JPS62131147A - Deflection of airflow direction of air-conditioning machine - Google Patents

Deflection of airflow direction of air-conditioning machine

Info

Publication number
JPS62131147A
JPS62131147A JP60271823A JP27182385A JPS62131147A JP S62131147 A JPS62131147 A JP S62131147A JP 60271823 A JP60271823 A JP 60271823A JP 27182385 A JP27182385 A JP 27182385A JP S62131147 A JPS62131147 A JP S62131147A
Authority
JP
Japan
Prior art keywords
air
temperature
motor
deflection
blower
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60271823A
Other languages
Japanese (ja)
Inventor
Shigeji Yoshioka
吉岡 繁治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP60271823A priority Critical patent/JPS62131147A/en
Publication of JPS62131147A publication Critical patent/JPS62131147A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To improve the comfortableness of a living space upon starting cooling operation by a method wherein a fan is driven at high speed and ventilating direction is distributed downwardly before the temperature of ventilating air arrives at a predetermined value but the ventilating direction is distributed downwardly when the temperature of ventilating air has arrived at the predetermined value while the fan is driven in a low speed and the ventilating direction is changed so as to be distributed upwardly when the temperature of ventilating air has arrived at a second predetermined value. CONSTITUTION:When a blow-off air temperature is higher than a first set temperature, a central motor 3 and a left motor 9a are turned left, a right motor 9b is turned right and is stopped while a ventilating motor 16b is driven at high speed to concentrate the blow-off air downwardly with a large airflow amount. When the blow-off air temperature detected by a thermistor 21 is lower than the first set temperature and higher than a second set temperature, the central motor 3 and the right motor 9a are turned left, the left motor 9a is turned right and is stopped to distribute the blow-off air downwardly. When the blow-off air temperature detected by the thermistor 21 is lower than the second set temperature, the central motor 3 and the left motor 9a are turned right, the right motor 9b is turned left and is stopped while the ventilating motor 16b is driven at low speed to distribute the blow-off air horizontally with a small airflow amount.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、空気調和機の吹出し方向を制御する風向偏向
方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a wind direction deflection method for controlling the blowing direction of an air conditioner.

従来の技術 現在まで、居住空間の快適性の向上を図るために空気調
和機の風向偏向装置として、種々の装置が考えられてき
た。
BACKGROUND OF THE INVENTION Until now, various devices have been devised as wind deflection devices for air conditioners in order to improve the comfort of living spaces.

例えば、上下偏向羽根を一定周期でスウィングさせる装
置がある。(特公昭56−21149号公報) 発明が解決しようとする問題点 しかし、上記の従来構成では、垂直方向の偏向制御しか
できなく、左右変更は手動であるため、限られた空間し
か冷房ができなかった。また部屋の温度分布が悪くなる
という問題かあ・)た。また、さらに運転開始から、エ
アースウィングするため、冷房立下がり時に冷風が人体
に当たらず十分な冷房効果か得られない問題があった。
For example, there is a device that swings the upper and lower deflection blades at a constant period. (Japanese Patent Publication No. 56-21149) Problems to be Solved by the Invention However, with the above-mentioned conventional configuration, only vertical deflection control is possible, and left and right changes are manual, so only a limited space can be cooled. There wasn't. There is also the problem of poor temperature distribution in the room. Furthermore, since air swing occurs from the start of operation, there is a problem in that the cold air does not hit the human body when the air conditioner cools down, making it impossible to obtain a sufficient cooling effect.

本発明は、空気調和機を用いた居住空間の快適性の向上
、特に冷房運転開始時の快適性の向上を図ることを目的
とする。
An object of the present invention is to improve the comfort of a living space using an air conditioner, particularly to improve the comfort at the start of cooling operation.

問題点を解決するための手段 上記問題点を解決するために本発明は、冷媒を圧縮し、
室内熱交換器、室外熱交換器とともに冷凍サイクルを構
成する圧縮機と、回転数可変型送風機と前記室内熱交換
器とを内部に有する室内ユニットと、この室内ユニット
に設けられ前記室内熱交換器を通過した空気を吹き出す
吹出口と、この吹出口から吹き出される空気を上下方向
に偏向する上下偏向羽根と、前記吹出口の左右に独立し
て設けられかつ前記吹出口から吹き出される空気を左右
方向に分岐して偏向する左右偏向羽根と、前記上下偏向
羽根と左右偏向羽根をそれぞれ独立して偏向駆動する駆
動手段と、前記吹き出し温度または室温を検出する温度
検出手段と、前記送風機の回転数を変化させる回転数可
変手段を有し前記吹出口から吹き出される空気が中央に
集中しかつ、送風機の回転数が高速回転の大風量に設定
されている状態において、前記吹き出し空気温度が第1
の所定値に到達したときに前記左右偏向羽根を、吹き出
し方向か分岐となるように駆動し、かつ前記送風機の回
転数を推持し、さらに、前記吹出し空気温度が第2の所
定値に到達したときに、前記上下偏向羽根を、吹き出し
方向が上方方向となるように駆動し、かつ風量が大から
小となるように前記送風機の回転数を変化するものであ
る10作  用 上記手段により本発明の空気調和機の風向偏向装置は冷
房運転開始時等、吹き出し温度の高いときは、下方集中
であるため、人体に直接冷風が当り、体感的な冷房効果
が得られる。また、吹き出し温度がある程度下がり、人
体に直接冷風を当てると不快感を与え、居住空間として
は十分に温度か下かっている時に下方分流とすると、居
住空間に近い部屋の下部を包み込むように冷房が行なえ
るため、体感向上、立下り時間の短縮になる。また、吹
き出し温度か、前記以下に下がると、下方分流を行なっ
ていても、人体に冷風が当るため不快(きを与える時に
水平分流となり、かつ送風機の回転数が高速から低速と
なり、風量が大から小となるため人体に直接冷風を当て
る事なく、部屋全体の温度か均一に下げられるため、体
感性が向上し、十分な冷房効果か得られる。
Means for Solving the Problems In order to solve the above problems, the present invention compresses a refrigerant,
an indoor unit that includes a compressor that constitutes a refrigeration cycle together with an indoor heat exchanger and an outdoor heat exchanger, a variable rotation speed blower, and the indoor heat exchanger; and an indoor heat exchanger that is provided in the indoor unit. an air outlet that blows out the air that has passed through the air outlet; a vertical deflection blade that deflects the air that is blown out from the air outlet in the vertical direction; Left and right deflection blades branching and deflecting in the left and right directions, drive means for independently driving the upper and lower deflection blades and left and right deflection blades to deflect them independently, temperature detection means for detecting the blowout temperature or room temperature, and rotation of the blower. In a state where the air blown out from the blower outlet is concentrated in the center and the blower is set to a high rotation speed and a large air volume, the temperature of the blown air is 1
When the temperature of the blown air reaches a second predetermined value, the left and right deflection vanes are driven so as to diverge in the blowing direction, and the rotational speed of the blower is maintained, and further, the temperature of the blown air reaches a second predetermined value. 10. The above-mentioned means drives the vertical deflection blades so that the blowing direction is upward, and changes the rotational speed of the blower so that the air volume changes from large to small. The air deflection device of the air conditioner of the invention concentrates the airflow downward when the air temperature is high, such as at the start of cooling operation, so that the cold air directly hits the human body, providing a tangible cooling effect. In addition, if the temperature of the air outlet drops to a certain extent and the cold air is applied directly to the human body, it will cause discomfort, and if the temperature is low enough for the living space, if the air is diverted downward, the cooling will wrap around the lower part of the room near the living space. This improves the experience and shortens the fall time. In addition, if the blowout temperature drops below the above range, even if the airflow is directed downward, the cold air will hit the human body, making it uncomfortable. Since it is small, the temperature of the entire room can be lowered uniformly without direct cold air being applied to the human body, improving the sensation and achieving a sufficient cooling effect.

実施例 以下、本発明の一実施例による空気調和機の風向偏向装
置を図面を用いて説明する。
Embodiment Hereinafter, a wind direction deflection device for an air conditioner according to an embodiment of the present invention will be explained with reference to the drawings.

第1図は同装置の要部分解斜視図である。FIG. 1 is an exploded perspective view of the main parts of the device.

同図に示すように、吹き出し方向にわずかにわん曲し、
コアンダ効果によって上下の風向偏向を行う上下偏向羽
根1は、その長手方向にシャフト2を有し、このシャフ
ト2は中モータ(ステッピングモータ)3に接続されて
いる。また吹き出し空気をコアンダ効果によって水平方
向に偏向する左右偏向羽根は、連結機4aに連結された
左偏向羽根5&と、連結機4bに連結された右偏向羽根
5bとから構成されている。そして左偏向羽根5aは、
羽根用レバーアーム6a、ロッド7a。
As shown in the figure, it is slightly curved in the direction of the balloon,
A vertical deflection blade 1 that performs vertical wind direction deflection by the Coanda effect has a shaft 2 in its longitudinal direction, and this shaft 2 is connected to an intermediate motor (stepping motor) 3. The left and right deflection vanes that horizontally deflect the blown air by the Coanda effect are composed of a left deflection vane 5& connected to a coupler 4a and a right deflection vane 5b connected to a coupler 4b. And the left deflection blade 5a is
Feather lever arm 6a, rod 7a.

モータ用レバーアーム8aを介して左モータ(ステッピ
ングモータ)9aに接続し、右偏向羽根5bは、羽根用
レバーアーム6b、ロッド7b。
It is connected to a left motor (stepping motor) 9a via a motor lever arm 8a, and the right deflection blade 5b is connected to a blade lever arm 6b and a rod 7b.

モータ用レバーアーム8bを介して右モータ(ステッピ
ングモータ)9bに接続している。ここで左偏向羽根5
aはこの左偏向羽根5aよりも左側に中心を有するよう
にわずかにわん曲し、右偏向羽根5bはこの右偏向羽根
5bよりも右側に中心を有するようにわずかにわん曲し
ている。すなわち後述する吹出口12の両側部13a、
13bとで前述のコアンダ現象を発生させ、風向偏向を
行うためである。前記コアンダ効果については、従来よ
り周知の技術であるため、説明を省略する。
It is connected to a right motor (stepping motor) 9b via a motor lever arm 8b. Here, left deflection blade 5
a is slightly curved so that its center is to the left of this left deflection blade 5a, and right deflection blade 5b is slightly curved so that its center is to the right of this right deflection blade 5b. That is, both sides 13a of the air outlet 12, which will be described later,
13b to cause the aforementioned Coanda phenomenon and deflect the wind direction. Since the Coanda effect is a well-known technique, its explanation will be omitted.

なお本実施例では、中モータ3、左モータ9a。In this embodiment, the middle motor 3 and the left motor 9a.

右モータ9bで駆動手段を構成しているが、左右偏向羽
根を駆動するモータを一つとすることも可能で、さらに
はギヤあるいはフランチ等の切換手段を用いることによ
り上下偏向羽根1と左右偏向羽根を単一のモータで制御
することも可能である。
Although the right motor 9b constitutes the driving means, it is also possible to use a single motor for driving the left and right deflection blades, and furthermore, by using a switching means such as a gear or a flange, it is possible to drive the upper and lower deflection blades 1 and the left and right deflection blades. It is also possible to control the motor with a single motor.

またモータはステッピングモータに限らず、誘導電動機
等でもよい。
Further, the motor is not limited to a stepping motor, but may be an induction motor or the like.

またモータのかわりに、周囲温度によって変化する形状
記憶合金製バネを用いることも考えられ、この場合には
本発明の必須要件である温度検出手段や設定温度記憶手
段をこの合金自体が有することになる。また左右偏向羽
根を左偏向羽根5aと右偏向羽根5bに2分割にしたの
は、本発明の目的とする集中、分流動作を容易に行なえ
る上にそれぞれ独立して風向制御できるためであり、さ
らに微妙な風向制御を行なうためにはさらに、細分割す
る構成であってもよく、逆に分割せずに第2図に示すよ
うに単一の連結機4で連接してもよい。
It is also possible to use a shape memory alloy spring that changes depending on the ambient temperature instead of the motor, and in this case, the alloy itself has the temperature detection means and set temperature storage means, which are essential requirements of the present invention. Become. In addition, the reason why the left and right deflection blades are divided into two parts, the left deflection blade 5a and the right deflection blade 5b, is to facilitate the concentration and separation operations that are the object of the present invention, and also to be able to independently control the wind direction. In order to perform more delicate control of the wind direction, the structure may be further divided into smaller sections, or conversely, the structure may be connected by a single coupling device 4 as shown in FIG. 2 without being divided.

ま埴偏向羽根5a、右偏向羽根5bをわん曲させたのは
、コアンダ効果Iこよって風向偏向を行う他に、本発明
の目的とする集中、分流効果を高めるだめの形状であり
、前記コアンダ効果を考慮しなけれはたとえわん曲して
いない平面的な形状でもよく、さらにはわん開方向をそ
れぞれ逆にしたものであってもよい。
The reason why the macho deflection blade 5a and the right deflection blade 5b are curved is to not only deflect the wind direction by the Coanda effect I but also to enhance the concentration and splitting effect that is the object of the present invention. As long as the effect is not taken into account, it may be a planar shape that is not curved, or it may even be a shape in which the opening directions are reversed.

次に、第1因に示した風向偏向装置を装着する室内ユニ
ット10の斜視図を第3図に示す。
Next, FIG. 3 shows a perspective view of the indoor unit 10 equipped with the wind direction deflection device shown in the first factor.

同図において、室内ユニット10の前面には室内空気を
吸い込む吸込口11を有し、この吸込口11の下部に上
下偏向羽根1と左右偏向羽根5a。
In the figure, an indoor unit 10 has a suction port 11 on the front surface for sucking indoor air, and below the suction port 11 are vertical deflection blades 1 and left and right deflection blades 5a.

5bを有する吹出口12が設けられている。この吹出口
12の両側部13a、13bはそれぞれ外方向へ前述の
如くコアンダ効果にて風向偏向を行うために漸次拡大す
る曲面となっている。また下面部14も前述の如くコア
ンダ効果にて風向偏向を行うために漸次拡大する曲面と
なっている。
An air outlet 12 having a diameter 5b is provided. Both side portions 13a and 13b of the air outlet 12 are respectively curved surfaces that gradually expand outward in order to deflect the wind direction by the Coanda effect as described above. Further, as described above, the lower surface portion 14 is also a curved surface that gradually expands in order to deflect the wind direction by the Coanda effect.

この室内ユニット10の側断面1を第4因に示す。吸込
口11に対向する位置に室内熱交換器15を有し、この
室内熱交換器15から吹出口12に至る通風路中に送風
機16aを有している。
The side cross section 1 of this indoor unit 10 is shown as the fourth factor. An indoor heat exchanger 15 is provided at a position facing the suction port 11 , and a blower 16 a is provided in the ventilation path from the indoor heat exchanger 15 to the outlet 12 .

16bは送風機を回転させる送風モータ(トランジスタ
モータ)である。
16b is a blower motor (transistor motor) that rotates the blower.

次に本実施例の冷凍サイクルを第5図に示す。Next, the refrigeration cycle of this embodiment is shown in FIG.

同図において、圧縮機17、四方弁18、室内熱交換器
15、キャピラリチューブ19、室外熱交換器20が環
状に連結されている。ここで冷媒は、暖房運転時には、
圧縮機17、四方弁18、室内熱交換器15、キャピラ
リチューブ19、室外熱交換器20の順に流れ、冷房運
転時には、圧縮機17、四方弁18、室外熱交換器20
、キャピラリチューブ19、室内熱交換器15の順に流
れる。
In the figure, a compressor 17, a four-way valve 18, an indoor heat exchanger 15, a capillary tube 19, and an outdoor heat exchanger 20 are connected in a ring. Here, during heating operation, the refrigerant is
The air flows in the order of compressor 17, four-way valve 18, indoor heat exchanger 15, capillary tube 19, and outdoor heat exchanger 20, and during cooling operation, compressor 17, four-way valve 18, and outdoor heat exchanger 20.
, the capillary tube 19 and the indoor heat exchanger 15 in this order.

ここで21a〜21dは吹き出し温度を間接的に検出す
る温度検出手段である。すなわち21aは室内熱交換器
20の配管温度を検出する温度センサ、21bは圧縮機
17の電流を検出する電流検出器、21cは圧縮機17
の吐出配管の圧力を検出する圧力検出器、21dは室内
熱交換器15の配管圧力を検出する圧力検出器である。
Here, 21a to 21d are temperature detection means that indirectly detect the temperature of the air outlet. That is, 21a is a temperature sensor that detects the pipe temperature of the indoor heat exchanger 20, 21b is a current detector that detects the current of the compressor 17, and 21c is the compressor 17.
21d is a pressure detector that detects the pressure of the pipes of the indoor heat exchanger 15.

吹き出し温度を検出するには、直接吹出口12に温度セ
ンサーを設けることが考えられるか、上記各部の温度、
圧力、電流からも検出することができ、いずれかを選択
あるいは組合わせて用いることも可能である。
To detect the temperature of the air outlet, is it possible to install a temperature sensor directly at the air outlet 12?
It can also be detected from pressure and current, and either one can be selected or used in combination.

また21eは吸い込み温度を検出する温度検出器であり
、室温を検出する温度検出手段の一例であって室温検出
場所は吸込口近辺に限るものではない。
Further, 21e is a temperature detector that detects the suction temperature, which is an example of a temperature detection means for detecting room temperature, and the room temperature detection location is not limited to the vicinity of the suction port.

次に本実施例の要部回路図を第6内に示す、っマイクロ
コンピュータ22内には、あらかじめ設定した温度を記
憶する記憶部23、この記憶部23に記憶された設定値
と入力値との比較から適宜出力信号を発生する駆動信号
発生手段24と、この駆動信号発生手段24によって発
生した信号を送風モータ16bの回転数に変換する回転
数可変手段25を有している。このマイクロコンピュー
タの入力側にはコンパレータ26を介して温度検出る。
Next, the circuit diagram of the main part of this embodiment is shown in No. 6. Inside the microcomputer 22, there is a storage section 23 that stores a preset temperature, and a set value and an input value stored in this storage section 23. It has a drive signal generating means 24 which generates an appropriate output signal based on a comparison of the above, and a rotation speed variable means 25 which converts the signal generated by the drive signal generating means 24 into the rotation speed of the blower motor 16b. Temperature is detected via a comparator 26 on the input side of this microcomputer.

ここで28はバイアス抵抗、29はスキャン抵抗である
Here, 28 is a bias resistor, and 29 is a scan resistor.

ここで、第11図に示すブロック図と第6図の回路の関
係について説明すると、第6図のサーミスタ21は第1
1図の温度検出手段に相当し、第6図の記憶部23は第
11図の設定温度記憶手段に相当し、第6図の駆動信号
発生手段24は第11図の駆動信号発生手段に相当し、
第6図回転数可変手段25は第11図の回転数可変手段
に相当し第6図の各モータ3,9a、9*第11図の駆
動手段に相当する。
Now, to explain the relationship between the block diagram shown in FIG. 11 and the circuit shown in FIG. 6, the thermistor 21 in FIG.
The storage section 23 in FIG. 6 corresponds to the temperature detection means in FIG. 1, the storage section 23 in FIG. 6 corresponds to the set temperature storage means in FIG. 11, and the drive signal generation means 24 in FIG. 6 corresponds to the drive signal generation means in FIG. death,
The rotation speed variable means 25 in FIG. 6 corresponds to the rotation speed variable means in FIG. 11, and corresponds to the drive means for each motor 3, 9a, 9 in FIG. 6* in FIG. 11.

次に本実施例の動作を第7図に示す。同図は冷房運転時
のフローチャートである。
Next, the operation of this embodiment is shown in FIG. This figure is a flowchart during cooling operation.

吹き出し温度tはサーミスタ21で検出した温度であり
tl・t2は設定温度である。この吹き出し温度tが第
1の設定温度t、よりも高い時には、中モータ3を左回
転、左モータ9&を左回転、右モータ9bを右回転させ
て停止し、送風モータ16bの回転数を高回転する。こ
こで中モータ3を左回転させることは上下偏向羽根1を
下方位置に、左モータ9aを左回転させることは左偏向
羽根5aを右側に、右モータ9bを右回転させることは
右偏向羽根5bを左側に駆動することを示す。
The blowout temperature t is the temperature detected by the thermistor 21, and tl·t2 is the set temperature. When this blowing temperature t is higher than the first set temperature t, the middle motor 3 is rotated to the left, the left motor 9 & is rotated to the left, the right motor 9b is rotated to the right and stopped, and the rotation speed of the blower motor 16b is increased. Rotate. Here, rotating the middle motor 3 to the left moves the upper and lower deflection blades 1 to the lower position, rotating the left motor 9a to the left moves the left deflection blade 5a to the right, and rotating the right motor 9b to the right moves the left deflection blade 5b to the lower position. indicates that it is driven to the left.

すなわち吹き出し空気は風量か大の下方集中となり第1
0図に示すようになる。このとき、上下偏向羽根1、左
偏向羽根5a、右偏向羽根5bは、それぞれどのような
初M状態にあるかわからないが、各モータ3,9a、9
bの駆動後は必ず上記のような位置に回動するものであ
る。すなわち、初期状態において駆動後の位置と同位置
にすでに偏向しているときには、ストッパー等の負荷抵
抗でモータの回転をさせないか、あるいはモータを空回
転させる。そして各モータ3,9a、9bの回転後(必
要に応じて回転前あるいは回転中)は再びサーミスタ2
1の温度と設定温度とを比較する。
In other words, the blown air is concentrated downward with a large amount of airflow, and the first
The result will be as shown in Figure 0. At this time, although it is not known what initial M state the upper and lower deflection blades 1, left deflection blade 5a, and right deflection blade 5b are in, each motor 3, 9a, 9
After driving b, it always rotates to the above position. That is, when the deflection is already at the same position as the position after driving in the initial state, the motor is not rotated by a load resistance such as a stopper, or the motor is idled. After each motor 3, 9a, 9b rotates (before or during rotation as required), the thermistor 2
Compare the temperature in step 1 and the set temperature.

次にサーミスタ21の温度tが第1の設定温度t、より
も低く第2の設定温度12以上の場合には、中モータ3
を左回転、左モータ9aを右回転、右モータ9bを左回
転させて停止する。(この時送風モータ16bは高速回
転を推持)すなわち吹き出し空気は下方分流となり第9
図に示すようになる。この動作前にすでに第10図のよ
うに下方集中状態にあるときは、実質的には左右偏向羽
根5a、5bのみが偏向することになる。
Next, when the temperature t of the thermistor 21 is lower than the first set temperature t and is equal to or higher than the second set temperature 12, the middle motor 3
is rotated to the left, the left motor 9a is rotated to the right, and the right motor 9b is rotated to the left and then stopped. (At this time, the blower motor 16b continues to rotate at high speed.) In other words, the blown air is diverted downward and the 9th
The result will be as shown in the figure. Before this operation, when the deflection blades are already in the downward concentrated state as shown in FIG. 10, only the left and right deflection blades 5a and 5b are substantially deflected.

次にサーミスタ21の温度tが第2の設定温度t2より
も低い場合には、中モータ3を右回転、左モータ9aを
右回転、右モータ9bを左回転させて停止し、送風モー
タ16bを低速回転とする。
Next, when the temperature t of the thermistor 21 is lower than the second set temperature t2, the middle motor 3 is rotated clockwise, the left motor 9a is rotated clockwise, and the right motor 9b is rotated counterclockwise and stopped, and the blower motor 16b is stopped. Rotate at low speed.

すなわち吹き出し空気は風量小の水平分流となり第8図
に示すようになる。
That is, the blown air becomes a horizontal branch with a small air volume as shown in FIG.

上記のような動作を行なうことにより、運転開始時等吹
き出し温度の高い時は直接人体に冷風を当てるように風
全大の下方集中となり、ある程度吹き出し温度か冷され
た時は間接的に人体を冷すように風量大の下方分流とな
り、吹き出し温度が十分に低い時は部屋全体を冷すよう
に風量小の水平分流となる。
By performing the above operation, when the temperature of the air outlet is high, such as at the start of operation, the entire volume of the air is concentrated downward so as to directly hit the human body with cold air, and when the temperature of the air outlet has cooled down to a certain level, it indirectly hits the human body. The air flows downwardly with a large amount of air to cool the room, and when the outlet temperature is low enough, the air flows horizontally with a small amount of air to cool the entire room.

このような動作を冷房運転開始時についてその効果を説
咀する。まず冷房運転開始時の吹き出し温度は高いため
、直接人体に風を当てなくては、立ち下がり時間がかか
り過ぎることとなる。そのため、直接人体に風を当てる
ことが好ましい。すなわち風量大の下方集中吹き出しに
することにより、より早く人体を冷すことができる冷房
作用を行なう。
The effects of this operation at the start of cooling operation will be explained. First, since the air temperature at the start of cooling operation is high, unless the air is applied directly to the human body, it will take too long for the air to cool down. Therefore, it is preferable to apply wind directly to the human body. In other words, by blowing air downward with a large amount of air, a cooling effect that can cool the human body more quickly is achieved.

次に、ある程度吹き出し温度が低くなったときは、風量
大の下方分流吹き出しとなるため、居住空間に近い部屋
の下部を包み込むように冷房が行なえる。すなわち、人
体周辺を冷すとともに、壁面を冷すことにより、居住空
間内の温度分布を均一にすることができる。
Next, when the temperature of the air outlet becomes low to a certain extent, the air volume becomes large and the downward branch air blows out, so that the lower part of the room near the living space can be enveloped and cooled. That is, by cooling the area around the human body and cooling the wall surface, the temperature distribution within the living space can be made uniform.

そしてさらに吹き出し温度が低くなった時は、風量小の
水平分流となるため、人体に直接冷風を当てることなく
十分な冷房効果が得られる。すなわち、初期において、
直接人体を冷やし、後に壁面等を冷やしていくため、温
度分布は均一となり、居住空間内に部分的な高温場所か
生じることもない。
When the blowout temperature becomes even lower, the airflow becomes horizontally divided with a small air volume, so a sufficient cooling effect can be obtained without directly blowing cold air to the human body. That is, at the beginning,
Because the system directly cools the human body and then cools the walls, etc., the temperature distribution is uniform, and there are no local hot spots in the living space.

発明の効果 本発明は上記実施例の説明で明らかなように、吹き出し
温度がある設定温度より高い時は、風量大の下方集中に
なるため、人体に直接強い風を当て体感効果を高めてよ
り早い立下り効果が得られる。
Effects of the Invention As is clear from the description of the above embodiments, when the air outlet temperature is higher than a certain set temperature, the air volume is concentrated downward. A fast falling effect can be obtained.

次に吹き出し温度がある設定温度になったときは、風量
大の下方分流として、体感を損なわず壁面を冷すため居
住空間内の温度分布を均一にすることができる。
Next, when the blowout temperature reaches a certain set temperature, the airflow is diverted downward with a large volume to cool the wall surface without impairing the user's sensation, making it possible to make the temperature distribution in the living space uniform.

さらに吹き出し温度が低い時は、風量小の水平分流とな
り人体に直接風が当たらず、まろやかな冷房効果が得ら
れる。
Furthermore, when the air outlet temperature is low, the air flow is horizontally divided with a small amount, preventing the air from directly hitting the human body, resulting in a mild cooling effect.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示す風向偏向装置の分解斜
視図、第2図は同風向偏向装置における左右偏向小板の
異なる連結状態を示す構成図、第3図は同風向偏向装置
を真南した空気調和機の斜視図、第4図は同空気調和機
の縦断面一、第5図は同空気調和機の冷媒回路図、第6
図は同空気調和機の要部の電気回路図、第7図は同風向
偏向装置の制御内容を示すフローチャート、第8図は同
空気調和機における水平分流吹出状態を示す説明図、第
9図は同下方分流吹出状態を示す説明図、第10図は同
下方集中吹出状態を示す説明図、第11図は同装置のブ
ロック図である。 1・・・・・・上下風向為向羽根、3・・・−・・中モ
ータ、5a・・・・・・左偏向羽根、5b・・・・・・
右偏向羽根、9a・・・・・・左モータ、9b・・・・
−・右モータ、10・・・・・室内ユニット、12・・
・・・・吹出口、15・・・・・・室内熱交換器、16
a・・・・・・送風機、16b・・・・・・送風モータ
、17・・・・・・圧縮へ、20・・・−・・室外熱交
換器、21a。 21e・・・・・・温度センサ、21b・・・・・・電
流検出機、21c、21d・・・・・・圧力検出器、2
2・・・・・・マイクロコンピュータ、23・・・・・
・記憶部、24・・・・・・駆動信号発生手段、25・
・・・・・回転数可変手段。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名1−
 上下偏向羽根 2− シャフト 3− 中モータ 4a、4b−一迷桔機 5a−一左娼向1〕銀 8a 、 fib−レバーアーム qa−−左モータ 9b−右モータ 第2図 3− 中モータ 9a−一左モータ 9b−右モータ 16b〜 送風モータ 2/  −一 寸−ミスタ 24−IF駆動信号発生手 段5−E1転数可変手段 第71!I 第9図
Fig. 1 is an exploded perspective view of a wind deflection device showing one embodiment of the present invention, Fig. 2 is a configuration diagram showing different connection states of left and right deflection plates in the wind deflection device, and Fig. 3 is a wind deflection device. Figure 4 is a vertical cross-section of the air conditioner, Figure 5 is a refrigerant circuit diagram of the air conditioner, Figure 6 is a perspective view of the air conditioner looking due south.
The figure is an electrical circuit diagram of the main parts of the air conditioner, Figure 7 is a flowchart showing the control details of the air deflection device, Figure 8 is an explanatory diagram showing the horizontal branch blowing state in the air conditioner, and Figure 9 10 is an explanatory diagram showing the downwardly divided blowing state, FIG. 10 is an explanatory diagram showing the downward concentrated blowing state, and FIG. 11 is a block diagram of the apparatus. 1...Vertical wind direction vane, 3...Medium motor, 5a...Left deflection vane, 5b...
Right deflection vane, 9a...Left motor, 9b...
-・Right motor, 10... Indoor unit, 12...
...Air outlet, 15...Indoor heat exchanger, 16
a...Blower, 16b...Blower motor, 17...Compression, 20...Outdoor heat exchanger, 21a. 21e... Temperature sensor, 21b... Current detector, 21c, 21d... Pressure detector, 2
2...Microcomputer, 23...
・Storage unit, 24... Drive signal generation means, 25.
...Rotation speed variable means. Name of agent: Patent attorney Toshio Nakao and 1 other person1-
Upper and lower deflection blades 2-Shaft 3-Medium motors 4a, 4b-Ichimatsuki 5a-Ichi left direction 1] Silver 8a, fib-Lever arm qa--Left motor 9b-Right motor Fig. 2 3-Medium motor 9a - One left motor 9b - Right motor 16b ~ Blower motor 2/ - One inch - Mister 24 - IF drive signal generating means 5 - E1 rotation speed variable means 71st! I Figure 9

Claims (1)

【特許請求の範囲】[Claims] 冷媒を圧縮し、室内熱交換器、室外熱交換器とともに冷
凍サイクルを構成する圧縮機と、回転数可変型送風機と
前記室内熱交換器とを内部に有する室内ユニットと、こ
の室内ユニットに設けられ前記室内熱交換器を通過した
空気を吹き出す吹出口と、この吹出口から吹き出される
空気を上下方向に偏向する上下偏向羽根と、前記吹出口
の左右に独立して設けられかつ前記吹出口から吹き出さ
れる空気を左右方向に偏向する左右偏向羽根と、前記上
下偏向羽根と左右偏向羽根をそれぞれ往復駆動する駆動
手段と、前記吹出口からの送風温度または室温を検出す
る温度検知手段と、前記吹出口からの送風温度または室
温が所定値に到達したときに前記駆動手段へ出力する出
力手段と送風機の回転数を可変する回転数可変手段を備
え、前記送風温度または室温が所定値に到達する以前は
、送風機を高速回転の大風量で送風方向を下方向で中央
へ集中した方向とし、前記送風温度または室温が第1の
所定値に到達したときは前記送風機の回転数を推持し前
記送風方向を下方向でかつ左右へ分岐した方向に変更し
、さらに前記送風温度または室温が第2の所定値に到達
したときには前記送風機を低速回転の小風量で、前記送
風方向を上方向でかつ左右へ分岐した方向に変更する空
気調和機の風向偏向方法。
an indoor unit that includes a compressor that compresses a refrigerant and constitutes a refrigeration cycle together with an indoor heat exchanger and an outdoor heat exchanger, a variable rotation speed blower, and the indoor heat exchanger; an air outlet that blows out air that has passed through the indoor heat exchanger; a vertical deflection blade that vertically deflects the air blown from the air outlet; and a vertical deflection blade that is provided independently on the left and right sides of the air outlet and that a left and right deflection vane that deflects the blown air in the left and right directions; a drive means that reciprocates the upper and lower deflection vanes and the left and right deflection vanes, respectively; and a temperature detection means that detects the temperature of the air blown from the outlet or the room temperature; The apparatus includes an output means for outputting an output to the driving means when the temperature of the air blown from the outlet or the room temperature reaches a predetermined value, and a rotation speed variable means that changes the rotation speed of the blower, so that the temperature of the air blown from the air outlet or the room temperature reaches the predetermined value. Previously, the blower was rotated at high speed with a large amount of air, and the blowing direction was downward and concentrated in the center, and when the blowing temperature or room temperature reached a first predetermined value, the rotation speed of the blower was maintained and the blower was rotated at a high speed. The blowing direction is changed to a downward direction and a direction branched to the left and right, and when the blowing temperature or the room temperature reaches a second predetermined value, the blower is rotated at a low speed with a small air volume, and the blowing direction is turned upward and A method of deflecting the wind direction of an air conditioner by changing the direction to branch to the left or right.
JP60271823A 1985-12-03 1985-12-03 Deflection of airflow direction of air-conditioning machine Pending JPS62131147A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60271823A JPS62131147A (en) 1985-12-03 1985-12-03 Deflection of airflow direction of air-conditioning machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60271823A JPS62131147A (en) 1985-12-03 1985-12-03 Deflection of airflow direction of air-conditioning machine

Publications (1)

Publication Number Publication Date
JPS62131147A true JPS62131147A (en) 1987-06-13

Family

ID=17505346

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60271823A Pending JPS62131147A (en) 1985-12-03 1985-12-03 Deflection of airflow direction of air-conditioning machine

Country Status (1)

Country Link
JP (1) JPS62131147A (en)

Similar Documents

Publication Publication Date Title
JPS62131147A (en) Deflection of airflow direction of air-conditioning machine
JPS62131143A (en) Deflection of airflow direction of air-conditioning machine
JPS62194158A (en) Control of operation of air-conditioning machine
JPH0559334B2 (en)
JPH0561544B2 (en)
JPS62194152A (en) Airflow direction deflecting device for air-conditioning machine
JPS62119351A (en) Deflecting method for wind direction of air conditioner
JPS62194155A (en) Deflection of airflow direction of air-conditioning machine
JPS62131150A (en) Operation control of air-conditioning machine
JPS6210549A (en) Device for deflecting air flow direction in air conditioner and method of deflecting air flow direction
JPS62131139A (en) Deflection of airflow direction of air-conditioning machine
JPS6210548A (en) Device for deflecting air flow direction in air conditioner and method of deflecting air flow direction
JPS6219638A (en) Device for deflecting air flow direction of air conditioner and method of deflecting air flow direction
JPS62125246A (en) Method of controlling operation of air conditioner
JPS62134441A (en) Method for deflecting air clow direction of air conditioner
JPH057621B2 (en)
JPS62131148A (en) Deflection of airflow direction of air-conditioning machine
JPS62134442A (en) Method for deflecting air flow direction of air conditioner
JPS62194154A (en) Airflow direction deflecting device for air-conditioning machine
JPS62131145A (en) Deflection of airflow direction of air-conditioning machine
JPS62194156A (en) Airflow direction deflecting device for air-conditioning machine
JPS6210539A (en) Device for deflecting air flow direction in air conditioner and method of deflecting air flow direction
JPH0559333B2 (en)
JPS62131140A (en) Deflection of airflow direction of air-conditioning machine
JPS62131152A (en) Deflection of airflow direction of air-conditioning machine