropriate adhesive and molded, or the inner surface of a formwork made of high-strength material such as metal, wood, or synthetic resin may be used. Alternatively, it may be used by pasting it on the outer surface. In this case, the thickness of the hard material and the magnitude of the instantaneous impact pressure applied to the powder may be appropriately selected depending on the shape of the ceramic or refractory material to be molded.
For example, when the outer diameter of the cylindrical molded body is 50 to 600 mm, 2
mm to 30 mm, and if the thickness is less than 2 mm, not only will the amount of deformation described above not be obtained, but it will not be able to withstand the instantaneous impact pressure and will deform or collapse, impairing the smoothness of the surface of the molded product. saturate.
Also, depending on the shape of the required molded object, cylinder, cube, etc.
It is formed into a polygonal, medium or irregular column shape, and when it is made into a cylindrical shape, it is used by forming an outer frame body and an inner frame body. The molding method used in the present invention is generally a vibration molding method or an impact pressure molding method using a pneumatic impactor (rammer). The vibration conditions in the vibration molding method depend on the shape of the molded object,
The size and total weight including the molding frame are selected appropriately, but for example, when molding a cylindrical body with an outer diameter of 80 mm, an inner diameter of 55 mm, and a flow rate of 1200 mm, the upper part of the mold filled with raw material slough is After loading the formwork with a 5-10 kg load cone and placing it on a vibration table adjusted to minimize lateral vibration, vibration molding is usually carried out for 5-30 minutes at an amplitude of 2-6 mm. It is. In tamping molding using a pneumatic impactor, a load drill is not used, and the end of the pneumatic impactor is inserted into the hollow part of the formwork while sequentially filling the hollow parts of the outer and inner formwork with raw material. Apply impact pressure. At this time, the pneumatic impactor may be operated manually,
It may also be operated automatically by mechanical operation. In the present invention, during the curing and drying stage of the molded body after the completion of molding, moisture and gaseous molecules in the molded body and gaseous molecules are slowly transferred into the mold body made of a soft material having water absorption and air permeability. The residual stress that has accumulated excessively is released. After molding, the molded product is usually cured at room temperature for 24 hours or more with the soft material mold body in place, and after it has developed sufficient shape retention strength, the mold body is removed, and then placed in a dryer. Temperature 30~
It is dried at 150° C., preferably 40 to 120° C., for 24 hours or more to completely remove moisture and complete hardening of the binder, and then fired at a high temperature. Note that the soft formwork body does not necessarily have to be completely removed; it may be removed after curing and drying while fixed to the molded body, and even if the baking process is carried out, there will be no problem even if it is destroyed by fire. do not have. As an embodiment of the method of the present invention, FIG. 2 shows a case in which a ceramic cylinder is molded. That is, for metal, a paper outer frame (form) 2 having appropriate water absorption, air permeability, and plastic deformation strength is installed inside a wooden outer frame (support) 1; On the outer periphery of the core body (support body) 3 is a paper inner frame body (form body) 4 which also has water absorbency, air permeability, and plastic deformation strength.
These are covered with a metal or wooden pedestal 5.
It is assembled and installed on the vibration table 6, and the space between the paper outer frame body (form body) 2 and the paper inner frame body (form frame body) 4 is
A ceramic raw material scoop is filled in the chamber, a metal load cone 7 is inserted from the top and vibration is applied, and after a predetermined period of time, the molded body 8 is placed into a paper outer frame (form body) 2 and a paper inner frame body. Core body (support body) 3 with (formwork body) 4 attached
After removing the core body (support body) 3 from the mold outer frame (support body) 1, the core body (support body) 3 is pulled out. Next, the molded body 8 is sufficiently cured and dried together with the paper outer frame (mold) 2 and the paper inner frame (mold) 4 to develop shape-retaining strength, and then the paper outer frame ( Except for the mold body (form body) 2 and paper inner frame body (form body) 4, the molded product is sufficiently dried to obtain a sound molded product. The raw material powder that can be used as raw material powder in the method of the present invention includes commonly used ceramic powders such as alumina, magnesia, zirconia, silica powder, china clay, kibushi clay, silicon carbide, silicon nitride, etc. There are carbonaceous powders such as graphite powder, coke powder, carbon powder, pitch powder, etc., and metal powders such as silicon powder. 3 to 20 parts by weight, preferably 5 to 15 parts by weight of water, an organic binder such as methyl cellulose, polyvinyl alcohol, polyacrylic acid ester, phenolic resin, per 100 parts by weight of a single substance or a mixture of two or more of these. , 0.05 to 5 parts by weight, preferably 0.5 to 3 parts by weight, of heat-treated tar, etc., and further 0.05 to 5 parts by weight of glycerin, fux emulsion, alginate, etc. as additives, and a mixture thereof is used. . If the water content is less than 3 parts by weight, the packing density of the powder will be low, if it is more than 20 parts by weight, the powder will easily get caught in the middle of the mold powder during molding, and if the water content is even higher, it will fluidize and fill. Density does not increase. In addition, water is dehydrated in the drying process, and pores are formed in the dehydrated portions, making it impossible to obtain a uniform molded product with a high packing density. Example 1 30 parts by weight of metal silicon powder with a purity of 98.5% or more and a particle size of 74 μm or less was added to 70 parts by weight of silicon carbide with a particle size of 4 mm or less, and further 7.5 parts by weight of a 10% polyvinyl alcohol aqueous solution was added, and the mixture was kneaded in a kneader. The materials were thoroughly mixed to prepare ceramic raw material sludge (water content: 6.8 parts by weight). On the other hand, with the configuration shown in FIG. 2, the metal pedestal 5 is loaded on the vibration table 6, and the inner diameter
95mm, length 1500mm metal outer frame (support) 1, water absorption rate 35%, air permeability 8mm Darcy, tensile strength at 9% water absorption 240Kg/cm 2 Paper tube base paper, outer diameter 90mm, inner diameter 80
mm (pressure: 5 mm), paper outer frame (form body) 2 laminated and molded to a length of 1500 mm (deformation amount when absorbing water: 0.6%), an outer diameter of 55 mm, an inner diameter of 50 mm, using the same paper tube base paper, length
Paper inner frame body (form body) laminated to 1500 mm 4,
A metal core (support) 3 having a diameter of 48 mm and a length of 1500 mm was assembled. Next, the empty space between the paper outer frame body (form body) 2 and the paper inner frame body (form body) 4 of the mold is filled with the ceramic raw material shavings, and the outer diameter is 79 mm from the top. Inner diameter 59
A metal load cone 7 with a length of 300 mm and a length of 300 mm was inserted, and vibration forming was performed at an amplitude of 2 to 5 mm for 30 minutes. The instantaneous impact pressure at this time was 600Kg/cm 2 . Next, the molded body 8 is placed on a metal base 5, a metal outer frame (support) 1, and a metal core (support) together with a paper outer frame (form) 2 and a paper inner frame (form) 4. After removing the paper body (form body) 3 and air-drying it at room temperature for 24 hours, the paper outer frame body (form body) 2 and the paper inner frame body (form body) 4 were removed and dried at a maximum temperature of 105° C. for 24 hours. The cylindrical molded body obtained after drying has an outer diameter of 80 mm, an inner diameter of 55 mm, and a length.
It was formed to 120mm. The results obtained are shown in Table 1. Example 2 70 parts by weight of fused alumina with a particle size of 120 mesh or less and 30 parts by weight of alumina with an average particle size of 80 μm were added with 10 parts by weight of silica sol (water content 7 parts by weight) with a solid content concentration of 30% and heated in a kneader. The ceramic raw material was prepared by mixing thoroughly. On the other hand, there is an inner surface of a hard wooden outer frame (support body) with an outer surface of 200 mm x 200 mm, an inner diameter of 125 mm, and a height of 1000 mm, which has a two-part structure, and a hard wooden core body (support body) with a diameter of 75 mm and a height of 1000 mm. ) is a rigid polyurethane foam sheet with a water absorption rate of 22%, air permeability of 1 mm Darcy, tensile strength of 5 Kg/ cm2 , and thickness of 2.5 mm (deformation when water is absorbed: 0.3%).
are assembled as a frame for forming a cylindrical body, and the tip of an impact pressurizer (rammer) using air pressure is filled with the above-mentioned ceramic raw material sludge into the hollow space between the vertical frame and the core body. was inserted into the cavity to perform pressure filling. The instantaneous impact pressure at this time is 500
It was Kg/ cm2 . Next, after curing and drying at room temperature for 24 hours, the molded body was removed from the outer frame and core, and dried at a maximum temperature of 105°C for 24 hours. The results obtained are shown in Table 1. Example 3 70 parts by weight of artificial graphite powder with a particle size of 8 mm or less,
Add 5 parts by weight of water to 30 parts by weight of pitch coke powder with a particle size of 74 μm or less and 9 parts by weight of high softening point pitch powder with a particle size of 74 μm or less, mix thoroughly in a pressure kneader, and prepare carbonaceous raw material. It was adjusted. On the other hand, the inner surface of a metal outer cylinder (support body) with an outer diameter of 545 mm, an inner diameter of 505 mm, and a length of 1500 mm, and an outer diameter of 395 mm and an inner diameter of 355 mm.
Manufactured by laminating 2.5 mm thick kraft paper with a water absorption rate of 90%, air permeability of 40 mm Darcy, and tensile strength of 550 Kg/cm 2 at 9% water absorption on the outer surface of a metal inner tube (supporting body) with a length of 1500 mm. sheet (deformation amount during water absorption: 0.2%)
were assembled as a cylindrical mold by gluing them together, and the carbonaceous raw material was inserted into the cavity at the tip of the pneumatic impact pressurizer while stirring the carbonaceous raw material into the cavity between the outer cylinder and the inner cylinder. Filling molding was performed. The instantaneous impact pressure at this time was 300Kg/cm 2 . The results obtained are shown in Table 1. Comparative Example 1 A metal core with a diameter of 55 mm and a length of 1500 mm and an inner diameter of 80 mm were assembled on a metal pedestal placed on a vibrating table using the same ceramic raw materials used in Example 1.
Fill the empty space between a metal cylindrical outer frame with a thickness of 3 mm and a length of 1500 mm, insert a metal load cone with an inner diameter of 57 mm, an outer diameter of 78 mm, and a length of 300 mm from the top, and apply an amplitude of 2 to 5 mm.
Then, vibration molding was performed for 30 minutes. A two-part mold was used as the metal outer frame in order to facilitate demolding of the molded body, the outer surface of the core bar, and the outer frame. The results obtained are shown in Table 1. Comparative Example 2 The same raw material as the ceramic raw material used in Example 2 was used, and a hard wooden core and a hard wooden outer frame with the same hollow dimensions as in Example 2 were used. Rammer molding using a pneumatic impactor was performed during direct filling. When close-packing molding was performed until the bulk density reached 2.70 or more, cracks occurred during demolding, and a sound molded product could not be obtained. Reduced pneumatic impact conditions to prevent cracks and adhesion to the frame during demolding (instantaneous impact pressure of 500
Kg/cm 2 ) and the results are shown in Table 1. Comparative Example 3 Using the same carbonaceous raw material sludge as in Example 3, and using the same metal inner cylinder and metal outer cylinder as in Example 3, filling the empty spaces of both with the raw material slough, Rammer molding was performed using a pneumatic impactor. When close-packing molding was performed so that the bulk density of the molded product was 1.60 or more, cracks occurred during demolding, making it impossible to obtain a sound molded product. Relaxed tight packing conditions to prevent cracking during demolding (instantaneous impact pressure 300
Kg/cm 2 ) and the results are shown in Table 1. Comparative Example 1-1 In Example 1, a 0.5 mm thick formwork was used,
Other molding was carried out under the same conditions as in Example 1. The results obtained are shown in Table 1. Comparative Example 1-2 In Example 1, the amount of deformation upon water absorption was 3%, and the thickness was 5
Molding was carried out under the same conditions as in Example 1 using a mold frame of mm. The results obtained are shown in Table 1. Comparative Example 1-3 In Example 1, the moisture content of the raw material powder was set to 30 parts by weight, and molding was performed under the same conditions as in Example 1.
The results obtained are shown in Table 1.

〔発明の効果〕〔Effect of the invention〕

本発明は特殊な特性範囲の型枠体を用いること
によつて部分的に過度に蓄積された残留応力が適
切に開放され、その部分が脱型時に膨張破壊した
り、乾燥、焼成時に破壊することがないので、低
密度充填部分を残すことなく高圧密成形が可能と
なり、その結果充填密度が高く均一な充填密度を
有する焼成体用の成形体を得ることができる効果
を有する成形方法である。
By using a formwork body with a special characteristic range, the present invention appropriately releases residual stress that has accumulated excessively in some parts, so that the part expands and breaks during demolding, or breaks during drying and firing. This is a molding method that has the effect of making it possible to perform high-density molding without leaving any low-density filling portions, resulting in a molded body for fired bodies having a high and uniform packing density. .

【図面の簡単な説明】[Brief explanation of drawings]

第1図は型枠体の応力変形における適正範囲を
示すグラフ。第2図は本発明方法の一実施態様を
示す装置の断面図。
FIG. 1 is a graph showing the appropriate range of stress deformation of the formwork body. FIG. 2 is a sectional view of an apparatus showing one embodiment of the method of the present invention.

Claims (1)

【特許請求の範囲】[Claims] 1 振動成形法または衝撃荷重成形法によつて型
枠にセラミツクスまたは炭素材原料粉を充填し長
尺の成形体を成形し、養生、乾燥、焼成するもの
であつて、前記原料粉の水分含有量が該原料粉の
100重量部に対して3〜20重量部であり、かつ前
記型枠が吸水性、通気性および塑性変形性を有す
る軟質材料から成る型枠体と高強度を有する支持
体とを組み合わせた成形用枠体であり、しかも前
記軟質材料から成る型枠体の厚さが2mm〜30mmで
あり、該軟質材料から成る型枠体の塑性変形性
が、添付図面第1図の点A(P100Kg/cm2、δ0.01
%)、点B(P100Kg/cm2、δ0.1%)、C(P1000Kg/
cm2、δ1.0%)、点D(P1000Kg/cm2、δ0.1%)で囲
まれた範囲にあることを特徴とするセラミツクス
また炭素材の焼成体成形方法。ここでPは成形時
の瞬間衝撃圧力、δは前記衝撃圧力で成形された
成形体によつて変形した型枠体の乾燥時または吸
水時の変形量を表す。
1 A long molded body is formed by filling a mold with ceramic or carbon material raw material powder by vibration molding method or impact load molding method, and is then cured, dried, and fired, and the water content of the raw material powder is The amount of the raw material powder
For molding, the amount is 3 to 20 parts by weight per 100 parts by weight, and the formwork is made of a soft material having water absorption, air permeability, and plastic deformability in combination with a support having high strength. The thickness of the frame body made of the soft material is 2 mm to 30 mm, and the plastic deformability of the form body made of the soft material is at point A (P100 kg/cm 2 , δ0.01
%), point B (P100Kg/cm 2 , δ0.1%), point C (P1000Kg/
cm 2 , δ1.0%) and point D (P1000Kg/cm 2 , δ0.1%). Here, P represents the instantaneous impact pressure during molding, and δ represents the amount of deformation during drying or water absorption of the frame body deformed by the molded body formed by the impact pressure.
JP27160385A 1985-12-04 1985-12-04 Method of molding ceramics and carbon material Granted JPS62132606A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27160385A JPS62132606A (en) 1985-12-04 1985-12-04 Method of molding ceramics and carbon material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27160385A JPS62132606A (en) 1985-12-04 1985-12-04 Method of molding ceramics and carbon material

Publications (2)

Publication Number Publication Date
JPS62132606A JPS62132606A (en) 1987-06-15
JPH0442164B2 true JPH0442164B2 (en) 1992-07-10

Family

ID=17502375

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27160385A Granted JPS62132606A (en) 1985-12-04 1985-12-04 Method of molding ceramics and carbon material

Country Status (1)

Country Link
JP (1) JPS62132606A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62227448A (en) * 1986-03-31 1987-10-06 Nippon Kinzoku Kk Preparation of catalyst carrier made of ceramic
JP2696347B2 (en) * 1988-07-22 1998-01-14 旭光学工業株式会社 Method for manufacturing ceramic molded body
JPH05228913A (en) * 1991-07-26 1993-09-07 Sumitomo Electric Ind Ltd Method and device for forming ceramic
JP6548000B2 (en) * 2015-02-05 2019-07-24 日立金属株式会社 Mold for cast molding, manufacturing method of sintered body
CN112441835A (en) * 2020-12-04 2021-03-05 拓米(成都)应用技术研究院有限公司 High-strength high-density carbon material and preparation method and application thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5542901U (en) * 1978-09-14 1980-03-19
JPS57133012A (en) * 1981-02-10 1982-08-17 Nippon Sheet Glass Co Ltd Vibration pressing type cement product manufacture

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5542901U (en) * 1978-09-14 1980-03-19
JPS57133012A (en) * 1981-02-10 1982-08-17 Nippon Sheet Glass Co Ltd Vibration pressing type cement product manufacture

Also Published As

Publication number Publication date
JPS62132606A (en) 1987-06-15

Similar Documents

Publication Publication Date Title
US4935178A (en) Method of making refractory fiber products
US3568723A (en) Metal-ceramic composite structures
US4399052A (en) Activated carbonaceous honeycomb body and production method thereof
US8535587B2 (en) Method for manufacturing plugged honeycomb structure
US4070197A (en) Gas tight silicon carbide body
US8257629B2 (en) Manufacturing method of honeycomb structure
US3107158A (en) Method for the manufacture of pipes of concrete having prestressed longitudinal and annular reinforcements
JPH0442164B2 (en)
EP0345022B1 (en) Method for producing ceramics sintered article
CN107500711B (en) Engine expansion plugging heat-barrier material
USH48H (en) Method of making a ceramic article having open porous interior
JPS59209109A (en) Manufacture of shape made of curable molding material
IL33706A (en) Altering the properties of concrete by altering the quality or geometry of the intergranular contact of filler materials
US20080248436A1 (en) Method of filling large voids with ceramic fiber foam and kiln car blocks made via the same
JP3175455B2 (en) Ceramics molding method
SU833905A1 (en) Method of making heat-sound-insulating articles
JP6066827B2 (en) Manufacturing apparatus and manufacturing method of ceramic molded body
JPS5837122B2 (en) Manufacturing method of centrifugal concrete pipe
JP2826203B2 (en) Refractory manufacturing method
JPH0567581B2 (en)
US2632209A (en) Treatment of plaster molds
JP3224645B2 (en) Ceramics molding method
JPS6242805A (en) Method of molding ceramic pipe body
JP2004058307A (en) Method for manufacturing light-weight foam block
SU1217671A1 (en) Method of moulding gas-concrete articles

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees