JPS6213116B2 - - Google Patents

Info

Publication number
JPS6213116B2
JPS6213116B2 JP13601081A JP13601081A JPS6213116B2 JP S6213116 B2 JPS6213116 B2 JP S6213116B2 JP 13601081 A JP13601081 A JP 13601081A JP 13601081 A JP13601081 A JP 13601081A JP S6213116 B2 JPS6213116 B2 JP S6213116B2
Authority
JP
Japan
Prior art keywords
welding
current
voltage
welding machine
compensation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP13601081A
Other languages
Japanese (ja)
Other versions
JPS5838680A (en
Inventor
Katsuo Yoshimura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dengensha Toa Co Ltd
Original Assignee
Dengensha Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dengensha Manufacturing Co Ltd filed Critical Dengensha Manufacturing Co Ltd
Priority to JP13601081A priority Critical patent/JPS5838680A/en
Publication of JPS5838680A publication Critical patent/JPS5838680A/en
Publication of JPS6213116B2 publication Critical patent/JPS6213116B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K11/00Resistance welding; Severing by resistance heating
    • B23K11/24Electric supply or control circuits therefor

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Arc Welding Control (AREA)

Description

【発明の詳細な説明】 本発明は抵抗溶接機における電圧補償制御装置
の改良に関し、構造の簡素化をはかるのみなら
ず、とくに10サイクル以上の一般のスポツト溶接
機とシーム溶接機やプロジエクシヨン溶接機等の
短時間通電機との組み合わせ使用の場合、あるい
は2分の1サイクルの補償遅れをも許されない高
速断続通電の場合においても応答遅れのない電圧
補償制御を可能とすることを目的とする。
[Detailed Description of the Invention] The present invention relates to an improvement of a voltage compensation control device for a resistance welding machine, which not only simplifies the structure but also particularly applies to general spot welding machines, seam welding machines, and projection welding machines with 10 cycles or more. The purpose is to enable voltage compensation control without response delay even when used in combination with a short-time energizing machine such as a welding machine, or in the case of high-speed intermittent energization where even a 1/2 cycle compensation delay is not allowed. do.

抵抗溶接において溶接電流は、溶接状態に極め
て大きな影響を与え製品の品質を左右するもので
あり、他の溶接機の通電等によつて影響を受けず
安定的に供給される必要がある。かかる溶接電流
を安定化するため電源電圧の変動による溶接電流
の変動を補償する方式の中で最も精度の高いもの
としては、二次導体から電極間電圧、インピーダ
ンス等の電気量を検出しこれらの標準波形と随時
比較し、この標準波形から検出信号波形が外れた
場合、その差に応じた信号をフイードバツクさ
せ、標準波形と一致させる方式がある。しかしな
がらこの方式は検出信号波形が標準波形と不一致
となつた時に修正しようとするものであるため、
信号検出から修正するための出力までの間に補償
遅れが生ずる。
In resistance welding, the welding current has a very large effect on the welding state and affects the quality of the product, and must be stably supplied without being affected by the energization of other welding machines. In order to stabilize the welding current, the most accurate method for compensating for fluctuations in welding current due to fluctuations in power supply voltage is to detect electrical quantities such as inter-electrode voltage and impedance from the secondary conductor and calculate these values. There is a method in which the detection signal waveform is compared with a standard waveform at any time, and if the detected signal waveform deviates from the standard waveform, a signal corresponding to the difference is fed back to match the standard waveform. However, since this method attempts to correct the detected signal waveform when it does not match the standard waveform,
A compensation delay occurs between signal detection and output for correction.

この補償遅れはフイードバツク制御の発達によ
り1/2サイクル応答まで高速化されたが、溶接電
流の制御にサイリスタなどを用いる場合は、点弧
後に電源電圧変動が生じたときにこれを補正でき
るのは次の1/2サイクルに対してであるので応答
遅れ1/2サイクルは従来の方式での高速化の精度
的限界であり、この方式による限り、理論的にも
これ以上応答を早めることは不可能である。
This compensation delay has been speeded up to 1/2 cycle response with the development of feedback control, but when using a thyristor etc. to control the welding current, it is difficult to compensate for this when power supply voltage fluctuations occur after ignition. Since it is for the next 1/2 cycle, the response delay of 1/2 cycle is the limit of accuracy for speeding up with the conventional method, and as long as this method is used, it is theoretically impossible to speed up the response any further. It is possible.

ところで例えばシーム溶接機が1つの電路に複
数台接続されて通電されると一般に「1〜2サイ
クル通電」「1サイクル休止」の溶接のくり返し
による電圧降下が連続的に生ずることとなる。
By the way, for example, when a plurality of seam welding machines are connected to one electric circuit and energized, a voltage drop generally occurs continuously due to the repetition of welding such as "energization for 1 to 2 cycles" and "pause for 1 cycle."

そして1サイクル通電を考えた場合、前記従来
方式により1/2サイクル応答で次の半サイクルを
完全に補償したとしても50%の変動が残ることと
なる。又他の解決手段として補正を過補償にし
て、変動による不足を次のサイクルで設定値より
上廻つた電流にして、1サイクル間で実効値を等
しくする方法も考えられるが、1サイクル通電の
うちの後の半波のときに電源電圧変動が生じた場
合は補償できない。又1サイクルのうちの前の半
波のとき電圧降下があれば、電流が小となるので
これを次の半波を補償しようとするが、このと
き、あいにく電源降下が復帰していれば、逆に過
補償になつてしまう。さらに上記した従来方式に
関連して特公昭56―18313号に開示された「点溶
接における溶接電流制御方法および装置」が知ら
れている。これは 第1に、予め各溶接機の通電による電圧降下量
を計算して求めておき、同時通電時の全電圧降下
を計算によつて予測する。
When one cycle of energization is considered, even if the next half cycle is completely compensated for with a 1/2 cycle response using the conventional method, a fluctuation of 50% remains. Another possible solution is to overcompensate the correction so that the current exceeds the set value in the next cycle to compensate for the shortfall due to fluctuations, so that the effective value is equalized during one cycle. If a power supply voltage fluctuation occurs during the half wave after , it cannot be compensated for. Also, if there is a voltage drop during the previous half wave of one cycle, the current will be small, so this will be compensated for in the next half wave, but at this time, unfortunately, if the power drop has returned, On the contrary, you end up overcompensating. Furthermore, in connection with the above-mentioned conventional method, ``Welding current control method and device in spot welding'' disclosed in Japanese Patent Publication No. 18313/1983 is known. First, the amount of voltage drop due to energization of each welding machine is calculated and determined in advance, and the total voltage drop when energized simultaneously is predicted by calculation.

第2に、電路の無負荷溶接電源電圧を常時監視
する。
Second, the no-load welding power supply voltage of the electric circuit is constantly monitored.

第3に、補償量を複数段階に標本化しておき必
要な電圧を選択する。
Third, the amount of compensation is sampled in multiple stages and a necessary voltage is selected.

第4に、同時通電による電圧降下の予測値を計
算しておく、 など複雑な計算、及び制御を行うことにより、複
数台の溶接機の通電が重なつた際における電圧降
下量をあらかじめ多数の計算により予測してお
き、これによつて実際の溶接作業に対応させて電
圧制御を行うようにしたものである。
Fourth, by performing complex calculations and control such as calculating the predicted value of voltage drop due to simultaneous energization, we can calculate in advance the amount of voltage drop when multiple welding machines are energized at the same time. The voltage is predicted by calculation, and the voltage is controlled in accordance with the actual welding operation.

ところがこの方式による場合には既述した通り
の多数の複雑な計算をおこなう必要があるところ
から必然的に応答遅れを生じ、とくに10サイクル
以上の一般のスポツト溶接機とシーム溶接機やプ
ロジエクシヨン溶接機等の短時間通電機との組み
合わせ使用の場合、あるいは2分の1サイクルの
補償遅れをも許されない高速断続通電の場合には
ほとんど効果がみられない欠点を有し、結局のと
ころ上記した従来のいずれの方式によるも精度的
な限界があつて満足できるものではなかつた。
However, when using this method, it is necessary to perform a large number of complex calculations as described above, which inevitably causes a delay in response. When used in combination with a short-time energizing device such as a welding machine, or in the case of high-speed intermittent energization where even a 1/2 cycle compensation delay is not allowed, it has the disadvantage that it is hardly effective, and as a result, the above-mentioned All of the conventional methods used have limitations in accuracy and are not satisfactory.

本発明においては、前記従来方式の限界、すな
わち電源電圧の変動を監視して応答を可能なかぎ
り短かくしたとしても、サイリスタなどの制御整
流素子を使用する以上、自分の点弧後の変動に対
する修正はできないことを認識して案出されたも
のであり、調整段階で他機の通電による当該機の
電流減少を他機が通電中の状態で予め電流の減少
が最小になるように、当該機の本来の位相制御角
にこの分を補正量として調整して加え、又実動作
時は前記補正量を他溶接機の通電時間信号の入力
されている間だけ加えることにより予知的に制御
することにより、短かい溶接時間を要する特殊な
スポツト、プロジエクシヨン或いはシーム溶接に
対して応答遅れ0により補償制御を行うことがで
きる抵抗溶接機の電圧補償制御装置を提供するこ
とを目的とする。
In the present invention, even if the above-mentioned limitations of the conventional method are met, that is, fluctuations in the power supply voltage are monitored and the response is made as short as possible, as long as a controlled rectifying element such as a thyristor is used, it is possible to overcome the fluctuations after ignition. It was devised recognizing that it is impossible to make corrections, and in the adjustment stage, the current reduction in the relevant machine due to the energization of other machines is adjusted in advance so that the decrease in current will be minimized while the other machine is energized. This amount is adjusted and added as a correction amount to the original phase control angle of the machine, and during actual operation, the correction amount is added only while the energization time signal of another welding machine is being input to perform predictive control. Therefore, it is an object of the present invention to provide a voltage compensation control device for a resistance welding machine that can perform compensation control with zero response delay for special spot, projection or seam welding that requires a short welding time.

以下本発明の構成について図面に示した一実施
例に従つて説明する。
The structure of the present invention will be explained below according to an embodiment shown in the drawings.

第1図において、1は溶接電流設定器(又は位
相調整器)であり、まず溶接電流を設定し、次に
同一電路から電力が供給されている他の溶接機の
うちの1台を通電させ、電圧補償量調整回路2又
は3を調整して他機による電圧降下がないとき
と、他機の通電による電源電圧の降下が生じたと
きとで同じ電流になるように、電流測定器例えば
瞬間電流計などを見ながら調整する。あるいは前
記電圧補償量調整回路2,3に電源電圧変動の百
分率に対応する補償百分率目盛を設けた場合にお
いては、電源電圧百分率又は電流減少百分率を測
定できればこれにもとずいて、前記目盛を合せる
ことも可能である。
In Figure 1, 1 is a welding current setting device (or phase adjuster), which first sets the welding current and then energizes one of the other welding machines that are supplied with power from the same electrical circuit. , adjust the voltage compensation amount adjustment circuit 2 or 3 so that the current is the same when there is no voltage drop due to other equipment and when there is a drop in power supply voltage due to energization of other equipment. Adjust while checking the ammeter etc. Alternatively, in the case where the voltage compensation amount adjustment circuits 2 and 3 are provided with a compensation percentage scale corresponding to the percentage of power supply voltage fluctuation, the scale is adjusted based on the power supply voltage percentage or current reduction percentage if it can be measured. It is also possible.

2,3は前記のとうり電圧補償量調整回路であ
り、前記溶接電流設定器1に結合されている。と
ころで一般に位相制御の進んだ角度で通電する場
合と、遅れた角度で通電する場合とでの同一電源
電圧降下値に対する補正量はほぼ比例関係にあ
る。即ち進んだ位相で通電しているときに電源電
圧が下がつたときに対し、遅れたときの位相で通
電するときの電圧補償量は比例的に小さくする必
要がある。これを小さくするために電圧補償量調
整回路2,3の入力を溶接電流設定器1の出力か
らとつたものであり、これにより溶接電流設定器
1の設定値が小になるに従動して電圧補償調整回
路2,3の補償量も小となる。こうすれば当該溶
接機13の設定変更する度に電圧補償調整回路
2,3の再調整を行わずに自動補償が可能とな
る。
Reference numerals 2 and 3 are voltage compensation amount adjusting circuits as described above, which are coupled to the welding current setting device 1. By the way, in general, the amount of correction for the same power supply voltage drop value when energizing at an advanced angle in phase control and when energizing at a delayed angle is approximately proportional. That is, the amount of voltage compensation when power is applied in a delayed phase needs to be proportionally smaller than when the power supply voltage drops while power is applied in an advanced phase. In order to reduce this, the inputs of the voltage compensation amount adjustment circuits 2 and 3 are taken from the output of the welding current setting device 1, and as a result, the setting value of the welding current setting device 1 becomes smaller, and the voltage increases. The amount of compensation of the compensation adjustment circuits 2 and 3 also becomes small. In this way, automatic compensation becomes possible without readjusting the voltage compensation adjustment circuits 2 and 3 every time the settings of the welding machine 13 are changed.

4,5は他の溶接機の通電時間信号でありこの
信号が入力されている期間だけ電源降下による補
償を行なうように、2又は3の補償量を6又は7
を介して加算機8に伝達する。
4 and 5 are energizing time signals of other welding machines, and the compensation amount of 2 or 3 is changed to 6 or 7 so that compensation due to power drop is performed only during the period when this signal is input.
is transmitted to the adder 8 via.

9,10,11はそれぞれ位相制御、通電時間
制御、点弧の各回路であり、前記加算機8の出力
を受けて位相制御等を行いサイリスタなどの制御
整流素子12を介して当該溶接機13を通電せし
める。
Reference numerals 9, 10, and 11 are phase control, energization time control, and ignition circuits, respectively, which perform phase control, etc. upon receiving the output of the adder 8, and are connected to the welding machine 13 via a control rectifying element 12 such as a thyristor. energize.

以上の構成に係る本実施例において、補償動作
を説明する。溶接電流設定器1の出力は電圧レベ
ルであり又位相制御回路9にも入力電圧レベルに
ほぼ比例した位相制御角を出力する。そして溶接
電流設定器1の出力電圧レベルで与えられた位相
制御角を、通電時間制御10により設定されてい
る時間の間、位相制御回路9、点弧回路11、サ
イリスタなどの制御整流素子12と伝えて当該溶
接機に溶接電流を流がす。次に他溶接機のうちの
1台、例えば他の溶接機Aを通電するとした場合
には、他の溶接機Aの通電時間信号を入力し、S1
6を閉じる。この時電圧補償量調整回路2は、前
もつて他の溶接機Aが通電することによる電圧降
下を補正する電圧量として調整してあるので電圧
補償量調整回路2の出力と溶接電流設定器1の出
力を加算機8で加算し、位相制御回路9、点弧回
路11、サイリスタなどの制御整流素子は、当該
溶接機13に与えれば、他の溶接機Aによる電圧
変動に対し制御遅れ0で補償することができる。
次に以上の作用について第2図に示した溶接電圧
波形に従つて説明する。
In this embodiment having the above configuration, the compensation operation will be explained. The output of the welding current setting device 1 is a voltage level, and also outputs a phase control angle approximately proportional to the input voltage level to the phase control circuit 9. Then, the phase control angle given by the output voltage level of the welding current setting device 1 is controlled by the phase control circuit 9, the ignition circuit 11, and the control rectifying element 12 such as a thyristor during the time set by the energization time control 10. The welding current flows through the welding machine. Next, when one of the other welding machines, for example, other welding machine A, is to be energized, the energization time signal of the other welding machine A is input, and S 1
Close 6. At this time, the voltage compensation amount adjustment circuit 2 has previously been adjusted as a voltage amount to compensate for the voltage drop caused by the energization of another welding machine A, so the output of the voltage compensation amount adjustment circuit 2 and the welding current setting device 1 If the outputs of the welding machine A are added by the adder 8, and the phase control circuit 9, the ignition circuit 11, and the control rectifying elements such as the thyristor are applied to the welding machine 13, there will be no control delay with respect to voltage fluctuations caused by other welding machines A. can be compensated.
Next, the above operation will be explained according to the welding voltage waveform shown in FIG.

イは他溶接機の通電電流とこれによつて生ずる
電源電圧降下の波形である。なお本図には当該溶
接機による電圧降下は図示していない。すなわち
実際には他溶接機と当該溶接機による電圧降下の
合成となるであろうが、電源電圧の変動を考える
場合には、当該溶接機の通電による電源電圧の降
下は当該機にとつて外乱ではないから、これを考
慮しなくてもよいからである。
A shows the waveform of the current flowing through the other welding machine and the resulting voltage drop in the power supply. Note that this figure does not show the voltage drop caused by the welding machine. In other words, in reality, it would be a combination of voltage drops caused by other welding machines and the welding machine in question, but when considering fluctuations in the power supply voltage, a drop in the power supply voltage due to energization of the welding machine is considered a disturbance to the machine. Since this is not the case, there is no need to consider this.

ロは他溶接機の通電時間信号と電流の点弧位相
の時間関係図、ハは同様に当該溶接機の通電時間
信号と点弧位相関係図である。さらにニにおいて
時間を0〜11πで区切り又当該溶接機の電流の各
半波をA〜Hとし、他の電流にI〜Oとし、さら
に溶接機の位相制御角αは電源0クロス毎に発生
する同期パルスを位相制御角αの原点としてい
る。
B is a diagram showing the time relationship between the energization time signal and the firing phase of the current of another welding machine, and C is a diagram showing the relationship between the energization time signal and the ignition phase of the welding machine. Furthermore, in D, the time is divided into 0 to 11π, and each half wave of the current of the welding machine is designated as A to H, and the other currents are designated as I to O, and the phase control angle α of the welding machine is generated every time the power supply crosses 0. The synchronizing pulse that is the origin of the phase control angle α is set as the origin of the phase control angle α.

以上の各図に従つて時間1πの時点での予知補
償をタイミング的に説明する。ハの当該溶接機の
電流Aを流す寸前においては、それ以前より他溶
接機の通電時間信号が当該溶接機の回路に入力さ
れており、当該溶接機電流Aに対する位相は他溶
接機が通電しないときに点弧すべき角度αより
進めたαに前もつて進めて点弧させるのであ
る。そして当該溶接機が電流Aで点弧後に他機電
流Jが点弧して電源電圧降下が生ずることとなる
が、電流Aはそれを見込んで進めた位相で点弧し
てあるので電源降下による当該溶接機の電流減少
は生じない。
The predictive compensation at time 1π will be explained in terms of timing according to each of the above figures. Just before the current A of the welding machine in question is applied, the energization time signal of the other welding machine has been input to the circuit of the welding machine before that, and the phase with respect to the welding machine current A is not energized by the other welding machine. Sometimes, the ignition is performed by advancing the angle α 2 which is advanced from the angle α 3 to be ignited. Then, after the welding machine is ignited with current A, the current J of the other machine is ignited, causing a power supply voltage drop, but since current A is ignited at an advanced phase in anticipation of this, the power supply drop will cause the current A to ignite. No current reduction occurs in the welding machine.

なお電源電圧を監視して、電圧補償を行う従来
の電圧補償と本発明の相違は、従来の場合はDが
通電開始(点弧)後に他機のKが点弧する場合
は、Kの電流による電源電圧降下はDの通電後に
起るので、Dの点弧時は電源電圧は降下していな
いので従つて電源降下は認知できずDに対する電
圧補償は行なえない。これに対し本発明において
はDが点弧する前にロの通電時間信号を受けてい
るのでKによる電圧降下を予め見越して進めた位
相で点弧するので、後続のKの点弧で当該溶接機
の電流が減少することはない。
The difference between the conventional voltage compensation method and the present invention, which monitors the power supply voltage and performs voltage compensation, is that in the conventional case, if K of another device fires after D starts energizing (ignition), the current of K Since the power supply voltage drop occurs after D is energized, the power supply voltage has not dropped when D is ignited, so the power supply drop cannot be recognized and voltage compensation for D cannot be performed. On the other hand, in the present invention, since the energization time signal of B is received before D is ignited, the voltage drop due to K is anticipated in advance and ignition is performed at an advanced phase. The machine current will not decrease.

第3図は他の実施例を示すものであり、フイー
ドバツク制御による定電流制御に本発明を実施し
た場合であり、14は電流検出回路、15は実効
値変換回路、16は加算又は減算器、17は電流
補償制御信号回路であり、他の構成要素は第1図
に示した実施例と同様である。
FIG. 3 shows another embodiment, in which the present invention is implemented in constant current control using feedback control, in which 14 is a current detection circuit, 15 is an effective value conversion circuit, 16 is an adder or subtracter, 17 is a current compensation control signal circuit, and other components are the same as those in the embodiment shown in FIG.

以上の構成に係る本実施例において、溶接機の
一次又は二次電流を電流検出回路14によつて検
出し、これを実効値変換回路15にて実効値に変
換して、電流設定器1の設定出力との差を第1の
加算又は減算器16で求め、該加算又は減算機1
9によつて出力される電流誤差を、位相制御回路
9を介して高速応答で減少させるべく働く電流補
償制御信号回路17に与え、該電流補償制御信号
回路17の出力と既述した、電圧補償調整回路
2,3よりの出力電圧を第2の加算機で加える。
又この電流補償制御信号回路17又は第2の加算
器8の出力を当該溶接機の通電時間制御10の信
号の与えられている間、入力電圧にほぼ比例した
位相制御信号パルスを発生する回路である位相制
御回路9に与える。該位相制御回路9の出力は、
点弧回路11、サイリスタなど制御整流素子12
を経て当該溶接機13に対し溶接電流を流す。な
お本実施例においては、第2の加算機8は独立し
て構成されているが、電流補償制御信号回路17
内において加算されるものであつてもよい。
In this embodiment having the above configuration, the primary or secondary current of the welding machine is detected by the current detection circuit 14, and this is converted to an effective value by the effective value conversion circuit 15, and the current is converted to an effective value by the current setting device 1. The difference from the set output is obtained by the first adder or subtracter 16, and the adder or subtracter 1
9 is applied to the current compensation control signal circuit 17 which works to reduce the current error with a high-speed response via the phase control circuit 9, and the output of the current compensation control signal circuit 17 and the voltage compensation described above are applied. The output voltages from adjustment circuits 2 and 3 are added by a second adder.
Further, the output of the current compensation control signal circuit 17 or the second adder 8 is connected to a circuit that generates a phase control signal pulse approximately proportional to the input voltage while the energization time control signal 10 of the welding machine is applied. It is given to a certain phase control circuit 9. The output of the phase control circuit 9 is
Ignition circuit 11, control rectifier element 12 such as a thyristor
A welding current is applied to the welding machine 13 through the welding machine 13. In this embodiment, the second adder 8 is configured independently, but the current compensation control signal circuit 17
It may be something that is added within.

しかして、本実施例によれば通電時間信号の授
受を行う関連した溶接機の電圧降下に対しては応
答遅れ0で制御し、あまり電源電圧変動の影響の
少ない関連外の他の溶接機の通電による微少な電
源電圧変動に対しては負荷変動を含めて、1サイ
クル以下のフイードバツク制御によつて、定電流
化を実現することができる。
According to this embodiment, the voltage drop of related welding machines that send and receive energization time signals is controlled with zero response delay, and other unrelated welding machines that are less affected by power supply voltage fluctuations are controlled. For slight fluctuations in power supply voltage due to energization, including load fluctuations, constant current can be realized by feedback control of one cycle or less.

又前記第1、第3図に示した実施例において
は、電子回路の構成によつて目的を達成している
が、他溶接機の通電時間信号を受けた後の電気的
な処理、例えば所定の補償量の算出、と加算、位
相制御、実効値変換及びシーケンスタイミングの
管理などはマイクロコンピユータのソフトウエア
ーで行なうことができる。従つて既述した回路及
び調整器は要素に相当する手段を用いて本発明を
実施することも可能である。
Further, in the embodiments shown in FIGS. 1 and 3, the purpose is achieved by the configuration of the electronic circuit, but the electrical processing after receiving the energization time signal of another welding machine, for example, a predetermined Calculation of the amount of compensation, addition, phase control, effective value conversion, sequence timing management, etc. can be performed using microcomputer software. Therefore, it is also possible to implement the invention using means corresponding to the elements of the circuits and regulators described above.

なお以上はシーム溶接機を主として説明した
が、応答遅れが特に問題にならないスポツト溶接
機同志でも前記第1の実施例を用いれば簡単な回
路で電源電圧補償を応答遅れ0で行なえるので、
特に影響を受ける他の溶接機と組み合わせて使用
すれば廉価な高応答電源電圧補償を行うことがで
きる。また10サイクル以上の一般スポツト溶接機
とシーム溶接機やプロジエクシヨン溶接機などの
短間通電機との組み合わせでも応答遅れのない電
圧補償として利用することができる。以上詳説し
た如く本発明においては、従来の方式では不可能
であつた応答遅れ0の電圧補償を実現することが
でき、シーム溶接の気密性の確保に障害となつて
いる補償遅れによる電流のバラツキの改善に大巾
な向上を見ることができ、延いては溶接される製
品の品質の向上、品質の均一化を図ることができ
るものである。
Although the above description has focused on a seam welding machine, even spot welding machines where response delay is not a particular problem can be used to compensate for the power supply voltage with a simple circuit with zero response delay by using the first embodiment.
If used in combination with other particularly affected welding machines, it is possible to perform inexpensive high-response power supply voltage compensation. It can also be used as voltage compensation without response delay when used in combination with a general spot welding machine with a cycle capacity of 10 cycles or more and a short-time energizing machine such as a seam welding machine or projection welding machine. As explained in detail above, in the present invention, it is possible to realize voltage compensation with zero response delay, which was impossible with conventional methods, and eliminate current variations due to compensation delay, which are an obstacle to ensuring airtightness in seam welding. It is possible to see a significant improvement in the improvement of the welding process, and in turn, it is possible to improve the quality of the products to be welded and to make the quality uniform.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示すブロツク図、
第2図は本発明を実施した場合の溶接電圧波形
図、第3図は他の実施例を示すブロツク図であ
る。 1…電流設定器、8…加算器、9…位相制御回
路、11…点弧回路。
FIG. 1 is a block diagram showing one embodiment of the present invention;
FIG. 2 is a welding voltage waveform diagram when the present invention is implemented, and FIG. 3 is a block diagram showing another embodiment. DESCRIPTION OF SYMBOLS 1...Current setter, 8...Adder, 9...Phase control circuit, 11...Ignition circuit.

Claims (1)

【特許請求の範囲】[Claims] 1 他方の溶接機の通電によつて一方の溶接機の
電圧降下を生じる電路であつて、上記他方の溶接
機から電圧降下の発生予告となる通電時間信号を
受けたとき、電圧降下による電流の減少を補償す
る電圧補償調整手段と、該電圧補償調整手段の出
力と前記一方の溶接機の溶接電流を設定する溶接
電流設定器の設定出力とを加算する加算手段と、
該加算手段の出力を受けて位相制御を行う位相制
御手段及び点弧回路と、該点弧回路の信号を受け
て溶接電流の位相制御及び開閉を行うサイリスタ
などの制御整流素子とから構成された抵抗溶接機
用電圧補償制御装置。
1. In an electrical circuit that causes a voltage drop in one welding machine due to the energization of the other welding machine, when receiving an energization time signal from the other welding machine that foretells the occurrence of a voltage drop, the current due to the voltage drop a voltage compensation adjustment means for compensating for the decrease; and an addition means for adding the output of the voltage compensation adjustment means and the setting output of a welding current setting device for setting the welding current of the one welding machine;
It is composed of a phase control means and an ignition circuit that performs phase control in response to the output of the addition means, and a control rectifier such as a thyristor that performs phase control and opening/closing of the welding current in response to a signal from the ignition circuit. Voltage compensation control device for resistance welding machines.
JP13601081A 1981-08-29 1981-08-29 Voltage compensation controlling method of resistance welding machine, and its device Granted JPS5838680A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13601081A JPS5838680A (en) 1981-08-29 1981-08-29 Voltage compensation controlling method of resistance welding machine, and its device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13601081A JPS5838680A (en) 1981-08-29 1981-08-29 Voltage compensation controlling method of resistance welding machine, and its device

Publications (2)

Publication Number Publication Date
JPS5838680A JPS5838680A (en) 1983-03-07
JPS6213116B2 true JPS6213116B2 (en) 1987-03-24

Family

ID=15165068

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13601081A Granted JPS5838680A (en) 1981-08-29 1981-08-29 Voltage compensation controlling method of resistance welding machine, and its device

Country Status (1)

Country Link
JP (1) JPS5838680A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6316024U (en) * 1986-07-15 1988-02-02

Also Published As

Publication number Publication date
JPS5838680A (en) 1983-03-07

Similar Documents

Publication Publication Date Title
KR840002190B1 (en) Pulse arc welding machine
EP0508281B1 (en) Arc welding machine
US2848595A (en) Resistance welding control
EP0669182B1 (en) Method for controlling resistance welding using fuzzy reasoning
US4527045A (en) Control apparatus for an arc welder
US3462577A (en) Welding method and apparatus
US4634830A (en) Method of controlling constant-current for resistance welding machines
JPS6211373B2 (en)
US3627975A (en) Arc-welding apparatus
JPS6264483A (en) Method and device for adjusting welding current
US4803331A (en) Power control and line voltage monitor/compensator for resistance spot welding machines
JPS6213116B2 (en)
US4465918A (en) Method for controlling welding current
US5834729A (en) Method for controlling resistance welding using adjustable fuzzy reasoning
US4306138A (en) Power supply apparatus for resistance welder including means for preventing polarized transformer excitation
US2372068A (en) Electric control circuits
US5124521A (en) Method and apparatus for controlling welding current in resistance welding
JPH03474A (en) Method for controlling output of consumable electrode arc welding power source
JPS633325B2 (en)
JPH0156869B2 (en)
JP3736117B2 (en) Inverter welding machine
SU969482A1 (en) Method for spot and seam welding of workpieces
JP2527158B2 (en) Flickering compensator
JP2585402B2 (en) Reactive power compensator
JPS6222707B2 (en)