JPS62131146A - Deflection of airflow direction of air-conditioning machine - Google Patents

Deflection of airflow direction of air-conditioning machine

Info

Publication number
JPS62131146A
JPS62131146A JP60271822A JP27182285A JPS62131146A JP S62131146 A JPS62131146 A JP S62131146A JP 60271822 A JP60271822 A JP 60271822A JP 27182285 A JP27182285 A JP 27182285A JP S62131146 A JPS62131146 A JP S62131146A
Authority
JP
Japan
Prior art keywords
air
temperature
compressor
motor
deflection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60271822A
Other languages
Japanese (ja)
Inventor
Shigeji Yoshioka
吉岡 繁治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP60271822A priority Critical patent/JPS62131146A/en
Publication of JPS62131146A publication Critical patent/JPS62131146A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To improve the comfortableness of a living space upon starting cooling operation by a method wherein a compressor is driven in a middle speed and ventilating direction is branched to left and right downwardly when a ventilating air temperature has arrived at a first predetermined value while the compressor is driven at low speed and the ventilating direction is changed so that it is branched left and right in horizontal direction when the ventilating air temperature has arrived at a second predetermined value. CONSTITUTION:When a blow-off air temperature detected by a thermistor 21 is higher than a first set temperature, a central motor 3 and a left motor 9a are turned left, a right motor 9b is turned right and is stopped to concentrate blow-off air to the lower part of a room while a compressor 17 is driven at high speed. When the temperature detected by the thermistor 21 is lower than the first set temperature and higher than a second set temperature, the central motor 3 and the right motor 9b are turned right, the left motor 9a is turned right and is stopped to distribute the blow-off air into the lower part of the room while the compressor 17 is driven at middle speed. When the temperature detected by the thermistor 21 is lower than the second set temperature, the central motor 3 and the left motor 9a are turned right, the right motor 9b is turned left and is stopped to distribute the blow-off air horizontally while the compressor 17 is driven at low sped.

Description

【発明の詳細な説明】 1f−R上の利用分野 本発明は、空気調和機の吹出し方向を制御する風向偏向
装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Application on 1f-R The present invention relates to a wind direction deflection device for controlling the blowing direction of an air conditioner.

従来の技術 現在まで、居住空間の快適性の向上を図るために空気調
和機の風向偏向装置として、1重々の装置が考えられて
きた。
BACKGROUND OF THE INVENTION Until now, single-layer devices have been considered as wind deflection devices for air conditioners in order to improve the comfort of living spaces.

例丸ば、上下偏向羽根を一定周期でスウィングさせる装
置がある。(特公昭56−21149号公報) 発明が;ψY決しようとする問題点 しかし、上記の従来構成では、垂直方向の偏向制御しか
できなく、左ぢ変更は手助であるため、限られた空間し
か冷労ができなかった部屋の温度分布が悪くなるという
問題があった。また、運転開始から、エアースウィング
するため、冷房立上がり時に冷風が人体に当たらず十分
な冷房効果が得られない問題があった。
For example, there is a device that swings the upper and lower deflection blades at a constant cycle. (Japanese Patent Publication No. 56-21149) Problems to be Solved by the Invention However, the conventional configuration described above can only control the deflection in the vertical direction, and since changing the left side is only an aid, it is difficult to use in a limited space. There was a problem that the temperature distribution in the room where only cold labor could be done worsened. In addition, since air swing occurs from the start of operation, there is a problem in that cold air does not hit the human body when the air conditioner starts up, making it impossible to obtain a sufficient cooling effect.

本発明は、空気調用機を用いた居住空間の快適性の向上
、持に冷房運転開始時の快適性の向上を図ることを目的
とする。
The present invention aims to improve the comfort of a living space using an air conditioner, and particularly to improve the comfort at the start of cooling operation.

問題点を解決するための手段 −に記問題点を解決するために本発明は、冷媒を圧縮し
、室内熱交換器、室外熱交換器とともに冷凍サイクルを
構成する回転a可変型圧51宿Aと、送、4機と前記室
内熱交換器とを内部に・イする室内ユニットと、この室
内ユニットに設けられ前記室内熱交換器を通過した空気
を吹き出す吹出口と、この吹出口から吹き出される空気
を上下方向に偏向する上下偏向羽根と、前記吹出口の午
右に独立して設けられかつ前記吹出口から吹き出される
空気を左右方向に分岐して偏向する左右偏向羽根と、前
記上下偏向羽根と左右偏向羽根をそれぞれ独立して偏向
駆動する駆動手段と、前記吹き出し温度を検出する温・
度検出手段と、前記圧縮機の回転数を変化させる回転数
可変手段を有し、前記吹出口から吹き出される空気が中
央に集中しかつ圧縮亀の回転数が高速回転の大能力に設
定されている状態において、前記吹き出し空気温度が第
1の所定1直に到達したときに前記左右偏向羽根を、吹
き出し方向が分岐となるように駆動し、かつ前記圧窟機
の回転数を中速回転の中能力とし、さらに前記吹出し空
気温度が第2の所定値に到達したときに前記上下偏向羽
根を、吹き出し方向が上方方向となるように駆動し、か
つ能力が中から小になるように前記圧縮機の回転数を変
化するものである。
Means for Solving the Problems In order to solve the problems, the present invention provides a rotary variable pressure 51 inlet A that compresses a refrigerant and constitutes a refrigeration cycle together with an indoor heat exchanger and an outdoor heat exchanger. an indoor unit in which the indoor heat exchanger is installed; an air outlet provided in the indoor unit for blowing out the air that has passed through the indoor heat exchanger; vertical deflection blades that deflect the air in the vertical direction; left and right deflection blades that are independently provided on the right and left sides of the air outlet and that branch and deflect the air blown out from the air outlet in the left and right directions; A driving means for independently driving the deflection blade and the left and right deflection blades, and a temperature sensor for detecting the temperature of the air outlet.
and a rotation speed variable means for changing the rotation speed of the compressor. In this state, when the temperature of the blown air reaches a first predetermined shift, the left and right deflection vanes are driven so that the blown direction is bifurcated, and the rotation speed of the cavitation machine is set to medium speed. Further, when the blowing air temperature reaches a second predetermined value, the vertical deflection blades are driven so that the blowing direction is upward, and the blowing capacity is set to medium to small. This changes the rotation speed of the compressor.

作  用 上記手段により冷房運転開始時等、吹き出し温度の高い
ときは、圧縮機能力が最大で下方県中であるため、人体
に直接冷風が当り、体遁刊な冷房効果が得られる。また
、吹き出し温度がある程度下がり、人体に直接冷風を当
てると不快感を与え、居住空間としては十分に温度が下
がっている時に圧縮機能力を中とし下方分流とすると、
居住空間に近い部屋の下部を包み込むように冷房が青な
えるため、体感向上、立上り時間の短縮になる。また、
吹き出し温度が、前記以下に下がると、下方分流を行な
っていても、人体に冷風が当るため不快感を与える時に
水平分流となり、かつ圧縮機の回転数が中速から低速と
なり能力が中から小となるため人体に直接、冷風を当て
る事なく、部室全体の温度が均一に下げられるため、体
感性が同上し、十分な冷刀効毛が肩られる。また、消謬
這力を低減させる事ができる。
Effect: By using the above method, when the air outlet temperature is high, such as at the start of cooling operation, the compression function is at its maximum in the lower part of the air, so the cold air hits the human body directly, resulting in a unique cooling effect. In addition, if the temperature of the air outlet has dropped to a certain extent and the cold air is applied directly to the human body, it will cause discomfort, but if the temperature of the living space is sufficiently low, if the compression function is set to medium and the flow is diverted downward,
The air conditioner wraps around the lower part of the room near the living space, improving the experience and shortening the start-up time. Also,
If the blowout temperature falls below the above level, even if the air is diverted downward, the cold air will hit the human body, causing discomfort and the air will become horizontally separated, and the rotational speed of the compressor will change from medium to low, resulting in medium to low capacity. Therefore, the temperature of the entire room can be lowered uniformly without applying cold air directly to the human body, so the sensation is the same as above, and a sufficient cold effect is achieved. In addition, it is possible to reduce the marketing power.

実施例 以下、本発明の一実1例による空気調和機の風向偏向装
Aを図面を用いて説明する。
EXAMPLE Hereinafter, a wind direction deflection device A for an air conditioner according to one embodiment of the present invention will be explained with reference to the drawings.

第1図は同装置の要部分解斜視図である。FIG. 1 is an exploded perspective view of the main parts of the device.

同図に示すように、吹き出し方向にわずかにわん曲し、
コアンダ効゛捉によって上下の1虱同偏向を行う上下偏
向羽根1は、その長手方向にシャフト2を有し、このシ
ャフト2は中モータ(ステッピングモータ)3に接続さ
れている。また吹き出し空・気をコアンダ効果によって
水平方向に偏向する左右偏向羽根は、連結機4aに連端
された左偏向羽根5aと、連結機4bに連結されたU偏
向羽根5bとから構成されている。そして左偏向羽根5
aは、羽根用レバーアーム6a、ロッド7a。
As shown in the figure, it is slightly curved in the direction of the balloon,
The upper and lower deflection blades 1, which perform the same deflection on the upper and lower sides by Coanda effect capture, have a shaft 2 in the longitudinal direction thereof, and this shaft 2 is connected to an intermediate motor (stepping motor) 3. Further, the left and right deflection vanes that deflect the blown air/air in the horizontal direction by the Coanda effect are composed of a left deflection vane 5a connected to a coupler 4a, and a U deflection vane 5b connected to a coupler 4b. . and left deflection blade 5
a is a blade lever arm 6a and a rod 7a.

モータ用レバーアーム8aを介して左モータ(ステッピ
ングモータ)9aに接続し、右偏向羽根5bは、羽根用
レバーアーム6b、ロッド7b。
It is connected to a left motor (stepping motor) 9a via a motor lever arm 8a, and the right deflection blade 5b is connected to a blade lever arm 6b and a rod 7b.

モータ用レバーアーム8bを介して言モータ(ステッピ
ングモータ)9bに接続している。ここで左扁向羽11
5aはこの左偏向羽@5aよりも左側に中心を有するよ
うにわずかにわん曲し、右偏向羽根5bはこの右偏向羽
1−15bよりも右側に中心で前6のコアンダ効果を発
生させ、1虱向傭向を行うtこめである。qi[i己コ
アンダ効果については、従来より周知の技術であるため
、説明を省略する。
It is connected to a stepping motor 9b via a motor lever arm 8b. Here left planar wing 11
5a is slightly curved so that its center is to the left of this left deflection blade @ 5a, and the right deflection blade 5b is centered to the right of this right deflection blade 1-15b and generates the Coanda effect of the front 6, This is a t-comme that will be sent to one direction. Since the Coanda effect is a well-known technique, its explanation will be omitted.

なお本実施例では、中モータ3、左モータ9a。In this embodiment, the middle motor 3 and the left motor 9a.

右モータ9bで駆動手段を構成しているが、左右偏向羽
根を駆動するモータを一つとすることも可能で、さらに
はギヤあるいはクラッチ等の切換手段を用いることによ
り上下偏向羽根1と左右偏向羽根を単一のモータで制却
することも可能である。
Although the right motor 9b constitutes the driving means, it is also possible to use a single motor for driving the left and right deflection blades, and furthermore, by using a switching means such as a gear or a clutch, the upper and lower deflection blades 1 and the left and right deflection blades can be switched. It is also possible to control this with a single motor.

またモータはステッピングモータに限らず、誘導・d動
機等でもよい。
Further, the motor is not limited to a stepping motor, but may be an induction motor, a d-motor, or the like.

またモータのかわりに、周囲温度によって変化する形状
記憶合金製バネを用いることも考えられ、この場合には
本発明の必須要件である温度検出手段や設定温度記憶手
段をこのa全自体が有することになる。また左右偏向羽
根を左偏向羽根5aと右偏向羽根5bに2分割にしたの
は、本発明の目的とする集中、分流動作を容易に行なえ
る上にそれぞれ独立してノ風向制御できるためであり、
さらに微妙な風向制御を行なうためにはさらに利分割す
る構成であってもよく、逆に分割せずに第2図に示すよ
うに単一の連結洟4で連接してもよい。
It is also possible to use a shape-memory alloy spring that changes depending on the ambient temperature instead of the motor, and in this case, the whole a itself must have temperature detection means and set temperature storage means, which are essential requirements of the present invention. become. Furthermore, the reason why the left and right deflection blades are divided into two parts, the left deflection blade 5a and the right deflection blade 5b, is to facilitate the concentration and separation operations that are the object of the present invention, and also to be able to independently control the wind direction. ,
In order to perform more delicate control of the wind direction, a structure may be adopted in which the profit is divided further, or conversely, the structure may be connected by a single connecting rod 4 as shown in FIG. 2 without being divided.

また左偏向羽根5a、右偏向羽15bをわん曲させたの
は、コアンダ効果によって風向偏向を行う他に、本発明
の目的とする集中、分流効果を高めるための形状であり
、前記コアンダ効果を4這しなければたとえわん曲して
いない平面的な形状でもよく、さらにはわん白方向をそ
れぞれ逆にしたものであってもよい。
Furthermore, the left deflection blade 5a and the right deflection blade 15b are curved to deflect the wind direction by the Coanda effect, and also to enhance the concentration and splitting effect that is the object of the present invention. As long as the shape is not curved, it may be a planar shape that is not curved, and furthermore, it may be a shape in which the horizontal directions are reversed.

次に、第1図に示した風向偏向裟Δを装管する室内ユニ
ット10の斜視図を第31図に示す。同図において、室
内ユニット10の前面には室内空電を吸い込む吸込口1
1を有し、この吸込口11の下部に上下偏向羽根1と左
右偏向羽145a、5bを有する吹出口12が設けられ
ている。この吹出口12の両側部13a、13bはそれ
ぞれ外方向へ前述の如くコアンダ効果にて1・風向偏向
を行うために漸次拡大する曲直となっている。また下百
部14も前述の如くコアンダ効果にて風向偏向を行うた
めに漸次拡大する曲直となっている。
Next, FIG. 31 shows a perspective view of the indoor unit 10 in which the wind deflector Δ shown in FIG. 1 is installed. In the figure, the front of the indoor unit 10 has a suction port 1 that sucks indoor static electricity.
1, and an air outlet 12 having upper and lower deflection blades 1 and left and right deflection blades 145a and 5b is provided below the suction port 11. Both side portions 13a and 13b of the air outlet 12 are curved to gradually expand outward in order to deflect the wind direction by the Coanda effect as described above. Further, the lower part 14 has a curved shape that gradually expands in order to deflect the wind direction by the Coanda effect as described above.

この室内ユニット10の側、5fr面図を第4図に示す
。吸込口11に対間する泣1面に室外熱交換器15を有
し、この室内熱交換器15から吹出口12に至る通風路
中に送風機16を汀している。
A 5fr side view of this indoor unit 10 is shown in FIG. An outdoor heat exchanger 15 is provided on one side opposite to the suction port 11, and a blower 16 is placed in the ventilation path from the indoor heat exchanger 15 to the air outlet 12.

次に本実施例の冷凍サイクルを第5図に示す。Next, the refrigeration cycle of this embodiment is shown in FIG.

同図において、回転数可変型圧縮機17、四方弁1B、
室内熱交換器15、キャピラリチューブ19、室外熱交
換j120が環状に連結されている。
In the figure, a variable rotation speed compressor 17, a four-way valve 1B,
An indoor heat exchanger 15, a capillary tube 19, and an outdoor heat exchange j120 are connected in an annular manner.

ここで冷媒は暖房4転時には、回転数可変型圧縮機17
、四方弁18、室内熱交換器15、キャピラリチューブ
19、室外熱交換器20の頓に流れ、冷房運転時には、
回転数可変型圧縮機17、四方弁18、室外熱交換器2
0、キャピラリチューブ19、室内熱交換器15の順に
流れる。
Here, the refrigerant is supplied to the variable speed compressor 17 during heating 4-turn.
, four-way valve 18, indoor heat exchanger 15, capillary tube 19, and outdoor heat exchanger 20, and during cooling operation,
Variable rotation speed compressor 17, four-way valve 18, outdoor heat exchanger 2
0, the capillary tube 19, and the indoor heat exchanger 15 in this order.

ここで21a〜21dは吹き出し温度を間接的に検出す
る温度検出手段である。すなわち21aは室内熱交換器
15の配管温度を検出する温度センサ、21bは回転a
ffiJ変型圧縮機17の庖流を検出する4流検出訝、
21cは回転数可変型圧縮機17の吐出紀菅の圧力を検
出する圧力検出器、21dは室外熱交換器15Q)配遼
圧力を検出する圧力検出譜である。吹き出し温、1を検
出するには、直接吹出口12に温度センサーを設けるこ
とが考えられるが、上記各部の温度、圧力、1流からも
検出することができ、いずれかを選択あるいは組合わせ
て用いることも可能である。また21eは吸い込み温度
を検出する温度検出温であり、室+?aを検出する温度
検出手段の一例であって室温検出場所は吸込口近辺に限
るものではない。
Here, 21a to 21d are temperature detection means that indirectly detect the temperature of the air outlet. That is, 21a is a temperature sensor that detects the pipe temperature of the indoor heat exchanger 15, and 21b is a rotation a
a four-flow detection device that detects the squirt flow of the ffiJ modified compressor 17;
21c is a pressure detector for detecting the discharge pressure of the variable rotation speed compressor 17, and 21d is a pressure detection record for detecting the distribution pressure of the outdoor heat exchanger 15Q). To detect the blowout temperature, 1, it is conceivable to provide a temperature sensor directly at the blowout port 12, but it can also be detected from the temperature, pressure, and 1st flow of each of the above parts, and any one of them can be selected or combined. It is also possible to use Further, 21e is a temperature detection temperature that detects the suction temperature, and is a temperature detection temperature of the room +? This is an example of a temperature detection means for detecting temperature a, and the room temperature detection location is not limited to the vicinity of the suction port.

次に本実施例の要部回路図を第6図に示す。マイクロコ
ンピュータ22内には、あらかじめ設定した温度を記憶
する記憶部23、この記憶部23に記憶された設定値と
入力;直との比絞から適宜出力信号を発生する駆動!言
号発生手段24と、この駆動1言号発生手段24によっ
て発生した信号を回転数可変型圧縮機17の回転数に変
換する回転数可変手段25を有している。このマイクロ
コンピュータの入力側にはコンパレータ26を介して温
れている。ここで28はバイアス抵抗、29はスキャン
抵抗である。
Next, a circuit diagram of the main part of this embodiment is shown in FIG. Inside the microcomputer 22, there is a storage section 23 that stores a preset temperature, and a drive that generates an appropriate output signal from the set value stored in this storage section 23 and the input; It has a word generation means 24 and a rotation speed variable means 25 for converting the signal generated by the drive 1 word generation means 24 into the rotation speed of the rotation speed variable compressor 17. The input side of this microcomputer is heated via a comparator 26. Here, 28 is a bias resistor, and 29 is a scan resistor.

ここで、第11図に示すブロック図と第6図の回j洛の
関係について説明すると、第6図のサーミスタ21は第
11図の温度検出手段に相当し、第6図の記憶部23は
第11図の設定温度記憶手段に相当し、第6図の駆効信
号発生手設24は第11図の駆動1言号発生手段に相当
し、第6図の回11図の駆動手段に相当する。
Here, to explain the relationship between the block diagram shown in FIG. 11 and the circuit diagram in FIG. 6, the thermistor 21 in FIG. 6 corresponds to the temperature detection means in FIG. 11, and the storage section 23 in FIG. This corresponds to the set temperature storage means in FIG. 11, and the driving signal generating means 24 in FIG. 6 corresponds to the driving 1 word generating means in FIG. 11, and corresponds to the driving means in FIG. do.

次に本実施例の動作を第7図に示す。同図は冷房運転時
のフローチャートである。
Next, the operation of this embodiment is shown in FIG. This figure is a flowchart during cooling operation.

吹き出し温度先はサーミスタ21で検出した温度であり
tl・t2は設定温度である。この吹き出し温1度tが
第1の設定温度t1よりも腐い時(こは、中モータ3を
左回転、左モータ9aを左回転、右モータ9bを右回転
させて停止し、回転数可変型圧縮機17の回転数を「4
回転とする。ここで中モータ3を左回転させることは上
下偏向羽根1を上方位−に、左モータ9aを左回転させ
ることは左偏向羽根5aを右側に、右モータ9bを右回
転させることは右偏向羽1i5bを左側に駆動すること
を示す。すなわち吹き出し空気は下方集中となり第10
図に示すようになる。このとき、上下偏向羽根1、左偏
向羽根5a、右扁向羽根5bは、それぞれどのような初
期状態にあるかわからないが、各モータ3,9a、9b
の駆JjJ後は必ず上記のような位置に回動するもので
ある。すなわち、初期状態において駆動後の位Aと同位
、崖にすでに偏向しているときには、ストッパー等の負
荷抵抗でモータの回転をさせないか、あるいはモータを
空回転させる。そして各モータ3,9a、9bの回転後
(必要に応じて回転前あるいは口伝中)は再びサーミス
タ21の温度と設定温度とを比較する。
The blowing temperature point is the temperature detected by the thermistor 21, and tl and t2 are the set temperatures. When this blowing temperature 1 degree t is hotter than the first set temperature t1 (in this case, the middle motor 3 is rotated to the left, the left motor 9a is rotated to the left, the right motor 9b is rotated to the right and stopped, and the rotation speed is changed. The number of revolutions of the mold compressor 17 is set to "4".
Rotation. Here, rotating the middle motor 3 to the left moves the vertical deflection blade 1 upward, rotating the left motor 9a to the left moves the left deflection blade 5a to the right, and rotating the right motor 9b to the right moves the left deflection blade 5a to the right. 1i5b is shown to be driven to the left. In other words, the blown air is concentrated downward and the 10th
The result will be as shown in the figure. At this time, it is not known what initial state the upper and lower deflection blades 1, left deflection blade 5a, and right flat blade 5b are in, but each motor 3, 9a, 9b
After the drive JjJ, it always rotates to the above position. That is, in the initial state, when the deflection is already at the same level as the position A after driving and toward the cliff, the motor is not rotated by a load resistance such as a stopper, or the motor is idled. Then, after each motor 3, 9a, 9b has rotated (before or during rotation, if necessary), the temperature of the thermistor 21 and the set temperature are again compared.

次にサーミスタ21の温度tが第1の設定温度t1より
も低く第2の設定温度t2以上の場合には、中モータ3
を左回転、左モータ9&を右回転、右モータ9bを左回
転させて停止する。圧縮確17の回転数は高速より中速
にする。すなわち吹き出し空気は下方分流となり第9図
に示rようになる。
Next, if the temperature t of the thermistor 21 is lower than the first set temperature t1 and higher than the second set temperature t2, the middle motor 3
is rotated to the left, left motor 9& is rotated to the right, right motor 9b is rotated to the left, and then stopped. The rotation speed of the compressor 17 is set to medium speed rather than high speed. That is, the blown air becomes a downward branch as shown in FIG. 9.

この動作前にすでに第10図のように、下方集中状態に
あるときは、実質的には左右偏向羽根5a。
Before this operation, when already in the downward concentrated state as shown in FIG. 10, the left and right deflection blades 5a are substantially the same.

5bのみが偏向することになる。Only 5b will be deflected.

次にサーミスタ21の温度tが第2の設定温度t2より
も低い場合には、中モータ3を右回転、左モータ9aを
右回転、右モータ9bを左回転させて停止し、圧縮段1
7を低速回転とする。すなわち吹き出し空気は水平分流
となり第8図に示すようになる。
Next, when the temperature t of the thermistor 21 is lower than the second set temperature t2, the middle motor 3 is rotated clockwise, the left motor 9a is rotated clockwise, and the right motor 9b is rotated counterclockwise and stopped.
7 is the low speed rotation. That is, the blown air becomes horizontally divided as shown in FIG.

上記のようなi動作を行なうことにより、運転開始時等
吹き出し温度の高い時は直接人体に冷風を当てるように
圧縮1fH’?力大の下方集中となり、ある程度吹き出
し温度が冷された時は間接的に人体を冷すように圧縮洟
能力中の下方分流となり、吹き出し温度が十分に低い時
は部漬全体を冷すように圧縮機能カルの水平分流となる
By performing the above-mentioned i operation, when the blowing temperature is high such as at the start of operation, the cold air is compressed to 1 fH' to directly hit the human body. The force is concentrated downward, and when the blowout temperature is cooled to a certain extent, the compressive capacity becomes a downward branch to indirectly cool the human body, and when the blowout temperature is low enough, it cools the entire part. It becomes a horizontal branch of the compression function Cal.

このような動作を冷房運転開始時についてその効果を説
明する。まず冷房運転開始時の吹き出し温度は1イいた
め、直接人体に風を当てかつ、圧縮機能力を犬としなく
ては、立ち下がり時間がかかり過ぎることとなる。その
ため、直接人体に風を当てることが好ましい。すなわち
圧縮機能力大の下方集中吹き出しゃこすることにより、
より早く人体を冷すことができる冷房作用を行なう。
The effect of such an operation at the start of cooling operation will be explained. First, since the air outlet temperature at the start of cooling operation is 1°, it will take too long for the air to cool down unless the air is applied directly to the human body and the compression function is controlled. Therefore, it is preferable to apply wind directly to the human body. In other words, by creating a downward concentrated blowout with a large compression function,
Provides a cooling effect that can cool the human body more quickly.

次に、ある程度吹き出し温度が低くなったときは、圧縮
機能力を大より中とし下方分流吹き出しとなるため、居
住空間に;丘い部4の下部を包み込むように冷房が行な
える。すなわち、人体周辺を冷すとともに、壁面を冷す
ことにより、居住空間内の温度分布を均−lこすること
ができる。
Next, when the blowout temperature becomes low to a certain extent, the compression function is changed from high to medium and the blowout is directed downward, so that the living space can be cooled so as to envelop the lower part of the hill portion 4. That is, by cooling the area around the human body and the wall surface, the temperature distribution within the living space can be evened out.

そしてさらに吹き出し温度が低くなった時は、圧縮機能
カルの水平分流となるため、人体に直接冷風を当てるこ
となく十分な冷房効果が得られる。
When the blowout temperature becomes even lower, the compressor function is horizontally divided, so a sufficient cooling effect can be obtained without directly blowing cold air to the human body.

すなわち、初期において、直7妾人体を冷やし、後に壁
面等を冷やしていくため、温度分布は均一となり、居住
空間内に部分的な痛温場所が生じることもない。また、
消費重力の低減となる。
That is, since the human body is initially cooled and the walls etc. are cooled later, the temperature distribution becomes uniform, and there are no hot spots in the living space. Also,
It will reduce the consumption gravity.

発明の効果 本発明は上記実施列の説明で明らかなように、吹き出し
温度がある設定温度より傷い時は、圧縮、機能力大の下
方集中になるため、人体に直接風を当て体感効果8高め
てより早い立上り効果が、尋られる。
Effects of the Invention As is clear from the description of the above implementation sequence, when the blowing temperature exceeds a certain set temperature, the compression and functional power are concentrated downwards, so that the air is directly applied to the human body, resulting in a sensory effect of 8. A higher and faster rising effect is desired.

次に吹き出し温度がある設定温度になったときは、圧縮
機能力中の下方分流として、体感を損なわず壁面を冷す
ため居住空間内の温度分布を均一にすることができる。
Next, when the blowout temperature reaches a certain set temperature, the compressor functions as a downward branch flow to cool the wall surface without impairing the user's sensation, making it possible to make the temperature distribution in the living space uniform.

さらに吹き出し温度が低い時は、圧縮機能力中の水平分
流となりよリ一層の温度分布の均一化が図れ、部分的な
高温場所がなくなると同時に上からの冷風吹き出しによ
り、快適な冷房効果が1′与られる。また、圧縮機、指
刀が下がるため、消費シカが低減できる。
Furthermore, when the blowout temperature is low, the compressor function becomes horizontally divided, making the temperature distribution even more uniform, eliminating local hot spots, and at the same time blowing cold air from above, increasing the comfortable cooling effect. 'Given. Also, since the compressor and knife are lowered, the amount of deer consumed can be reduced.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示す風向偏向装置の分解斜
視図、第2図は同風向偏向装置における左右偏向羽根の
異なる連結状態を示す構成図、第3区は同風向偏向装置
を具備した空気調和機の斜視1図、第4図は同空気調和
機の縦断面図、第5図は同空気調和機の冷媒回路図、第
6図は同空気調和機の要部の電気回路図、第7図は同風
向偏向装置の制御内容を示すフローチャート、第8図は
同空気調和機における水平分流吹出状態を示す説明図、
第9図は同下方分流吹出状態を示す説明図、第10図は
同下方集中吹出状態を示す説明図、第11図は同装置を
機能実現手段で表わしたブロック図である。 1・・・・・・上下風向偏向羽根、3・・・・・・中モ
ータ、5&・・・・・・左偏向羽根、5b・・・・・・
左偏向羽根、9a・・・・・・左モータ、9b・・・・
・・右モータ、10・・・・・・室内ユニット、12・
・・・・・吹出口、15・・・・・・室内熱交換器、1
7・・・・・・回転数可変型圧縮機、2o・・・・・・
室外熱交換器、21a、21θ・・・・・・温度センサ
、21b・・・・・・晟流検出器、21c、21d・・
・・・・圧力検出器、22・・・・・・マイクロコンピ
ュータ、23・・・・・・記憶部、24・・・・・・駆
動1言号発生手段、25・・・・・・回転数可変手段。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名/−
−−上丁備旬羽檄 2−−− ンイ7ト 、3−m−中セータ 4−.4b−一一達、結 4鶏 ^−−−左涜fali1久 8Q、θb−−− し八−アーム タワー−一 左t〜り 嬉2図 3−−一中モーフ tユーーー見七−タ 9b−一一右七−ク ラフ−J中ム&町又墾を已M 21−一−1ミスタ 24−−−〜己す力丁距う#51子オ9ミ2δ−−−臼
瓢叙町炙ゼ( 第7図 第 8 図                1o−−
−を内ユニ、7ト第9図 、7/θ
Fig. 1 is an exploded perspective view of a wind deflection device showing an embodiment of the present invention, Fig. 2 is a configuration diagram showing different connection states of the left and right deflection blades in the wind deflection device, and the third section shows the wind deflection device. Figure 1 is a perspective view of the equipped air conditioner, Figure 4 is a vertical cross-sectional view of the air conditioner, Figure 5 is a refrigerant circuit diagram of the air conditioner, and Figure 6 is an electrical circuit of the main parts of the air conditioner. 7 is a flowchart showing the control details of the air deflection device, and FIG. 8 is an explanatory diagram showing the horizontal branch blowing state in the air conditioner.
FIG. 9 is an explanatory diagram showing the downward divided blowing state, FIG. 10 is an explanatory diagram showing the downward concentrated blowing state, and FIG. 11 is a block diagram showing the device as a function realizing means. 1... Vertical wind direction deflection blade, 3... Middle motor, 5 &... Left deflection blade, 5b...
Left deflection vane, 9a...Left motor, 9b...
...Right motor, 10... Indoor unit, 12.
...Air outlet, 15...Indoor heat exchanger, 1
7...Variable rotation speed compressor, 2o...
Outdoor heat exchanger, 21a, 21θ... Temperature sensor, 21b... Current flow detector, 21c, 21d...
... Pressure detector, 22 ... Microcomputer, 23 ... Memory section, 24 ... Drive 1 word generation means, 25 ... Rotation Number variable means. Name of agent: Patent attorney Toshio Nakao and 1 other person/-
--Uachobishunha 2--- N7, 3m-Medium sweater 4-. 4b-11, Yui 4 Chicken^---Sakai fali1ku8Q, θb---Shihachi-Arm Tower-1 Left t-ri happy 2 Figure 3--Ichichu Morph tU-Mishichi-ta 9b -11 right 7-Cluff-J Nakamu & Machimata Ken wo M 21-1-1 Mister 24---~self power distance #51 child O9 mi 2δ---Ushyo Jomachi Aburi (Fig. 7, Fig. 8, 1o--
- inside unit, 7th Figure 9, 7/θ

Claims (1)

【特許請求の範囲】[Claims] 冷媒を圧縮し、室内熱交換器、室外熱交換器とともに冷
凍サイクルを構成する回転数可変型圧縮機と、送風機と
前記室内熱交換器とを内部に有する室内ユニットと、こ
の室内ユニットに設けられ前記室内熱交換器を通過した
空気を吹き出す吹出口と、この吹出口から吹き出される
空気を上下方向に偏向する上下偏向羽根と、前記吹出口
の左右に独立して設けられかつ前記吹出口から吹き出さ
れる空気を左右方向に偏向する左右偏向羽根と、前記上
下偏向羽根と左右偏向羽根をそれぞれ往復駆動する駆動
手段と、前記吹き出し温度または室温を検出する温度検
出手段と、前記吹出口からの送風温度または室温が所定
値に到達したときに前記駆動手段へ出力する出力手段と
、圧縮機の回転数を可変する回転数可変手段を備え、前
記送風温度または室温が所定値に到達する以前は、圧縮
機を高速回転の大能力で送風方向を下方向で中央へ集中
した方向とし、前記送風温度または室温が第1の所定値
に到達したときは前記圧縮機の回転数を中速の中能力と
し、前記送風方向を下方向でかつ左右へ分岐した方向に
変更し、さらに前記送風温度または室温が第2の所定値
に到達したときには前記圧縮機を低速回転の小能力で前
記送風方向を上方向または水平方向でかつ左右へ分岐し
た方向に変更する空気調和機の風向偏向方法。
an indoor unit having a variable rotation speed compressor that compresses a refrigerant and constitutes a refrigeration cycle together with an indoor heat exchanger and an outdoor heat exchanger, an air blower and the indoor heat exchanger; an air outlet that blows out air that has passed through the indoor heat exchanger; a vertical deflection blade that vertically deflects the air blown from the air outlet; and a vertical deflection blade that is provided independently on the left and right sides of the air outlet and that A left and right deflection blade that deflects the blown air in the left and right directions, a drive means that reciprocates the upper and lower deflection blades and the left and right deflection blades, respectively, a temperature detection means that detects the blowout temperature or room temperature, and a an output means for outputting an output to the driving means when the air blowing temperature or the room temperature reaches a predetermined value; and a rotation speed variable means for varying the rotation speed of the compressor; , the compressor is operated at a high speed with a large capacity, and the direction of air is directed downward and concentrated in the center, and when the air blowing temperature or the room temperature reaches the first predetermined value, the rotation speed of the compressor is set to a medium speed. capacity, the air blowing direction is changed downward and in a direction branching left and right, and when the air blowing temperature or room temperature reaches a second predetermined value, the compressor is rotated at a low speed and the air blowing direction is changed to a small capacity. A method of deflecting the wind direction of an air conditioner by changing the direction upward or horizontally and branching to the left and right.
JP60271822A 1985-12-03 1985-12-03 Deflection of airflow direction of air-conditioning machine Pending JPS62131146A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60271822A JPS62131146A (en) 1985-12-03 1985-12-03 Deflection of airflow direction of air-conditioning machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60271822A JPS62131146A (en) 1985-12-03 1985-12-03 Deflection of airflow direction of air-conditioning machine

Publications (1)

Publication Number Publication Date
JPS62131146A true JPS62131146A (en) 1987-06-13

Family

ID=17505330

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60271822A Pending JPS62131146A (en) 1985-12-03 1985-12-03 Deflection of airflow direction of air-conditioning machine

Country Status (1)

Country Link
JP (1) JPS62131146A (en)

Similar Documents

Publication Publication Date Title
JPS62131146A (en) Deflection of airflow direction of air-conditioning machine
JPH0559334B2 (en)
JPS62194158A (en) Control of operation of air-conditioning machine
JPS63243650A (en) Airflow direction deflecting device of air-conditioning machine
JPS62131143A (en) Deflection of airflow direction of air-conditioning machine
JPS62194155A (en) Deflection of airflow direction of air-conditioning machine
JPS62119351A (en) Deflecting method for wind direction of air conditioner
JPH0561544B2 (en)
JPS62237241A (en) Method of deflecting air direction of air conditioner
JPS62194154A (en) Airflow direction deflecting device for air-conditioning machine
JPS6219638A (en) Device for deflecting air flow direction of air conditioner and method of deflecting air flow direction
JPS62131139A (en) Deflection of airflow direction of air-conditioning machine
JPS6210548A (en) Device for deflecting air flow direction in air conditioner and method of deflecting air flow direction
JPS62131152A (en) Deflection of airflow direction of air-conditioning machine
JPH0559333B2 (en)
JPS62134442A (en) Method for deflecting air flow direction of air conditioner
JPS62194157A (en) Deflection of airflow direction of air-conditioning machine
JPS62131147A (en) Deflection of airflow direction of air-conditioning machine
JPS62131150A (en) Operation control of air-conditioning machine
JPS62158939A (en) Deflecting method of airflow direction of air-conditioning machine
JPS6210549A (en) Device for deflecting air flow direction in air conditioner and method of deflecting air flow direction
JPS62131145A (en) Deflection of airflow direction of air-conditioning machine
JPS6210539A (en) Device for deflecting air flow direction in air conditioner and method of deflecting air flow direction
JPS62158940A (en) Deflection of airflow direction of air-conditioning machine
JPS62125246A (en) Method of controlling operation of air conditioner