JPS62130748A - Wear resistant water-cooled mold parts - Google Patents

Wear resistant water-cooled mold parts

Info

Publication number
JPS62130748A
JPS62130748A JP26958885A JP26958885A JPS62130748A JP S62130748 A JPS62130748 A JP S62130748A JP 26958885 A JP26958885 A JP 26958885A JP 26958885 A JP26958885 A JP 26958885A JP S62130748 A JPS62130748 A JP S62130748A
Authority
JP
Japan
Prior art keywords
water
wear
cooled
cooled molded
ceramics
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26958885A
Other languages
Japanese (ja)
Inventor
Kazumi Shimotori
霜鳥 一三
Hideo Ishihara
石原 秀夫
Takashi Ishigami
隆 石上
Takenori Umeki
梅木 武則
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP26958885A priority Critical patent/JPS62130748A/en
Publication of JPS62130748A publication Critical patent/JPS62130748A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/04Continuous casting of metals, i.e. casting in indefinite lengths into open-ended moulds
    • B22D11/059Mould materials or platings

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Continuous Casting (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

PURPOSE:To improve the wear resistance and durability of the titled water- cooled mold parts and to improve operating efficiency by coating the part in contact with a casting material with ceramics having heat conductivity of a specified value or above. CONSTITUTION:At least the part in contact with the casting material of the water-cooled mold parts 1 made of oxygen free copper, etc., is coated with the ceramics having >=50w/m.K heat conductivity to form the ceramic coated part 2. The film thickness of the ceramics used for coating is preferably about 1-10mum. The cermamics is preferably selected from the group consisting of TiC, AlN, SiC, BN, and BeO.

Description

【発明の詳細な説明】 [発明の技術分野] 本発明は特に高純度高融点金属に使用するのに適した耐
摩耗性水冷モールド部品に関する。
DETAILED DESCRIPTION OF THE INVENTION TECHNICAL FIELD OF THE INVENTION The present invention relates to wear-resistant water-cooled molded parts particularly suitable for use with high purity refractory metals.

し発明の技術的背景とその問題点] 電子ビーム溶解、アーク溶解などの水冷モールドに用い
られる水冷モールド部品としては従来から高熱伝導率を
確保するため無酸素銅(OFHC)のような銅で形成さ
れたものが使用されてきた。
[Technical background of the invention and its problems] Water-cooled mold parts used in water-cooled molds such as electron beam melting and arc melting have traditionally been made of copper such as oxygen-free copper (OFHC) to ensure high thermal conductivity. have been used.

しかしながら銅で形成された水冷モールド部品は銅山体
が軟かいため摩耗損傷が大きく、部品寿命が短いと共に
、摩耗によって銅片が鋳造材料中に混入し、材料特性を
変化させる等の欠点がある。
However, water-cooled molded parts made of copper have a soft copper body, which causes significant wear and tear, shortening the life of the part, and has disadvantages such as copper pieces getting mixed into the casting material due to wear and changing the material properties.

一方、例えば半導体用配線材料として用いられる高純度
Tiのように高純度高融点金属を鋳造する場合には銅を
はじめとする他金属の汚染は厳密にコントロールする必
要がある。従ってこのような鋳造材料に銅製の水冷モー
ルド部品を用いると材料中に銅が混合汚染して優れた品
質のものが得られないと共に、水冷モールド部品も一回
毎に取替えて再加工する必要があり作業能率が悪い等の
欠点があった。
On the other hand, when casting a high-purity, high-melting-point metal such as high-purity Ti used as a wiring material for semiconductors, contamination of other metals such as copper must be strictly controlled. Therefore, if water-cooled molded parts made of copper are used in such casting materials, the material will be contaminated with copper, making it impossible to obtain products of excellent quality, and the water-cooled molded parts will also need to be replaced and reprocessed each time. However, there were drawbacks such as poor work efficiency.

また銅表面を保護するためアルミナなどのセラミックス
コーティングを施す方法もあるが熱伝導率が低い材料を
用い、かつ0.3〜1關厚ざにコーティングしているた
め、セラミックスの断熱効果によって鋳肌の荒れたイン
ゴットとなったりセラミックスの剥離が生じるなど使用
に耐えられるものではなかった。
There is also a method of applying a ceramic coating such as alumina to protect the copper surface, but since a material with low thermal conductivity is used and the coating is 0.3 to 1 inch thick, the heat insulating effect of the ceramic prevents the casting surface. The resulting ingots were rough and the ceramics peeled off, making them unusable.

[発明の目的] 本発明は以上のような問題点を解決するためになされた
もので、摩耗損傷が少なく、他金属の汚染のない高純度
高融点金属インゴットを得ることのできる耐摩耗性水冷
モールド部品を提供することを目的とする。
[Object of the Invention] The present invention was made to solve the above-mentioned problems, and provides a wear-resistant water-cooled metal ingot that has less wear damage and is free from contamination with other metals. The purpose is to provide molded parts.

[発明の概要] すなわち本発明の耐摩耗性水冷モールド部品は、少なく
とも鋳造材料との接触部が熱伝導率50W/m・K以上
のセラミックスで被覆されてなることを特徴とする。
[Summary of the Invention] That is, the wear-resistant water-cooled molded part of the present invention is characterized in that at least the contact portion with the casting material is coated with a ceramic having a thermal conductivity of 50 W/m·K or more.

本発明にあける熱伝導率が50W/m・K以上のセラミ
ックスとしてはたとえばTiC1AβN1S iC,B
N、BeO等が上げられる。
Examples of ceramics with a thermal conductivity of 50 W/m・K or more according to the present invention include TiC1AβN1S iC,B
Examples include N, BeO, etc.

またセラミックスコーティングの方法としてはイオンブ
レーティング法がめげられ、このセラミックスコーティ
ングの被膜厚は1〜10μmが好ましく、特に2μm程
度が好ましい。被膜厚が1μm以下では摩耗によって素
材が露出することがおり、10μm以上ではセラミック
スが剥離することがあるからである。セラミックスコー
ティングすべき場所は水冷モールド部品中の少なくとも
鋳造材料が接触する部分、例えば溶湯プール部、インゴ
ット形成部等に行なう。
Further, as a method of ceramic coating, an ion-blating method is recommended, and the thickness of the ceramic coating is preferably 1 to 10 μm, particularly preferably about 2 μm. This is because if the coating thickness is 1 μm or less, the material may be exposed due to wear, and if the coating thickness is 10 μm or more, the ceramic may peel off. Ceramic coating is applied to at least the parts of the water-cooled molded part that come into contact with the casting material, such as the molten metal pool, the ingot forming part, and the like.

なお本発明の耐摩耗性水冷モールド部品は電子ビーム溶
解モールド、真空アーク溶解モールド、各種蒸着用モー
ルド等に適用することができる。
The wear-resistant water-cooled molded parts of the present invention can be applied to electron beam melting molds, vacuum arc melting molds, various vapor deposition molds, and the like.

[発明の実施例] 次に本発明を実施例によって説明する。[Embodiments of the invention] Next, the present invention will be explained by examples.

実施例 第1図は本発明の一実施例である水冷モールド部品を概
略的に示すものである。
Embodiment FIG. 1 schematically shows a water-cooled molded part which is an embodiment of the present invention.

図中符号1は0FHC製水冷モ一ルド部品、2はセラミ
ックスコーティング部、3は強制冷却用ガイドでおる。
In the figure, numeral 1 is a water-cooled molded part made of 0FHC, 2 is a ceramic coating part, and 3 is a forced cooling guide.

溶湯金属4はこの水冷モールド部品中に注入されるとこ
の中の循環冷却水5によって冷却されて凝固し、インゴ
ット6となる。形成されたインゴット6は底板7を下降
させることによって徐々に引き下げられると共に、順次
溶湯金属が注入され連続鋳造される。
When the molten metal 4 is injected into the water-cooled molded part, it is cooled by the circulating cooling water 5 therein and solidified to form an ingot 6. The formed ingot 6 is gradually lowered by lowering the bottom plate 7, and molten metal is successively poured into the ingot 6 for continuous casting.

セラミックスコーティングは例えば次のようにして行な
うことができる。
Ceramic coating can be performed, for example, as follows.

ずなわち炭素含有雰囲気中、約450℃で反応性イオン
ブレーティング法によって0FHC製水冷モ一ルド部品
上にT1を蒸着させ、厚さ1.5〜2μmのTiC膜を
コーティングする。このTiC層は熱解析によると熱伝
導率が約67W/m・Kであり、アルミナの約3倍であ
った。
That is, T1 is vapor-deposited on a water-cooled molded part made of 0FHC at about 450° C. in a carbon-containing atmosphere by a reactive ion blating method to coat a TiC film with a thickness of 1.5 to 2 μm. According to thermal analysis, this TiC layer had a thermal conductivity of about 67 W/m·K, which was about three times that of alumina.

このようにしてセラミックスコーティングした水冷モー
ルド部品を用いて連続鋳造を行なったところ、その温度
勾配は第2図に示すようになった。
When continuous casting was carried out using the water-cooled molded parts coated with ceramics in this manner, the temperature gradient was as shown in FIG.

図中、aは0FHC単独で構成された水冷モールド部品
を用いた場合、bは本発明のセラミックスコーティング
を施した水冷モールド部品を用いた場合の温度勾配を示
している。第2図かられかるよ5に本発明の耐摩耗性水
冷モールド部品はセラミックスコーティングせず0FH
C単独で構成されたものとほとんど変わらぬ温度分布を
示している。このため製造されたインゴットの鋳肌は鋳
造後半期であっても初期と変わらず良好であると共にコ
ーテイング材がはがれることもなかった。また耐摩耗性
も優れており、連続鋳造を繰返してもコーテイング材が
摩耗することがなく、このためセラミックスコーティン
グによって水冷モールド部品を10数回使用することが
可能となり耐久性が大巾に向上した。
In the figure, a shows the temperature gradient when a water-cooled molded part made of 0FHC alone is used, and b shows the temperature gradient when a water-cooled molded part coated with the ceramic coating of the present invention is used. From Figure 2, the wear-resistant water-cooled molded parts of the present invention are 0FH without ceramic coating.
It shows a temperature distribution that is almost the same as that composed of C alone. Therefore, the cast surface of the manufactured ingot was as good as the initial stage even in the latter half of casting, and the coating material did not peel off. It also has excellent wear resistance, and the coating material does not wear out even when continuous casting is repeated, making it possible to use water-cooled molded parts more than 10 times with ceramic coating, greatly improving durability. .

一方、比較例として厚さ0.8mmのアルミナをコーテ
ィングした水冷モールド部品を用いて連続鋳造を行なっ
た場合は第3図のbに示すような温度勾配となった。
On the other hand, when continuous casting was carried out using a water-cooled molded part coated with alumina having a thickness of 0.8 mm as a comparative example, a temperature gradient as shown in FIG. 3b was obtained.

なお図中aI、tOF)−10単独で構成された水冷モ
ールド部品を用いた場合の温度勾配を示している。
Note that the figure shows the temperature gradient when a water-cooled molded part composed of aI, tOF)-10 alone is used.

図かられかるようにセラミックスコーティング部は断熱
的に作用しており、このためセラミックスにクラックが
生じて剥離しなり、鋳肌が荒れるなどの好ましくない結
果となった。
As can be seen from the figure, the ceramic coating part acts as a heat insulator, and as a result, cracks occur in the ceramic, causing it to peel off, resulting in unfavorable results such as rough casting surfaces.

[発明の効果] 以上説明したように本発明の耐摩耗性水冷モールド部品
は鋳造材料との接触部が耐摩耗性で高熱伝導性のセラミ
ックスで薄く被覆されているので摩耗しにくく、特に銅
の混入汚染を排除しなければならない高純度高融点金属
に使用するのに適していると共に、耐久性が大巾に向上
するので操業効率の改善を図ることができる。
[Effects of the Invention] As explained above, the wear-resistant water-cooled molded parts of the present invention are hard to wear because the contact area with the casting material is thinly coated with wear-resistant and highly thermally conductive ceramics. It is suitable for use with high-purity, high-melting-point metals that must be free from contamination, and its durability can be greatly improved, making it possible to improve operational efficiency.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を概略的に示す断面図、第2
図は本発明による水冷モールド部品の場合と0FHC単
独で構成された水冷モールド部品の場合の温度勾配を示
す図、第3図は従来のセラミックスコーティングを施し
た水冷モールド部品の場合と0FHC単独で構成された
水冷モールド部品の場合の温度勾配を示す図である。 1・・・・・・・・・0FHC製水冷モ一ルド部品2・
・・・・・・・・セラミックスコーティング部3・・・
・・・・・・強制冷却用ガイド4・・・・・・・・・溶
湯金属 5・・・・・・・・・循環冷却水 6・・・・・・・・・インゴット 7・・・・・・・・・底 板
FIG. 1 is a sectional view schematically showing one embodiment of the present invention, and FIG.
The figure shows the temperature gradient in the case of a water-cooled molded part according to the present invention and in the case of a water-cooled molded part composed of only 0FHC. Figure 3 shows the case of a water-cooled molded part with a conventional ceramic coating and a case of a water-cooled molded part composed of only 0FHC. FIG. 3 is a diagram showing a temperature gradient in the case of a water-cooled molded part. 1...0FHC water-cooled molded parts 2.
...Ceramics coating part 3...
... Forced cooling guide 4 ... Molten metal 5 ... Circulating cooling water 6 ... Ingot 7 ... ······Bottom plate

Claims (3)

【特許請求の範囲】[Claims] (1)少なくとも鋳造材料との接触部が熱伝導率50W
/m・K以上のセラミックスで被覆されてなることを特
徴とする耐摩耗性水冷モールド部品。
(1) At least the contact part with the casting material has a thermal conductivity of 50W
A wear-resistant water-cooled molded part characterized by being coated with ceramics having a hardness of /m·K or more.
(2)被覆されるセラミックスの被膜厚が1〜10μm
である特許請求の範囲第1項記載の耐摩耗性水冷モール
ド部品。
(2) The thickness of the ceramic coating is 1 to 10 μm
A wear-resistant water-cooled molded part according to claim 1.
(3)セラミックスはTiC、AlN、SiC、BN、
BeOよりなる群から選択されたものである特許請求の
範囲第1項記載の耐摩耗性水冷モールド部品。
(3) Ceramics include TiC, AlN, SiC, BN,
A wear-resistant water-cooled molded part according to claim 1, which is selected from the group consisting of BeO.
JP26958885A 1985-11-29 1985-11-29 Wear resistant water-cooled mold parts Pending JPS62130748A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26958885A JPS62130748A (en) 1985-11-29 1985-11-29 Wear resistant water-cooled mold parts

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26958885A JPS62130748A (en) 1985-11-29 1985-11-29 Wear resistant water-cooled mold parts

Publications (1)

Publication Number Publication Date
JPS62130748A true JPS62130748A (en) 1987-06-13

Family

ID=17474447

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26958885A Pending JPS62130748A (en) 1985-11-29 1985-11-29 Wear resistant water-cooled mold parts

Country Status (1)

Country Link
JP (1) JPS62130748A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000007752A1 (en) * 1998-08-06 2000-02-17 Ag Industries, Inc. An improved continuous casting mold system and related processes
CN107921517A (en) * 2015-08-31 2018-04-17 株式会社神户制钢所 Epithelium, hot forming mould and thermo shaping method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000007752A1 (en) * 1998-08-06 2000-02-17 Ag Industries, Inc. An improved continuous casting mold system and related processes
CN107921517A (en) * 2015-08-31 2018-04-17 株式会社神户制钢所 Epithelium, hot forming mould and thermo shaping method

Similar Documents

Publication Publication Date Title
GB1499684A (en) High power laser mirror
JPH04234647A (en) Manufacture of photogravure printing die
JPS62130748A (en) Wear resistant water-cooled mold parts
JPH11236664A (en) Backing plate of target for sputtering
US5004524A (en) Refractory oxycompound/refractory hard metal composite and used in molten salt aluminum production cells
JP2001232447A (en) Manufacturing method for cathode and cathode for cathodic arc deposition
CN1285431C (en) Mold copper plate for continuous casting and its production method
CN106011757B (en) A kind of casting method for preventing the brittle alloy as sputtering target material from cracking
US3450574A (en) Method of coating refractory wares with magnesia
US3607613A (en) Electrically conductive refractory bodies
JPS558411A (en) Nitriding method for aluminum or aluminum alloy in molten state
JPS6213236A (en) Metallic mold for casting and its production
KR20000039445A (en) Ceramic complex powdered material for amorphous thermal spraying coating
JPS62246870A (en) Melt casting refractories and manufacture
JPH0665427B2 (en) Nozzle for continuous casting
JPS62132734A (en) Mold for forming optical element
JP2583581B2 (en) Mold for optical element molding
JPH0469044B2 (en)
JPS60244013A (en) Manufacture of magnetic material
JPH02146496A (en) Crucible for melting metal
JPH11123521A (en) Mold for die casting
JPH05209262A (en) Manufacture of film coating
JPH0550473A (en) Injection mold
JP2005146290A (en) Co-Cr-Pt-B-BASED ALLOY SPUTTERING TARGET AND ITS PRODUCTION METHOD
JP3339141B2 (en) Ceramic stalk