JPS62130840A - Composite sheet for molding - Google Patents

Composite sheet for molding

Info

Publication number
JPS62130840A
JPS62130840A JP60270755A JP27075585A JPS62130840A JP S62130840 A JPS62130840 A JP S62130840A JP 60270755 A JP60270755 A JP 60270755A JP 27075585 A JP27075585 A JP 27075585A JP S62130840 A JPS62130840 A JP S62130840A
Authority
JP
Japan
Prior art keywords
sheet
fibers
molding
composite sheet
semi
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60270755A
Other languages
Japanese (ja)
Other versions
JPH0653403B2 (en
Inventor
博文 岩崎
原西 茂幸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP60270755A priority Critical patent/JPH0653403B2/en
Publication of JPS62130840A publication Critical patent/JPS62130840A/en
Publication of JPH0653403B2 publication Critical patent/JPH0653403B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は断熱材、保温材等に用いられる成型用複合シー
トに関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a moldable composite sheet used as a heat insulating material, a heat retaining material, etc.

従来の技術 無機繊維から成るシート状物として、ガラス繊維、スチ
ール繊維、岩綿、スラグウール等がある。
BACKGROUND OF THE INVENTION Examples of sheet materials made of inorganic fibers include glass fibers, steel fibers, rock wool, and slag wool.

これらの単繊維は切断伸度が10%以下と非常に小さく
もろい。このため、成型加工を行なうと、変形に耐えら
れず破れが起こる。又、特に皮膚障害を起こし易い為、
断熱材、保温材等の施工時取扱いがしに<<、ハンドリ
ング性等に問題がある。
These single fibers have a breaking elongation of 10% or less and are very small and brittle. Therefore, when molding is performed, it cannot withstand deformation and breaks. In addition, because it is particularly prone to skin disorders,
There are problems with the handling of insulation materials, heat insulating materials, etc. during construction.

この対策として、不織シートと無機繊維から成るシート
状物との複合化が行なわれている。
As a countermeasure to this problem, composite sheets of nonwoven sheets and inorganic fibers are being used.

短繊維不織シートを用いて成型加工を行なう場合、構成
繊維間の不均一なズレが起こり、地割7”Lが発生する
。寸法安定性が不十分、保型性が劣るという問題がある
When molding is performed using a short fiber nonwoven sheet, non-uniform misalignment occurs between the constituent fibers, resulting in a ground split of 7"L. There are problems with insufficient dimensional stability and poor shape retention. .

これに対して、従来スパンボンド法等にょる長繊維不織
シートは、長繊維であるため、構成1碓の移動の自由度
が小さく、ニードルパンチ加工して、交絡を行なう場合
、構成繊維の切断が起こり交絡一体化に乏しい。これを
成型力ロエした時、溝成礒維の単繊維切断伸度が20〜
60チで、且つ、長繊維不織シートとしての破断伸度が
25〜35チと小さい為、深い凹凸の成型401時に破
れが生じる。又、交絡一体化に乏しいので、無機繊維シ
ート状物と長繊維不織シートのノー間剥離が生じ易い等
の問題点がある。
On the other hand, since long-fiber nonwoven sheets made by the conventional spunbond method have long fibers, the degree of freedom of movement of the constituent fibers is small, and when needle-punching and intertwining the constituent fibers Disconnection occurs and confounding integration is poor. When this is subjected to forming force, the single fiber cutting elongation of the grooved fibers is 20~
60 inches, and since the elongation at break as a long fiber nonwoven sheet is as small as 25 to 35 inches, tearing occurs during deep uneven molding 401. In addition, since the interlacing and integration is poor, there are problems such as easy peeling between the inorganic fiber sheet and the long fiber nonwoven sheet.

発明が解決しようとする問題点 従来の不離シートの有する上記、問題点を解決して、成
型性を有する千載シートを提供すること全目的とする。
Problems to be Solved by the Invention The overall purpose of the invention is to solve the above-mentioned problems of conventional non-separable sheets and to provide a moldable sheet.

問題点を解決するための手段 本発明は、無機繊維から成るシート状物の少なくとも一
方の面に、繊維形成oT能な熱可塑性ポリマーよりなる
半延伸糸を用いて成る長繊維不織シートを積層し、一体
化された成型用複合シートである。
Means for Solving the Problems The present invention laminates a long fiber nonwoven sheet made of semi-drawn yarn made of a thermoplastic polymer capable of forming fibers on at least one side of a sheet made of inorganic fibers. It is an integrated moldable composite sheet.

本発明でいう、繊維形成可能な酩酊4性ポリマーよりな
る半延伸糸を用いて成る長dL維不誠シートは、ポリエ
ステル系繊維、ポリアミr系繊維、ポリオレフィン系繊
維、及び共重合繊維等の溶融紡糸して得られた半延伸糸
を、エアーサッカーなどの手段により高速で引取って移
動する捕集面上に堆積させ均一なウェブを得る、いわゆ
るスパンボンげ法により得られるものが有効である。構
成繊維の切断伸度は、100〜300チであり、更に熱
時に伸度が大きくなり、熱成型に好ましい。
In the present invention, the long dL fiber sheet made of semi-drawn yarn made of a polyester polymer capable of forming fibers is a molten sheet made of polyester fibers, polyamide fibers, polyolefin fibers, copolymer fibers, etc. It is effective to use the so-called spunbonding method, in which a semi-drawn yarn obtained by spinning is taken up at high speed by means such as an air sucker and deposited on a moving collecting surface to obtain a uniform web. The breaking elongation of the constituent fibers is 100 to 300 inches, and the elongation increases when heated, making it suitable for thermoforming.

構成繊維の繊Aは0.5〜20dが好ましい。該不織シ
ートの目付は、50〜200 & /m”が好ましい。
The fiber A of the constituent fibers is preferably 0.5 to 20 d. The basis weight of the nonwoven sheet is preferably 50 to 200 m''.

次に、本発明でいう積層は、無+!&愼維から成るシー
ト状物の少なくとも片面、又は両面に長!&維不織シー
トを重ねて、ニードルパンチ等により交絡させるか、又
は、ホットメルト接着剤により、−ット方式で接着させ
一体化させることをいう。
Next, there is no lamination in the present invention! & Long on at least one side or both sides of a sheet made of lint fiber! It refers to stacking fiber and non-woven sheets and intertwining them by needle punching or the like, or by adhering and integrating them using a hot melt adhesive method.

本発明の構成を図面により、更に詳しく説明する。The configuration of the present invention will be explained in more detail with reference to the drawings.

第1図は、本発明の成型用複合シートの断面模式図であ
り、1は、熱oTd性ポリマーよりなる半延伸糸を用い
て成る長繊維不織シート、2は、無機繊維から成るシー
ト状物、3は、無機繊維から成るシート状物中の熱可塑
性ポリマーよりなる半延伸糸を用いて成る長繊維である
。この構成によれば、無機繊維から成るシート状物と比
較して、引張強力と伸び率が増大し、かつ、繊維の移動
、変形が容易となり成型性がきわめて良好である。
FIG. 1 is a schematic cross-sectional view of a composite sheet for molding of the present invention, in which 1 is a long fiber nonwoven sheet made of semi-drawn yarn made of a thermo-O-Td polymer, and 2 is a sheet-like sheet made of inorganic fibers. Item 3 is a long fiber made of semi-drawn yarn made of thermoplastic polymer in a sheet-like material made of inorganic fiber. According to this structure, compared to a sheet-like material made of inorganic fibers, the tensile strength and elongation rate are increased, and the fibers can be moved and deformed easily, resulting in extremely good moldability.

第2図は、三層構造の本発明成型用複合シートの断面模
式図であり、4,5は、熱可塑性ポリマーよりなる半延
伸糸を用いて成る長繊維シート、6は、中間1−で無機
繊維から成るシート状物である。7,8は、上、下の層
中の半延伸糸から成る繊維が中間層中の繊維と交絡し三
ノーが一体化されている。この構成によれば、無機繊維
から成るシート状物と比較して、無機繊維のチカ、チカ
が殆んどす<、ハンドリングしても皮膚刺激がない。
FIG. 2 is a schematic cross-sectional view of a composite sheet for molding of the present invention having a three-layer structure, where 4 and 5 are long fiber sheets made of semi-drawn yarns made of thermoplastic polymer, and 6 is a middle fiber sheet made of semi-drawn yarn made of thermoplastic polymer. It is a sheet-like material made of inorganic fibers. In Nos. 7 and 8, the fibers made of semi-drawn yarn in the upper and lower layers are intertwined with the fibers in the intermediate layer, so that the three nos are integrated. According to this configuration, compared to a sheet-like material made of inorganic fibers, the inorganic fibers hardly cause any flickering and do not irritate the skin even when handled.

又、引張強力と伸び率が増大し、かつ、繊維の移@変形
が容易となり、成型性がきわめて良好である。
In addition, the tensile strength and elongation rate are increased, the fibers can be easily transferred and deformed, and the moldability is extremely good.

第3図は、二層構造の本発明成型用複合シートの断lI
[i模式図であり、9は、熱0Tfi性ポリマーよりな
る半延伸糸を用いて成る長繊維シート、10は、無機繊
維から成るシート状物、11は、二層を接合する接着剤
である。この構成においては、接着剤は、176式に部
分的接合するのがより良い結果となる。これは、成型を
行なう場合、繊維の移動、変形が容易になる為である。
Figure 3 is a cross section of a composite sheet for molding of the present invention having a two-layer structure.
[I is a schematic diagram in which 9 is a long fiber sheet made of semi-drawn yarn made of a thermal 0Tfi polymer, 10 is a sheet-like material made of inorganic fibers, and 11 is an adhesive for joining the two layers. . In this configuration, the adhesive gives better results if it is partially bonded in the 176 style. This is because the fibers are easily moved and deformed during molding.

この構成によれば成型性の良い複合シートが得られる。According to this configuration, a composite sheet with good moldability can be obtained.

第4図は、第5図に示す成型機の凸面部分により成型さ
れた本発明複合シートの断面模式図である。第5図の2
3の凸部全150″Cに加温し24の他の方の平板の間
に本発明複合シートを入れ除徐に加圧して、型付けを行
なう。その結果第4図に示す型付けが出来る。12の熱
可塑性ポリマーよりなる半延伸糸を用いて成る長繊維不
織シートは、150℃熱時に伸び易い性質がある為、成
型時に容易に加工できる。
FIG. 4 is a schematic cross-sectional view of a composite sheet of the present invention molded by the convex portion of the molding machine shown in FIG. 5. Figure 5 2
The composite sheet of the present invention is heated to a total temperature of 150''C between the convex portions 24 and 24, and pressure is gradually applied to form the mold.As a result, the mold shown in FIG. 4 is obtained. A long-fiber nonwoven sheet made of semi-drawn yarn made of thermoplastic polymer No. 12 has a property of being easily stretched when heated to 150° C., so it can be easily processed during molding.

以下、実殉例をあげて、本発明を説明する。The present invention will be explained below with reference to actual examples.

尚、実施列に示す特性の定義、及び測定方法は次のとお
りである。
The definitions and measurement methods of the characteristics shown in the practical column are as follows.

目付: 試料を20crrLX20儂に取り、その重・瞼から目
付に換算して表わす。
Fabric weight: Take a sample of 20crrL x 20cm and convert it to the fabric weight based on its weight and eyelid weight.

厚み: 荷重100 & ’1ryn2のダイヤルデージを用い
て、少なくとも3点以上測り、その平均値で示す。
Thickness: Measure at least 3 points using a dial gauge with a load of 100 &'1ryn2, and indicate the average value.

引張強伸度(25−C): 試料5mX20clrLをタテ、ヨコ各々とり、定速伸
長形引張試験機(高率製作所オートグラフDSS −2
000型万能引張試験礪〕により把握長10crrL、
引張速度20CrIL/分で測定する。
Tensile strength and elongation (25-C): A sample of 5 m x 20 clrL was taken vertically and horizontally using a constant speed extension type tensile tester (Takatoshi Seisakusho Autograph DSS-2
000 type universal tensile test bench] gripping length 10 crrL,
Measurement is performed at a tensile rate of 20 CrIL/min.

150”C熱時引張強伸度: 雰囲気温度150℃に於ける引張強伸度を25゛C引張
強l!度と同様に行なう。
Tensile strength and elongation at 150"C: Tensile strength and elongation at an ambient temperature of 150°C was measured in the same manner as the tensile strength and elongation at 25"C.

眉間剥離強さ: 試料5zxX20(7)をタテ、ヨコ各々とり、層間部
分をあらかじめ5αはがしてから、その剥離強さを定速
伸長形引張試験機で測定する。
Glabella peel strength: Take Sample 5zxX20 (7) vertically and horizontally, peel off the interlayer portion 5α in advance, and then measure the peel strength using a constant speed extension type tensile tester.

ハンドリング性: 手によって、表面に触れて皮膚刺激の程度で示す。Handling: The degree of skin irritation is indicated by touching the surface with the hands.

◎・・・皮ノd刺激がまったく感じられない。◎...Skin irritation is not felt at all.

○・・・皮JT4刺激が少し感じられるが目立たない。○...Skin JT4 irritation is felt a little, but it is not noticeable.

Δ・・・部分的に数ケ所皮膚刺激が感じられる。Δ...Skin irritation was felt in several places.

×・・・皮膚刺激がどの部分でも感じられる。×...Skin irritation can be felt in any part.

成型性: 第5図に示す成型機を用いて、成型性を評価する。即ち
、片面凸形状23を150“Cに加熱して、試料を平板
24との間に入れて加圧して、成型を行う。その後加圧
を止め開放して試料を外して放置する。この時金型凸部
の高さhOと、試料の凹部の深さhを測り、成型性の目
安とする。
Moldability: The moldability is evaluated using the molding machine shown in FIG. That is, the single-sided convex shape 23 is heated to 150"C, the sample is placed between it and the flat plate 24, and pressure is applied to form the mold. After that, the pressure is stopped, the pressure is released, and the sample is removed and left. At this time, The height hO of the protrusion of the mold and the depth h of the recess of the sample are measured and used as a guide for moldability.

成型性=−X100 h。Moldability=-X100 h.

測定条件hO:15mm、温度:15[]’C1圧カニ
5 kl / cm2 実施例1 溶融紡糸可能なポリエステル系合成繊維としてポリエチ
レンテレフタレートを使用した例を示す。
Measurement conditions hO: 15 mm, temperature: 15[]'C1 pressure crab 5 kl/cm2 Example 1 An example is shown in which polyethylene terephthalate is used as a melt-spun polyester synthetic fiber.

固有粘度0.75のポリエチレンテレフタレートを紡糸
温度295℃で孔径0.25mmの紡糸口金よ)紡糸速
度2600 m/minの紡糸条件下で半延伸ポリエス
テル長繊維を金網上に捕集して、目付80 g/ m2
のウェブを得た。このウェブを、熱圧着面積比率12チ
の一対のエンボスロールヲ用いて温度65′C線圧20
kg/CrILで熱圧着して、半延伸エステルスパンポ
ンドを得た。得られた半延伸エステルスパンボンrと目
付500 、!9/ m2のガラス短繊維不織シートを
二枚重ねて、ニードルパンチングにより二枚を交絡させ
た。条件は、針66番つき深さ13*m、つき回数12
0回Z−で行なった。
Polyethylene terephthalate with an intrinsic viscosity of 0.75 was spun using a spinneret with a hole diameter of 0.25 mm at a temperature of 295° C. Semi-drawn polyester long fibers were collected on a wire mesh at a spinning speed of 2600 m/min to obtain a fabric weight of 80 mm. g/m2
got the web. This web was heat-compressed using a pair of embossing rolls with an area ratio of 12 mm at a temperature of 65'C and a linear pressure of 20 mm.
A semi-stretched ester spunpond was obtained by thermocompression bonding at kg/CrIL. The obtained semi-stretched ester spunbond R has a basis weight of 500! Two short glass fiber nonwoven sheets of 9/m2 were stacked and intertwined by needle punching. The conditions are: needle number 66, depth 13*m, number of times 12
Performed 0 times in Z-.

得られた複合シートの特性を第1表に示す。第1表から
明らかに比較例5,6より破断伸度が増大している。ハ
ンドリング性も改良され、眉間ハクリ強さも大きく一体
化されている。又、成型性も92%で捜付けがきわめて
良好であった。
Table 1 shows the properties of the composite sheet obtained. From Table 1, it is clear that the elongation at break is higher than that of Comparative Examples 5 and 6. Handling has also been improved, and the strength for eyebrow peeling has also been significantly improved. In addition, the moldability was 92%, and the moldability was extremely good.

・丸h1植1?リ 2 実施例10目付801/ m”の半延伸エステルスパン
ボンrを2枚用いて中間に目付500 !l/ m”の
ガラス短繊維不織シートから成る三層構造の複合シート
を実施例1と同様にニードルパンチングにより得た。得
られた複合シートの特性を第1表に示す。第1表から明
らかに、引張強力、伸び率が増大し強固となった。又、
ハンドリング性成型性がきわめて良好な咳合シートとな
った。層間剥離強さも大きくなり一体化されたa台シー
トであった。
・1 round h1 plant? Example 1 A composite sheet with a three-layer structure consisting of two sheets of semi-stretched ester spunbond R with a fabric weight of 801/m" and a non-woven glass fiber sheet with a fabric weight of 500!l/m" in the middle was prepared. Obtained by needle punching in the same manner as . Table 1 shows the properties of the composite sheet obtained. It is clear from Table 1 that the tensile strength and elongation rate increased and became stronger. or,
The cough sheet has extremely good handling and moldability. The interlayer peeling strength was also increased and the sheet was an integrated A-level sheet.

実施例6 溶融紡糸可能なポリアミド系合成繊維としてポリカプロ
ラクタムを使用した例を示す。
Example 6 An example is shown in which polycaprolactam is used as a melt-spun polyamide synthetic fiber.

相対粘度2.6のポリカプロラクタムを紡糸温度265
℃で孔径0.25朋の紡糸口金より紡糸速度3000m
/minの紡糸条件で、半延伸ナイロン長繊維を金網上
に捕集して、目付80 i/ rn2のウェブを得た。
Spinning polycaprolactam with a relative viscosity of 2.6 at a temperature of 265
℃ and a spinning speed of 3000 m from a spinneret with a pore diameter of 0.25 mm.
The semi-drawn nylon long fibers were collected on a wire mesh under spinning conditions of /min to obtain a web with a basis weight of 80 i/rn2.

このウェブを熱圧着面遺比率8チの−nのエンボスロー
ルを用いて温度60′c線圧20に9/cWLで熱圧着
して、半延伸ナイロンスパンポンドを帰た。得られた牛
延坤糸ナイロンスパンポンドと、目付500 j!/ 
m”のガラス短繊維不織シート’6二枚重ねて、ニード
ルパンチングにより二枚交絡させた。条件は、針36番
、つき深さ13mm、つき回数120回/GIn2で行
なった。得られた複合シートの特性を第1表に示す。引
張強カ伸び率が増大しハンドリング性も改良され層間ハ
クリ強さも大きく、一体化され成型性も96チで型付け
がきわめて良好であった。
This web was thermocompression bonded at a temperature of 60'C and a linear pressure of 20C and a linear pressure of 9/CWL using a -n embossing roll with a thermocompression bonding surface ratio of 8 inches to form a semi-stretched nylon spunpond. The resulting nylon spun pounds of Ushinobukon yarn and the fabric weight of 500 J! /
Two short glass fiber non-woven sheets '6 of 1" were stacked and intertwined by needle punching. The conditions were a number 36 needle, a punching depth of 13 mm, and a punching number of 120 times/GIn2. The obtained composite sheet The properties are shown in Table 1.The tensile strength and elongation rate were increased, the handling property was improved, the interlaminar peeling strength was also large, and the moldability was 96 cm, making molding very good.

実施例4 実施例6で得られた目付80 g/ m”の半延伸ナイ
ロンスパンポンドを2枚用いて、中間に目付500 E
/ m”のガラス短繊維不織シートから成る三層構造の
複合シートを実施例6と同様にニーげルパンチングによ
り得た。得られた複合シートの特性を第1表に示す。第
1表から明らかに、引張強力、伸び率が増大し、強固と
なった。又、ハンドリング性が良く、層間剥離強さも大
きく、一体化された複合シートが得られ、成型性も98
チときわめて良好な成型用複合シートとなった。
Example 4 Two sheets of semi-stretched nylon spunponds with a fabric weight of 80 g/m" obtained in Example 6 were used, and a fabric weight of 500 E was used in the middle.
/ m" of short glass fiber nonwoven sheet was obtained by needle punching in the same manner as in Example 6. The properties of the obtained composite sheet are shown in Table 1. Table 1 Obviously, the tensile strength and elongation rate increased, making it stronger. Also, an integrated composite sheet with good handling properties, high interlayer peel strength, and moldability of 98% was obtained.
The composite sheet for molding was extremely good.

比較例1 固有粘度0.75のポリエチレンテレフタレートを紡糸
温度295℃で孔径0.25tpxの紡糸口金より、紡
糸速度5200m/minの紡糸条件下で延伸ポリエス
テル長繊維を金網上に捕集して、目付80 、!i’/
 m2のウェブを得た。このクエデを熱圧着面積比率1
2%の一対のエンがスロールヲ温度235 ’O線圧4
0kg/αで熱圧着して、延伸エステルスパンポンドを
得た。得られた延伸エステルスパンボンドと目付500
17 m2のガラス短繊維不織シートを二枚重ねてニー
rルパンチングにより二枚を重ねて交絡させた。実施例
1と同様に二−−ルパンチングしだ。得られた複合シー
トの特性を第1表に示す。
Comparative Example 1 Polyethylene terephthalate with an intrinsic viscosity of 0.75 was spun using a spinneret with a hole diameter of 0.25 tpx at a temperature of 295°C and a drawn polyester long fiber was collected on a wire mesh at a spinning speed of 5200 m/min. 80,! i'/
A web of m2 was obtained. This maple is heat-compressed with an area ratio of 1
A pair of 2% engines has a throttle temperature of 235'O linear pressure 4
A stretched ester spunpond was obtained by thermocompression bonding at 0 kg/α. The obtained stretched ester spunbond has a basis weight of 500
Two 17 m2 short glass fiber nonwoven sheets were overlapped and intertwined by needle punching. Double punching was carried out in the same manner as in Example 1. Table 1 shows the properties of the composite sheet obtained.

層間剥離強さが小さく、一体化に乏しい。又、成型性が
46%と低く、型付けが十分できない為、実施例1〜4
と比較して、かなり劣るものであった。
Low delamination strength and poor integration. In addition, the moldability was as low as 46%, and molding was not possible sufficiently, so Examples 1 to 4
It was quite inferior compared to

比較例2 ガラス短遣維不織シートのみで、同じように比較すると
引張強力、伸び率がきわめて小さく、これを成型しても
破れが起こり成型出来ない。又、ハンドリングすると手
に触れチカ、チカの刺激が強く、取り扱いに十分注意が
必要であり皮り#障害が起こる。
Comparative Example 2 When compared in the same manner using only a short glass fiber non-woven sheet, the tensile strength and elongation rate were extremely low, and even if this was molded, it would break and could not be molded. In addition, when handled, there is a strong tingling sensation when the product touches the hands, so sufficient care must be taken in handling, which may cause problems with peeling.

(以下余白) 実施例ジ 目付500 &、/ m2のガラス短繊維不織シートに
げット式に、エチレン−酢酸ビニルの接着剤を付着させ
その上に実施例1の目付80 /!/ rIL2の半延
伸エステルスパンボンドを重ねて、120℃加熱された
ベルトの間に挾んで、通して接着させた。
(Margins below) Example: An adhesive of ethylene-vinyl acetate was applied to a short glass fiber non-woven sheet with a fabric weight of 500/m2 in a net manner, and then an adhesive of Example 1 with a fabric weight of 80/! / rIL2 semi-stretched ester spunbond was stacked and sandwiched between belts heated at 120°C, passed through and bonded.

得られた複合シートの成型性は89チで、良い成型性複
合シートが得られた。
The moldability of the obtained composite sheet was 89 cm, indicating that a composite sheet with good moldability was obtained.

発明の効果 本発明による成型用複合シートは、実施例に示すように
、ハンドリング性に優れ、引張強力、伸び率が大きく強
固に一体化されている。更に、成型を行なう場合、繊維
の移動、変形が容易になる為成型性のきわめて良好な成
型性腹合シートが得られる。その結果、表面に凹凸形状
を付与させ意匠性に優れた断熱材、保温材として利用で
きる。
Effects of the Invention As shown in the examples, the composite sheet for molding according to the present invention has excellent handling properties, high tensile strength and elongation, and is strongly integrated. Furthermore, when molding is performed, the fibers are easily moved and deformed, so that a moldable sheet with extremely good moldability can be obtained. As a result, it can be used as a heat insulating material or a heat insulating material with an excellent design by imparting an uneven shape to the surface.

【図面の簡単な説明】[Brief explanation of drawings]

第1図〜第4図は、本発明の成型用複合シートの断面を
模式的に示した図である。第5図は、成型機の概略図を
示す。 1、4.5.9.12.21.・・・熱可塑性ポリマー
からたち半延伸糸を用いた長繊維子 織シート、 2、8.10.13.22・・・無機繊維から成るシー
ト状物、11・・・接着剤、20・・・成型前の複合シ
ート、3、7.8.14・・・無機繊維から成るシート
状物中に熱可塑性ポリマーからなる半延伸糸を 用いて長繊維が混在している状態 を示す。 23・・・凸状の金型、24・・・平板特許出願人 旭
化成工業株式会社 第1図 第2図 第3図 第4図 第5図
FIGS. 1 to 4 are diagrams schematically showing cross sections of the composite sheet for molding of the present invention. FIG. 5 shows a schematic diagram of the molding machine. 1, 4.5.9.12.21. ... Long fiber interwoven sheet using semi-drawn yarn made of thermoplastic polymer, 2, 8.10.13.22... Sheet-like material made of inorganic fiber, 11... Adhesive, 20... - Composite sheet before molding, 3, 7.8.14...Shows a state in which long fibers are mixed in a sheet-like material made of inorganic fibers using semi-drawn yarns made of thermoplastic polymer. 23... Convex mold, 24... Flat plate Patent applicant Asahi Kasei Industries, Ltd. Figure 1 Figure 2 Figure 3 Figure 4 Figure 5

Claims (1)

【特許請求の範囲】[Claims] 無機繊維から成るシート状物の少なくとも一方の面に、
繊維形成可能な熱可塑性ポリマーよりなる半延伸糸を用
いて成る長繊維不織シートを積層し、一体化された成型
用複合シート。
On at least one side of a sheet made of inorganic fibers,
A composite sheet for molding that is made by laminating and integrating long fiber nonwoven sheets made of semi-drawn yarn made of thermoplastic polymer that can be formed into fibers.
JP60270755A 1985-12-03 1985-12-03 Composite sheet for molding Expired - Fee Related JPH0653403B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60270755A JPH0653403B2 (en) 1985-12-03 1985-12-03 Composite sheet for molding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60270755A JPH0653403B2 (en) 1985-12-03 1985-12-03 Composite sheet for molding

Publications (2)

Publication Number Publication Date
JPS62130840A true JPS62130840A (en) 1987-06-13
JPH0653403B2 JPH0653403B2 (en) 1994-07-20

Family

ID=17490530

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60270755A Expired - Fee Related JPH0653403B2 (en) 1985-12-03 1985-12-03 Composite sheet for molding

Country Status (1)

Country Link
JP (1) JPH0653403B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6073005B1 (en) * 2016-05-12 2017-02-01 三菱電機株式会社 Vacuum heat insulating material and method for manufacturing vacuum heat insulating material

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6073005B1 (en) * 2016-05-12 2017-02-01 三菱電機株式会社 Vacuum heat insulating material and method for manufacturing vacuum heat insulating material
WO2017195329A1 (en) * 2016-05-12 2017-11-16 三菱電機株式会社 Vacuum heat-insulating material and manufacturing method therefor
CN109073136A (en) * 2016-05-12 2018-12-21 三菱电机株式会社 Vacuum heat insulation material and its manufacturing method
CN109073136B (en) * 2016-05-12 2019-09-20 三菱电机株式会社 Vacuum heat insulation material and its manufacturing method
US10883647B2 (en) 2016-05-12 2021-01-05 Mitsubishi Electric Corporation Vacuum heat insulator and method of manufacturing the same

Also Published As

Publication number Publication date
JPH0653403B2 (en) 1994-07-20

Similar Documents

Publication Publication Date Title
EP1866472B2 (en) Lightweight high-tensile, high-tear strength bicomponent nonwoven fabrics
US4801482A (en) Elastic nonwoven pad
US5503907A (en) Barrier fabrics which incorporate multicomponent fiber support webs
US4692368A (en) Elastic spunlaced polyester-meltblown polyetherurethane laminate
EP0371515B1 (en) Needling process for spunbonded composites
CA1308242C (en) Hydraulically entangled nonwoven elastomeric web and method of forming the same
US4781966A (en) Spunlaced polyester-meltblown polyetherester laminate
EP0722389B1 (en) Controlled-porosity, calendered spunbonded/melt blown laminates
US5652041A (en) Nonwoven composite material and method for making same
US5431991A (en) Process stable nonwoven fabric
PL184015B1 (en) Method of mechanically making laminates consisting of plastic film and non-woven fabric
KR100666255B1 (en) Nonwoven fabric for use in female member of hook-and-loop fastener and method for manufacturing the same
WO1993015247A9 (en) Process stable nonwoven fabric
JPS62215057A (en) Reinforced nonwoven fabric
JP2007284859A (en) Nonwoven fabric and underlay material composed of the nonwoven fabric
JP2009052148A (en) Spunlaced composite nonwoven fabric
CN109763264A (en) Hook type fastener nonwoven fabric of long fibers ring
JPS58180653A (en) Laminated nonwoven sheet for microfilter
US20070141926A1 (en) Hydroentangled elastic nonwoven sheet
JPS62130840A (en) Composite sheet for molding
KR100810653B1 (en) Artificial leather and the method for manufacturing therof
KR101902522B1 (en) Hybrid nonwovens composed of polypropylene long-fiber nonwoven layer and polyethylene long-fiber nonwoven layer and method for producing the same
JPH086242B2 (en) Heat-shrinkable non-woven sheet and method for producing the same
US5843557A (en) Conformable structural reinforcement substrate and method of making same
JP2000160464A (en) Stretchable nonwoven fabric excellent in flexibility and its production

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees