JPS62132108A - Method and apparatus for measuring shape of three-dimensional article - Google Patents

Method and apparatus for measuring shape of three-dimensional article

Info

Publication number
JPS62132108A
JPS62132108A JP27223385A JP27223385A JPS62132108A JP S62132108 A JPS62132108 A JP S62132108A JP 27223385 A JP27223385 A JP 27223385A JP 27223385 A JP27223385 A JP 27223385A JP S62132108 A JPS62132108 A JP S62132108A
Authority
JP
Japan
Prior art keywords
measured
measuring
shape
detector
drawing screen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27223385A
Other languages
Japanese (ja)
Inventor
Michiichi Onishi
大西 道一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanegafuchi Chemical Industry Co Ltd
Original Assignee
Kanegafuchi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanegafuchi Chemical Industry Co Ltd filed Critical Kanegafuchi Chemical Industry Co Ltd
Priority to JP27223385A priority Critical patent/JPS62132108A/en
Publication of JPS62132108A publication Critical patent/JPS62132108A/en
Pending legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices With Unspecified Measuring Means (AREA)

Abstract

PURPOSE:To enable more accurate measurement within a short time, by arranging a non- contact type detector outside an article to be measured at an appropriate height position. CONSTITUTION:A drawing picture 14 is fixed to a flat plate surface 13 and an article 11 to be measured is fixed to a fixing plate 21 and a tracer 19 is arranged on the picture 14 in a freely movable manner. After the detection end 16a of a detector 16 is regulated to the first contour line of the article 11 to be measured (next, successively regulated to contour lines on and after a second one), at each time when said detection end 16a is allowed to coincide with three or more of arbitrary places A, B, C... in the outside surface of the article 11 to be measured, reference lines (a), (b), (c)... are drawn on the picture 14 along the mark-to- mark scale of the mark-to-mark indication part 18 formed to the base stand 15 of the tracer 19. The appropriate intervals of the arbitrary places A, B, C... are determined with the complicatedness of the outside curve of the article 11 to be measured. hereinafter, operation is continued in the same way to draw the reference line corresponding to each contour line of the place to be measured of the article 11 to be measured. At last, at each time when the reference line 10a of a reproducing device 10 is allowed to coincide with each reference line, plotting is performed on the picture 14 by a plotter 10b to calculate plot points A', B', C'... and a shape at each contour line is drawn.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、立体形状からなる被測定物の形状を測定する
方法及び測定装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method and a measuring device for measuring the shape of a three-dimensional object to be measured.

[従来技術] 従来、立体形状の被測定物の形状測定方法は、第5図に
示す如く、設計図(図示省略)から作成した複数枚の板
ゲージ2,2・・・の各ゲージ面2a、2a・−・を、
被測定物1の外側面1aの所定箇所に当接し、各ゲージ
面2aと被測定物1の外側面1aとの間隙寸法を測定し
て行なっていた。
[Prior Art] Conventionally, as shown in FIG. 5, a method for measuring the shape of a three-dimensional object to be measured involves measuring the gauge surfaces 2a of a plurality of plate gauges 2, 2, . . . created from a design drawing (not shown). , 2a...,
This was done by contacting a predetermined location on the outer surface 1a of the object to be measured 1 and measuring the gap size between each gauge surface 2a and the outer surface 1a of the object to be measured 1.

[発明が解決しようとする問題点〕 しかし、前記従来の測定方法では、次の如き欠点がある
[Problems to be Solved by the Invention] However, the conventional measuring method has the following drawbacks.

(a)複数枚の板ゲージ2,2・・・を作成するのに多
くの手間を必要とするため、測定に長時間を必要として
いた。
(a) Since it takes a lot of effort to create a plurality of plate gauges 2, 2, etc., a long time is required for measurement.

+1)l  各ゲージ面2aと被測定物1の外側面1a
との間隙寸法しか測定できないため、被測定物1の形状
を正確に測定することができない。
+1)l Each gauge surface 2a and the outer surface 1a of the object to be measured 1
Since only the gap size can be measured between the two, the shape of the object to be measured 1 cannot be measured accurately.

+cl  板ゲージ2.2・・・を当接することが不可
能な被測定物の形状測定ができない。
+cl It is impossible to measure the shape of an object to be measured which cannot be brought into contact with plate gauge 2.2.

本発明は、上記事情に鑑み創案されたものである。The present invention was devised in view of the above circumstances.

[問題を解決するための手段] 前記問題を解決するための手段を、実施例に対応する第
1図乃至第4図を用いて以下に説明する。
[Means for solving the problem] Means for solving the problem will be explained below using FIGS. 1 to 4 corresponding to the embodiment.

水筒−の発明に係る立体物の形状測定方法は、第1囚人
に示す如く、立体形状の被測定物11の形状測定方法に
おいて、所定位置に被測定物11を載置し、被測定物1
1の外側に、被測定物11の外側面11aを検知する非
接触式の検知器16を適宜高さ位置に配設し、被測定物
11の縦軸芯■11に直交する製図画面14と検知器1
6の検知端16aを通過し且つ被測定物11の縦軸芯V
11に平行な仮想軸線V12(同図+81参照)との交
点A’  、B’  、C’・・・(同図(C1参照)
を被測定物11の外側面11aにおける3箇所以上の任
意箇所A、B、C・・・について求めることにより被測
定物11の形状を得ることである。
As shown in the first prisoner, the method for measuring the shape of a three-dimensional object according to the invention of Water Bottle is a method for measuring the shape of a three-dimensional object to be measured 11, in which the object to be measured 11 is placed at a predetermined position,
1, a non-contact type detector 16 for detecting the outer surface 11a of the object to be measured 11 is arranged at an appropriate height position, and a drafting screen 14 perpendicular to the vertical axis 11 of the object to be measured 11 is connected. Detector 1
6 and the vertical axis center V of the object to be measured 11.
Intersection points A', B', C'... (see C1 in the same figure) with virtual axis V12 parallel to 11 (see +81 in the same figure)
The shape of the object to be measured 11 is obtained by determining the above at three or more arbitrary points A, B, C, . . . on the outer surface 11a of the object to be measured 11.

本第二の発明に係る立体物の形状測定装置は、第1囚人
に示す如く、立体形状の被測定物11の形状を測定する
測定装置において、被測定物11の固定fi12及び固
定盤12の縦軸芯V11と直交する製図画面14を備え
た測定盤17と、測定!2117の製図画面14上を指
動自在な基台15の適宜高さ位置に非接触式の検知器1
6を備えると共に基台15の適宜箇所に標点間指示部1
8を備えたトレッサ19と、前記検出器16の検知端1
6aを前記基台15の摺動底面15aの仮想延長平面へ
前記固定盤12の縦軸芯V11に沿って投影した投影検
知点P(同図(B)I照)とトレッサ19の標点間指示
部18の標点IBa、18a間との関係を求めた再現器
10とより構成したことである。
The shape measuring device for a three-dimensional object according to the second invention is a measuring device for measuring the shape of a three-dimensional object to be measured 11, as shown in the first prisoner. A measuring board 17 equipped with a drafting screen 14 orthogonal to the vertical axis V11, and measurement! A non-contact type detector 1 is placed at an appropriate height position on a base 15 that can be freely moved on the drawing screen 14 of 2117.
6, and a gauge distance indicator 1 at an appropriate location on the base 15.
8 and the sensing end 1 of the detector 16
6a projected onto the virtual extension plane of the sliding bottom surface 15a of the base 15 along the vertical axis V11 of the fixed platen 12 (see I in the same figure (B)) and the gauge point of the tresor 19. It is composed of a reproducer 10 that determines the relationship between the reference points IBa and 18a of the indicator 18.

本第三の発明に係る立体物の形状測定装置は、第4図に
示す如く、立体形状の被測定物41の形状を測定する測
定装置において、被測定物41の固定盤42を固定盤4
2の縦軸芯V41と直交する製図画面44の上方に張出
した測定盤47と、測定!1!47の製図゛  画面4
4と平行な平板面43と、該平板面43の上を震動自在
な基台45の適宜高さ位置に、2個の投光器46b、4
6bから発せられた光線の交点を検知端46aとする検
知器46を備えると共に、検知器46の検知端4fia
から前記製図画面44へ垂下した仮想垂線V42上に先
端を一致させたプロット具48を備えたトレッサ49と
より構成したことである。
As shown in FIG. 4, the shape measuring device for a three-dimensional object according to the third invention is a measuring device for measuring the shape of a three-dimensional object to be measured 41, in which a fixed platen 42 of the measured object 41 is connected to a fixed platen.
Measurement board 47 protrudes above the drafting screen 44 perpendicular to the vertical axis V41 of No. 2, and measurement! 1! 47 drawings Screen 4
Two floodlights 46b, 4 are placed at appropriate height positions on a flat plate surface 43 parallel to 4 and on a base 45 that can vibrate freely on the flat plate surface 43.
The detector 46 is provided with a detection end 46a that is the intersection of the light beams emitted from the light beams 6b, and the detection end 4fia of the detector 46 is provided.
A tracer 49 is provided with a plotting tool 48 whose tip is aligned with a virtual perpendicular line V42 extending from the drawing screen 44 to the drawing screen 44.

[作 用] 水弟−の発明に係る立体物の形状測定方法にあっては、
第1図(81に示す如く、検知器16の検知端16aか
ら垂下した仮想軸線V12と製図画面14との交点が、
検知器16の検知端16aを製図′m面14上へ投影し
で得た点Pに一致することから、同図穴に示す如く、被
測定物11の外側面11aにおける3箇所以上の任意箇
所A、B、C・・・を検知器1Gで検知して得た同図(
C)に示す製図画面14上の交点A/。
[Function] In the method for measuring the shape of a three-dimensional object according to the invention of Mizuo,
As shown in FIG. 1 (81), the intersection of the virtual axis V12 hanging from the detection end 16a of the detector 16 and the drawing screen 14 is
Since the detection end 16a of the detector 16 coincides with the point P obtained by projecting it onto the drawing plane 14, three or more arbitrary points on the outer surface 11a of the object to be measured 11 can be detected as shown in the holes in the figure. The same figure obtained by detecting A, B, C... with detector 1G (
Intersection A/ on the drawing screen 14 shown in C).

B’ 、C’・・・は、被測定物11の外側面11aの
任意箇所A、B、C・・・を製図画面14上に投影した
点となる。
B', C', . . . are points obtained by projecting arbitrary locations A, B, C, . . . on the outer surface 11a of the object 11 onto the drawing screen 14.

本第二の発明に係る立体物の形状測定装置にあっては、
第1囚人に示す如く、被測定物11の外側面11aにお
ける3箇所以上の任意箇所A、8.C・・・に検知器1
6の検知端16aを一致させて、製図面画14上ヘトレ
ツサ19の標点間指示部18の標点18a。
In the shape measuring device of a three-dimensional object according to the second invention,
As shown in the first prisoner, three or more arbitrary points A, 8. Detector 1 on C...
6, and the gauge points 18a of the gauge point-to-gauge indicator 18 of the height tracer 19 on the drawing image 14.

18a間に沿って作図した基準線a、b、c・・・に、
同図C1に示す如く、再現器10を一致させて得た製図
画面14上のプロット点A’  、B’  、C’・・
・が、任意箇所A、B、C・・・を製図画面14上に投
影した点となる。
On the reference lines a, b, c... drawn along between 18a,
As shown in FIG. C1, plot points A', B', C', etc. on the drawing screen 14 obtained by matching the reproducers 10 are shown.
. is a point where arbitrary points A, B, C, etc. are projected onto the drawing screen 14.

本第三の発明に係る立体物の形状測定装置にあっては、
第4図に示す如く、検知器46を構成する2個の投光器
46b、46bから発せられた光線の交点である検知端
46aからトレッサ49の基台45のi’1lJJ底面
45aの仮想延長平面へ垂下した仮想垂線V42上に先
端を一致させたプロット具48を備えであるので、被測
定物41の外側面41aを検知器46の検知端46aで
なぞった際、製図画面44上にプロット具48で作図さ
れた曲線は、検知器46の検知端46aの移動軌跡であ
る被測定物41の等高線を製図画面44上に投影した曲
線となる。
In the device for measuring the shape of a three-dimensional object according to the third invention,
As shown in FIG. 4, from the detection end 46a, which is the intersection of the light beams emitted from the two floodlights 46b, 46b constituting the detector 46, to the virtual extension plane of the i'1lJJ bottom surface 45a of the base 45 of the tresor 49. Since the plotting tool 48 is provided with its tip aligned with the hanging virtual perpendicular line V42, when the outer surface 41a of the object to be measured 41 is traced with the detection end 46a of the detector 46, the plotting tool 48 will appear on the drawing screen 44. The curve drawn in is a curve obtained by projecting the contour line of the object to be measured 41, which is the movement locus of the detection end 46a of the detector 46, onto the drawing screen 44.

[実施例の説明] (第1実施例) 第1図へ〜fclは、本発明の第1実施例を示すもので
ある。
[Description of Embodiments] (First Embodiment) FIG. 1~fcl shows a first embodiment of the present invention.

先ず、測定装置を説明する。測定装置は、測定盤17と
トレッサ19と再現器10とからなる。測定盤17は、
同図穴に示す如く、被測定物11を載置固定するための
固定盤12と、固定盤12の縦軸芯V11(被測定物1
1の縦軸芯でもある)と直交する製図板等の平板面13
とからなる。測定盤17は、平板面13の上に固定した
製図紙等からなる製図画面14を介して固定盤12を載
置固定したものであるが、何らこれに限定されるもので
はなく、図示省略したが、被測定物の大きさ及び重り等
に対応させて、固定盤12と平板面13とで同一平面を
形成するように一体的に構成することも、また固定盤1
2と平板面13とを別体的に構成することもある。トレ
ッサ19は、測定盤17の製図画面14上を自在に摺動
する基台15と、基台15へ高さ位W1調節自在に備え
た検・知器16とからなり、基台15の側縁等に標点間
指示部18の標点18a、18a l!tlがq盛ッテ
ある。検知器16は、2個の投光器16b、 16bよ
りなり、該2個の投光器16b、 16bから発せられ
た光n(例えば、レーザ光線等)の交点を検知端16a
としたものである。
First, the measuring device will be explained. The measuring device consists of a measuring board 17, a tracer 19, and a reproducer 10. The measuring board 17 is
As shown in the hole in the figure, there is a fixed platen 12 for mounting and fixing the object to be measured 11, and a vertical axis V11 of the fixed platen 12 (the object to be measured 1
A flat plate surface 13 of a drawing board or the like that is perpendicular to the vertical axis of 1)
It consists of The measurement board 17 is a device on which the fixed board 12 is placed and fixed via a drafting screen 14 made of drafting paper or the like fixed on a flat plate surface 13, but is not limited to this in any way and is not shown in the figure. However, depending on the size and weight of the object to be measured, the fixed plate 12 and the flat plate surface 13 may be integrally configured to form the same plane.
2 and the flat plate surface 13 may be constructed separately. The tracer 19 consists of a base 15 that freely slides on the drawing screen 14 of the measuring board 17 and a detector 16 that is attached to the base 15 so that the height W1 can be freely adjusted. Gauge points 18a, 18a of the gauge distance indicating section 18 on the edge etc. l! There are a lot of tl. The detector 16 consists of two light projectors 16b, 16b, and detects the intersection point of light n (for example, laser beam, etc.) emitted from the two light projectors 16b, 16b at the detection end 16a.
That is.

前記再現器10は、同図B)に示す如く、板紙又は合成
11m板等から形成したテン11ノート板よりなり、前
記トレッサ19に形成された標点間指示部18の標点間
目盛に対応する基準部10aとV字状に切欠いたプロッ
トgI110bとが次の如く形成されている。
As shown in Figure B), the reproducer 10 is made of a ten-11 note board made of paperboard or synthetic 11m board, and corresponds to the gauge-to-gauge scale of the gauge-to-gauge indicator 18 formed on the tracer 19. The reference portion 10a and the V-shaped cutout plot gI110b are formed as follows.

即ち、再現器10は、基準部10aをトレッサ19の標
点間指示部18の標点間目盛に一致させたとき、トレッ
サ19の検知器16の検知端16aから基台15の店動
底面15aの仮想延長平面上へ垂直投影した点PとブO
ット部10bとが一致するようになされている。
That is, when the reproducer 10 matches the reference part 10a with the gauge interval scale of the gauge interval indicator 18 of the tracer 19, the reproducing device 10 moves from the detection end 16a of the detector 16 of the tracer 19 to the moving bottom surface 15a of the base 15. Points P and O projected perpendicularly onto the virtual extension plane of
The cut portion 10b is made to coincide with the cut portion 10b.

次に、測定方法を説明する。先ず、平板面13上に製図
紙等からなる製図画面14を固定すると共に、固定盤1
2上に被測定物11を固定する。次に、製図画面14上
にトレッサ19を移動自在に載置すると共に、トレッサ
19の検知器16の検知端16aを被測定物11の第1
番目の等高線位置に調節した後、検知器16の検知端1
6aを被測定物11の外側面11aにおける3箇所以上
の任意箇所A、B、C・・・に一致させる毎に、製図画
面14上に、トレッサ19の基台15に形成されている
標点間指示部18の標点間目盛に沿って基準線a、b、
c・・・を作図する。なお、任意箇所A、B、C・・・
の間隔は、被測定物11の外側曲線の複雑さに応じて適
宜決定する。続けて、図示省略したが、トレッサ19の
検知器16の検知端16aを被測定物11の第2番目の
等高線位置に再m節した後、検知器16の検知端16a
を被測定物11の外側面11aにおける3箇所以上の任
意箇所に一致させる毎に、製図画面14上に、基台15
の標点間指示部18の標点間目盛に沿って基準線を作図
する。この様にして、被測定物11の測定すべき箇所の
各等高線に対応する基準線を製図画面14上に順次作図
する。なお、製図画面14上に基準線a、b、c・・・
を作図する場合には、各基準線が重ならないようにする
と共に、同一等高線に関する各基準線を同一色で作図す
ると共に、必要に応じて番号を付記し後の識別が簡単に
できるようにしておくことが好ましい。最後に、再現器
10の基準部10aを各基準線a、b、c・・・に一致
させる毎に、製図画面14上に再現器10のプロット部
10bでプロットしてプロット点A’ 、B’ 、C’
・・・を求め、被測定物11の形状を示す各等高線を作
図する。
Next, the measurement method will be explained. First, the drawing screen 14 made of drawing paper or the like is fixed on the flat plate surface 13, and the fixed platen 1 is
The object to be measured 11 is fixed on the top of the test piece 2. Next, the tracer 19 is movably placed on the drawing screen 14, and the detection end 16a of the detector 16 of the tracer 19 is connected to the first
After adjusting to the contour line position, the detection end 1 of the detector 16
6a to three or more arbitrary points A, B, C, etc. on the outer surface 11a of the object to be measured 11, the gauge mark formed on the base 15 of the tracer 19 is displayed on the drawing screen 14. Reference lines a, b, along the gauge scale of the distance indicator 18
Draw c... In addition, arbitrary locations A, B, C...
The interval is determined as appropriate depending on the complexity of the outer curve of the object to be measured 11. Subsequently, although not shown, after the sensing end 16a of the detector 16 of the tracer 19 is moved to the second contour line position of the object 11, the sensing end 16a of the detector 16 is moved again.
The base 15 is displayed on the drawing screen 14 each time the
A reference line is drawn along the gauge interval scale of the gauge interval indicator 18. In this way, reference lines corresponding to each contour line of the part to be measured on the object 11 to be measured are sequentially drawn on the drawing screen 14. Note that reference lines a, b, c... are displayed on the drawing screen 14.
When drawing, make sure that the reference lines do not overlap, draw each reference line related to the same contour line in the same color, and add numbers as necessary to make it easier to identify them later. It is preferable to leave it there. Finally, each time the reference part 10a of the reproducer 10 is matched with each reference line a, b, c, etc., the plotting part 10b of the reproducer 10 plots on the drawing screen 14 and plots points A', B. ',C'
. . . and draw each contour line indicating the shape of the object to be measured 11.

(第2実施例) 第2図は、本発明の第2実施例を示すものである。(Second example) FIG. 2 shows a second embodiment of the invention.

先ず、測定装置を説明するにあたって、前記第1実施例
と異なる箇所を説明する。製図画面24は市販の図形入
力装置であるデジタイザより構成しである。トレッサ2
9は、標点間指示部28の標点を2本の入力ビン28a
、28aから構成し、デジタイザよりなる製図画面24
に対するトレッサ29の位置を座標として製図画面24
へ入力できるようにしである。再現器20は、コンピュ
ータの演算回路より構成され、トレッサ29の投影検知
点P(第1図(B)参照)と標点間指示部28の標点2
8a、28aとの相対関係を座標情報として予め入力さ
せである。図中9は、XYプロッタ等からなる製図器で
ある。この製図器9は、デジタイザよりなる製図画面1
4上に載置された測定中のトレッサ29の入力ビン28
a、28aで製図画面24ヘブロット入力して得たトレ
ッサ29の位置を示す座標情報を、前記再現器20に入
力されている座標情報で処理して得た出力信号により、
製図画面24上へ検知!S26の検知端26aを投影し
た投影点に対応する点を製図紙9a上にプロットするも
のである。なお、検知器26は、前記第1実施例と同様
に、2個の投光器26b、26bよりなり、該2rIU
の投光器26b、26bから発せられた光線(例えば、
レーザ光線等)の交点を検知端26aとしたものである
First, in explaining the measuring device, the differences from the first embodiment will be explained. The drawing screen 24 is composed of a digitizer, which is a commercially available graphic input device. Tressa 2
9, the gauges of the gauge interval instruction section 28 are input to two input bins 28a.
, 28a, and a drafting screen 24 consisting of a digitizer.
The drawing screen 24 uses the position of the tracer 29 as a coordinate.
This allows you to input it to The reproducer 20 is composed of a computer arithmetic circuit, and is configured to detect the projected detection point P of the tracer 29 (see FIG. 1(B)) and the gauge point 2 of the gauge distance indicator 28.
The relative relationship with 8a and 28a is input in advance as coordinate information. Reference numeral 9 in the figure is a drawing device consisting of an XY plotter or the like. This drafting device 9 has a drafting screen 1 consisting of a digitizer.
Input bin 28 of the tracer 29 under measurement placed on 4
With the output signal obtained by processing the coordinate information indicating the position of the tracer 29 obtained by inputting the plot into the drawing screen 24 at 28a with the coordinate information input to the reproducing device 20,
Detected on the drawing screen 24! Points corresponding to the projection point of the detection end 26a in S26 are plotted on the drawing paper 9a. Note that the detector 26 is composed of two light projectors 26b, 26b, as in the first embodiment, and the 2rIU
The light beams emitted from the projectors 26b, 26b (for example,
The intersection point of the laser beams, etc.) is defined as the detection end 26a.

次に、測定方法を説明する。先ず、平板面23上にデジ
タイザからなる製図画面24を固定すると共に、固定盤
22上に被測定物21を固定する。次に、製図画面24
上にトレッサ29を移動自在に載置すると共に、トレッ
サ29の検知器26の検知端26aを被測定物21の第
1番目の等高線位置に調節する。そして、検知器26の
検知端26aを被測定物21の外側面21aにおける3
箇所以上の任意箇所A、B、C・・・に一致させる毎に
、トレッサ29の入力ビン288゜28aを用いて製図
画面24にプロット入力して得たトレッサ29の位置を
示す座標情報を、再現器20に入力されている座標情報
で処理することにより、製図画面24上へ検知器26の
検知端26aを投影した投影点の座標を算出して、製図
器9の製図紙9aにプロット点A’ 、B’ 、C’・
・・を自動作図させ、被測定物21の形状を示す各等高
線を求める。なお、隣接するプロット点A′とB′及び
B’とC′・・・の間は、コンピュータ処理によりスプ
ライン曲線等の滑らかな曲線でむすぶことも可能である
。続けて、図示省略したが、トレッサ29の検知器26
の検知端26aを被測定物21の第2@目の等高線位置
に再調節した後、検知器26の検知端26aを被測定物
21の外側面21aにおける3箇所以上の任意箇所に一
致させる毎に、被測定物21の第2番目の等高線を製図
器9の製図紙9aに作図する。この様にして、被測定物
21の測定すべき箇所の各等高線を製図器9の製図紙9
aに作図する。
Next, the measurement method will be explained. First, a drafting screen 24 consisting of a digitizer is fixed on a flat plate surface 23, and an object to be measured 21 is fixed on a fixed platen 22. Next, the drafting screen 24
A tracer 29 is movably placed thereon, and the detection end 26a of the detector 26 of the tracer 29 is adjusted to the first contour line position of the object to be measured 21. Then, the detection end 26a of the detector 26 is connected to the outer surface 21a of the object to be measured 21.
Each time a given point A, B, C, etc. is matched, coordinate information indicating the position of the tracer 29 obtained by plotting and inputting it into the drawing screen 24 using the input bin 288° 28a of the tracer 29, By processing the coordinate information input to the reproducing device 20, the coordinates of the projection point where the detection end 26a of the detector 26 is projected onto the drawing screen 24 are calculated, and the plot point is plotted on the drawing paper 9a of the drawing device 9. A', B', C'・
. . . to automatically draw each contour line indicating the shape of the object to be measured 21. It is also possible to connect adjacent plot points A' and B', B' and C', . . . with smooth curves such as spline curves through computer processing. Next, although not shown, the detector 26 of the tresor 29
After readjusting the detection end 26a of the detector 26 to the second contour line position of the object 21, each time the detection end 26a of the detector 26 is brought into alignment with three or more arbitrary points on the outer surface 21a of the object 21. Next, a second contour line of the object to be measured 21 is drawn on the drawing paper 9a of the drawing device 9. In this way, each contour line of the point to be measured on the object 21 is drawn on the drawing paper 9 of the drawing device 9.
Draw on a.

〈第3実施例) 第3図は、本発明の第3実施例を示すものである。(Third example) FIG. 3 shows a third embodiment of the invention.

先ず、測定装置を説明するにあたって、前記第2実施例
と異なる箇所を説明する。検知器36は、超音波式又は
レーザ一式等の距離測定器よりなり、検知ヘッド36d
から被測定物31の外側面31a上の検知端A、B、C
・・・までの距離を測定し、制御本体36cから後述の
再現器30へ測定結果を出力するものである。再現器3
0は、コンピュタの演算回路より構成され、トレッサ3
9の標点38a 、 38aの座標と検知器36が求め
た距離との関係に基づいて、製図画面34上へ検知端A
、B、C・・・を投影した投影点の位置を標点38a、
38aとの関係で極座標情報として予め入力させである
。被測定物31を固定する固定盤32は、必要に応じて
軸振れのない状態で回転するターンテーブルと、ターン
テーブルの回転角度検出器とから構成することもある。
First, in explaining the measuring device, the differences from the second embodiment will be explained. The detector 36 consists of a distance measuring device such as an ultrasonic type or a laser set, and has a detection head 36d.
From the detection ends A, B, C on the outer surface 31a of the object to be measured 31
. . . and outputs the measurement results from the control main body 36c to a reproducing device 30, which will be described later. Reproducer 3
0 is composed of a computer arithmetic circuit, and the tracer 3
Based on the relationship between the coordinates of the gauge points 38a and 38a of 9 and the distance determined by the detector 36, the detection end A is placed on the drawing screen 34.
, B, C...
38a, the polar coordinate information must be input in advance. The fixed platen 32 for fixing the object to be measured 31 may be constructed of a turntable that rotates without axial runout and a rotation angle detector of the turntable, if necessary.

次に、測定方法を説明する。先ず、平板面33上にデジ
タイザからなる製図画面34を固定すると共に、固定盤
32上に被測定物31を固定する。次に、製図画面34
上にトレッサ39を移動自在に載置すると共に、トレッ
サ39の検知器36の検知高さを被測定物31の第1番
目の等高線位置に調節する。そして、検知器36の検知
ヘッド36dから被測定物31の外側面31aにおける
3箇所以上の任意箇所A、B。
Next, the measurement method will be explained. First, a drawing screen 34 consisting of a digitizer is fixed on a flat plate surface 33, and an object to be measured 31 is fixed on a fixed platen 32. Next, the drafting screen 34
A tracer 39 is movably placed thereon, and the detection height of the detector 36 of the tracer 39 is adjusted to the first contour line position of the object 31 to be measured. Three or more arbitrary points A and B on the outer surface 31a of the object to be measured 31 from the detection head 36d of the detector 36.

C・・・の各箇所までの距離を測定する毎に、トレッサ
39の入力ビン38a、38aを用いて製図画面24に
ブ。
Each time the distance to each point of C... is measured, the data is displayed on the drawing screen 24 using the input bins 38a, 38a of the tracer 39.

ロット入力して得たトレッサ39の位置を示す座標情報
及び検知器36の制御本体36cから出力された距離測
定結果を、再現器30に入力された座標情報で処理する
ことにより、上記任意箇所A、B、C・・・を製図画面
34上へ投影した投影点の座標を算出して、製図器9の
製図紙9aにプロット点A′。
By processing the coordinate information indicating the position of the tracer 39 obtained by inputting the lot and the distance measurement result output from the control body 36c of the detector 36 with the coordinate information input to the reproducer 30, the above-mentioned arbitrary point A is processed. , B, C, .

B’ 、C’・・・を自動作図させ、被測定物31の形
状を示す各等高線を求める。以侵、前記同様にして、被
測定物31の測定すべき箇所の各等高線を製図器9の製
図紙9aに作図する。
B', C', . . . are automatically drawn to obtain each contour line indicating the shape of the object to be measured 31. Thereafter, in the same manner as described above, each contour line of the part to be measured on the object to be measured 31 is drawn on the drawing paper 9a of the drawing device 9.

(第4実施例) 第4図は、本発明の第4実施例を示すものである。(Fourth example) FIG. 4 shows a fourth embodiment of the present invention.

先ず測定装置を説明する。測定装置は、測定盤47とト
レッサ49とからなる。測定盤47は、平板面43の上
方に被測定物41を固定するための固定盤42が設けら
れ、固定盤42の縦軸芯V41(被測定物41の縦軸芯
でもある)が平板面43と直交するようにしである。ト
レッサ49は、測定盤47の平板面43上を自在に摺動
する基台45と、基台45の適宜高さ位置に備えられ、
2個の投光器46b、46bから発せられた光線の交点
を検知端46aとする検知器46と、検知器46の検知
端46aから基台45の摺動底面45aの仮想延長平面
上へ垂下した仮想垂線V42に先端48aを一致させて
設けた鉛筆等のプロット具48とからなる。
First, the measuring device will be explained. The measuring device consists of a measuring board 47 and a tracer 49. The measurement board 47 is provided with a fixed plate 42 for fixing the object to be measured 41 above a flat plate surface 43, and the vertical axis V41 of the fixed plate 42 (which is also the vertical axis of the object to be measured 41) is aligned with the flat plate surface. 43 and perpendicular to it. The tresser 49 is provided with a base 45 that freely slides on the flat surface 43 of the measurement board 47 and at an appropriate height position of the base 45.
A detector 46 whose detection end 46a is the intersection of the light beams emitted from the two floodlights 46b, 46b, and a virtual sensor 46 that hangs down from the detection end 46a of the detector 46 onto the virtual extension plane of the sliding bottom surface 45a of the base 45. It consists of a plotting tool 48, such as a pencil, whose tip 48a is aligned with the perpendicular line V42.

次に、測定方法を説明する。先ず、平板面43上におけ
る固定型下方領域に製図紙等からなる製図画面44を固
定すると共に、固定盤42上に被測定物41を固定する
。次に、平板面43上にトレッサ49を移動自在に載置
すると共に、検知器46の検知端46aを被測定物41
の第1番目の等高線位置に調節した後、検知器46の検
知端46aで被測定物41の外側面41aをなぞるよう
にトレッサ49を移動させ、製図画面44上にプロット
具48で曲線を作図する。続けて、図示省略したが、ト
レッサ49の検知器46の検知端46aを被測定物41
の第2番目の等高線位置に再調節した後、検知器46の
検知端46aで被測定物41の外側面41aをなぞり、
製図画面り上にプロット具48で曲線を作図する。この
様にして、被測定物41の形状を示す各等高線に対応す
る曲線を製図画面44上に順次作図する。
Next, the measurement method will be explained. First, a drafting screen 44 made of drafting paper or the like is fixed to a region below the fixed die on the flat plate surface 43, and the object to be measured 41 is fixed on the fixed platen 42. Next, the tresor 49 is movably placed on the flat plate surface 43, and the detection end 46a of the detector 46 is connected to the object 41 to be measured.
After adjusting to the first contour line position, the tracer 49 is moved so that the detection end 46a of the detector 46 traces the outer surface 41a of the object to be measured 41, and a curve is drawn on the drawing screen 44 with the plotting tool 48. do. Next, although not shown, the detection end 46a of the detector 46 of the tracer 49 is connected to the object to be measured 41.
After readjusting to the second contour line position, trace the outer surface 41a of the object to be measured 41 with the detection end 46a of the detector 46,
A curve is drawn on the drawing screen using a plotting tool 48. In this way, curves corresponding to each contour line representing the shape of the object to be measured 41 are sequentially drawn on the drawing screen 44.

なお、得られた曲線データをコンピュータ処理するには
、上記製図画面44としてデジタイザを使用すれば、極
めて容易にコンピータへデータを入力することもできる
Incidentally, in order to process the obtained curve data by computer, if a digitizer is used as the drawing screen 44, the data can be inputted into the computer very easily.

[発明の効果] 以上詳述の如く、本発明は次の如く優れた効果を有する
[Effects of the Invention] As detailed above, the present invention has the following excellent effects.

■ 簡易迅速に被測定物の形状をトレスすることができ
るので、複数枚の板ゲージの作成を必要とする従来に比
べて、短時間に測定することができる。
■ Since the shape of the object to be measured can be traced easily and quickly, measurements can be made in a shorter time than in the past, which requires the creation of multiple plate gauges.

■ 被測定物の外側面形状をトレスすることができるの
で、被測定物の外側面形状をトレスすることのできない
従来に比べ正確に測定することができる。
(2) Since the shape of the outer surface of the object to be measured can be traced, it is possible to measure more accurately than in the past, in which the shape of the outer surface of the object to be measured cannot be traced.

■ 非接触式の検知器で測定することができるので、接
触測定の不可能な軟質物又は綿状物等からなる被測定物
の形状測定が簡単にできる。
(2) Since measurement can be performed using a non-contact type detector, it is possible to easily measure the shape of objects to be measured, such as soft materials or cotton-like materials that cannot be measured by contact.

【図面の簡単な説明】[Brief explanation of drawings]

第1図へ〜(C)は本発明に係る立体物の形状測定方法
及び測定装置具の第1実施例を示すものであって、同図
式は製図面面上に基準線を作図している状態を示す斜視
図、同図(B)は再現器であるテンプレートとトレッサ
との関係を説明する斜視図、同図fc)は製図面面上に
再現器を用いて被測定物の等高線をプロットしている状
態を示す斜視図、第2図は本発明に係る立体物の形状測
定方法及び測定装置の第2実施例を示す斜視図、第3図
は本発明に係る立体物の形状測定方法及び測定装置の第
3実施例を示す斜視図、第4図は本発明に係る立体物の
形状測定方法及び測定装置の第4実施例を示す斜視図、
第5図は従来の測定方法を示す斜視図である。
Figures 1 to (C) show a first embodiment of the method and measuring device for measuring the shape of a three-dimensional object according to the present invention, in which a reference line is drawn on the drawing surface. A perspective view showing the state; Figure (B) is a perspective view explaining the relationship between the template, which is a reproducer, and the tracer; Figure fc) is a diagram showing the contour lines of the object to be measured using the reproducer on the drawing surface. FIG. 2 is a perspective view showing a second embodiment of the method and apparatus for measuring the shape of a three-dimensional object according to the present invention, and FIG. 3 is a perspective view showing the method for measuring the shape of a three-dimensional object according to the present invention. and a perspective view showing a third embodiment of the measuring device; FIG. 4 is a perspective view showing a fourth embodiment of the method and measuring device for measuring the shape of a three-dimensional object according to the present invention;
FIG. 5 is a perspective view showing a conventional measuring method.

Claims (1)

【特許請求の範囲】 1、立体形状の被測定物の形状測定方法において、所定
位置に被測定物を載置し、被測定物の外側に、被測定物
の外側面を検知する非接触式の検知器を適宜高さ位置に
配設し、被測定物の縦軸芯に直交する製図画面と検知器
の検知端を通過し且つ被測定物の縦軸芯に平行な仮想軸
線との交点を被測定物の外側面における3箇所以上の任
意箇所について求めることにより被測定物の形状を得る
ことを特徴とする立体物の形状測定方法。 2、前記仮想軸線と製図画面との交点を各任意箇所につ
いて求めるに際し、前記検知器で各任意箇所を検知する
毎に、前記検知器を支持する基台の適宜箇所に形成した
標点間指示部の標点間に沿って前記基台の基準線を前記
製図画面上に作図した後、該標点間指示部の標点間と前
記検知端から製図画面上へ前記被測定物の縦軸芯に沿っ
て投影した点との関係を予め求めたテンプレートを前記
基準線に一致させて前記交点を求める特許請求の範囲第
1項記載の立体物の形状測定方法。 3、立体形状の被測定物の形状を測定する測定装置にお
いて、被測定物の固定盤及び固定盤の縦軸芯と直交する
製図画面を備えた測定盤と、測定盤の製図画面上を摺動
自在な基台の適宜高さ位置に非接触式の検知器を備える
と共に基台の適宜箇所に標点間指示部を備えたトレッサ
と、前記検出器の検知端を前記基台の摺動底面の仮想延
長平面へ前記固定盤の縦軸芯に沿って投影した投影検知
点とトレッサの標点間指示部の標点間との関係を求めた
再現器とよりなることを特徴とする立体物の形状測定装
置。 4、前記検知器は、2個の投光器からなると共に該2個
の投光器から発せられた光線の交点を検知端とする特許
請求の範囲第3項記載の立体物の形状測定装置。 5、前記再現器は板状のテンプレートからなる特許請求
の範囲第3項又は第4項記載の立体物の形状測定装置。 6、前記検知器は検知ヘッドから前記被測定物の外側面
上の検知端までの距離を測定する距離測定器よりなる特
許請求の範囲第3項記載の立体物の形状測定装置。 7、前記製図画面は図形入力装置であるデジタイザより
なると共に、前記再現器は前記投影検知点と標点間との
関係を記憶したコンピュータの演算回路よりなる特許請
求の範囲第3項、第4項又は第6項記載の立体物の形状
測定装置。 8、立体形状の被測定物の形状を測定する測定装置にお
いて、被測定物の固定盤を固定盤の縦軸芯と直交する製
図画面の上方に張出した測定盤と、測定盤の製図画面と
平行な平板面と、該平板面の上を摺動自在な基台の適宜
高さ位置に、2個の投光器から発せられた光線の交点を
検知端とする検知器を備えると共に、検出器の検知端か
ら前記製図画面へ垂下した仮想垂線上に先端を一致させ
たプロット具を備えたトレッサとよりなることを特徴と
する立体物の形状測定装置。 9、前記製図画面は図形入力装置であるデジタイザより
なる特許請求の範囲第8項記載の立体物の形状測定装置
[Claims] 1. A non-contact method for measuring the shape of a three-dimensional object, in which the object is placed at a predetermined position and the outer surface of the object is detected on the outside of the object. The detector is placed at an appropriate height position, and the intersection point of the drawing screen perpendicular to the longitudinal axis of the object to be measured and the virtual axis passing through the detection end of the detector and parallel to the longitudinal axis of the object to be measured. A method for measuring the shape of a three-dimensional object, characterized in that the shape of the object to be measured is obtained by determining the shape of the object to be measured at three or more arbitrary points on the outer surface of the object. 2. When determining the intersection of the virtual axis and the drawing screen for each arbitrary location, each time the detector detects each arbitrary location, gauge interval instructions are formed at appropriate locations on the base that supports the detector. After drawing the reference line of the base on the drawing screen along between the gauge marks of the part, draw the vertical axis of the object to be measured from between the gauge marks of the gauge interval indicating part and from the sensing end onto the drawing screen. 2. The method for measuring the shape of a three-dimensional object according to claim 1, wherein the intersection point is determined by aligning a template whose relationship with a point projected along the center is determined in advance with the reference line. 3. In a measuring device that measures the shape of a three-dimensional object to be measured, there is a measuring panel equipped with a fixed plate of the object to be measured and a drawing screen perpendicular to the vertical axis of the fixed plate, and a measuring device that slides on the drawing screen of the measuring plate. A tracer is provided with a non-contact type detector at an appropriate height position on a movable base, and a gauge point indicator is provided at an appropriate location on the base; A solid body characterized by comprising a reproducer that determines the relationship between the projected detection point projected onto the virtual extension plane of the bottom surface along the vertical axis of the fixed plate and the gauge points of the gauge gauge distance indicator of the tracer. A device for measuring the shape of objects. 4. The device for measuring the shape of a three-dimensional object according to claim 3, wherein the detector is composed of two projectors, and the detection end is the intersection of the light beams emitted from the two projectors. 5. An apparatus for measuring the shape of a three-dimensional object according to claim 3 or 4, wherein the reproducer is a plate-shaped template. 6. The device for measuring the shape of a three-dimensional object according to claim 3, wherein the detector comprises a distance measuring device that measures the distance from the detection head to the detection end on the outer surface of the object to be measured. 7. The drawing screen comprises a digitizer which is a figure input device, and the reproducer comprises an arithmetic circuit of a computer that stores the relationship between the projection detection point and the gauge points. 6. The device for measuring the shape of a three-dimensional object according to item 6. 8. In a measuring device that measures the shape of a three-dimensional object to be measured, a fixed plate of the object to be measured is protruded above a drawing screen perpendicular to the vertical axis of the fixed plate, and a drawing screen of the measuring plate. A detector whose detection end is the intersection of the light beams emitted from the two projectors is provided at an appropriate height position on a parallel flat plate surface and a base that can freely slide on the flat plate surface. An apparatus for measuring the shape of a three-dimensional object, comprising a tracer equipped with a plotting tool whose tip is aligned with a virtual perpendicular line hanging from the detection end to the drawing screen. 9. The shape measuring device for a three-dimensional object according to claim 8, wherein the drawing screen comprises a digitizer which is a graphic input device.
JP27223385A 1985-12-03 1985-12-03 Method and apparatus for measuring shape of three-dimensional article Pending JPS62132108A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27223385A JPS62132108A (en) 1985-12-03 1985-12-03 Method and apparatus for measuring shape of three-dimensional article

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27223385A JPS62132108A (en) 1985-12-03 1985-12-03 Method and apparatus for measuring shape of three-dimensional article

Publications (1)

Publication Number Publication Date
JPS62132108A true JPS62132108A (en) 1987-06-15

Family

ID=17510975

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27223385A Pending JPS62132108A (en) 1985-12-03 1985-12-03 Method and apparatus for measuring shape of three-dimensional article

Country Status (1)

Country Link
JP (1) JPS62132108A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5117463A (en) * 1974-08-03 1976-02-12 Hiromi Matsushima BUTSUTAIC HOKUSETSUZUKASOCHI
JPS5732809B2 (en) * 1976-06-07 1982-07-13

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5117463A (en) * 1974-08-03 1976-02-12 Hiromi Matsushima BUTSUTAIC HOKUSETSUZUKASOCHI
JPS5732809B2 (en) * 1976-06-07 1982-07-13

Similar Documents

Publication Publication Date Title
US8638984B2 (en) Display of results of a measurement of workpieces as a function of the detection of the gesture of a user
CN101282823B (en) Method for determining a virtual tool center point, and device therefor
CN101551233A (en) Workpiece size detecting device
US4638232A (en) Method and apparatus for calibrating a positioning system
CN110360959A (en) A kind of vision detection system for large-scale precision axial workpiece
CN105203068B (en) Deep hole linear degree detection method based on sonigauge
US9927232B2 (en) Ensuring inspection coverage for manual inspection
JPS62132108A (en) Method and apparatus for measuring shape of three-dimensional article
US11828596B2 (en) Optical template projection using positional reference
WO2017007492A1 (en) Machine display and machine control systems
JP2008032496A (en) Optical measuring device
CN108168427A (en) A kind of combined type measuring method of big radius-thickness ratio product morpheme size
KR200223563Y1 (en) Gap Measurer
JPH0522814Y2 (en)
JPH06331653A (en) Measuring method for probe-to-probe error in x-y circuit substrate inspection device
JP2579726B2 (en) Contact probe
JP2005181023A (en) Measuring device and method of height difference and tilt angle between planes
JPH08338717A (en) Three-dimensional coordinates measuring device
JPH04198705A (en) Three-dimensional shape measuring device
JPH04252911A (en) Three-dimensional measuring apparatus
JPS6131910A (en) Measuring instrument for curved surface
JPH09325007A (en) Three-dimensional position and posture measuring apparatus
JPH05273133A (en) Inspection area setting jig and device for appearance inspecting machine
TW571113B (en) Coordinate positioning method for screen measurement
JPH09243304A (en) Shape measuring device, and method of positioning surface to be measured using it