JPS62130270A - Ceramic coating method - Google Patents
Ceramic coating methodInfo
- Publication number
- JPS62130270A JPS62130270A JP26879085A JP26879085A JPS62130270A JP S62130270 A JPS62130270 A JP S62130270A JP 26879085 A JP26879085 A JP 26879085A JP 26879085 A JP26879085 A JP 26879085A JP S62130270 A JPS62130270 A JP S62130270A
- Authority
- JP
- Japan
- Prior art keywords
- film
- base material
- coating
- metal
- defects
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は、化学工業用リアクター、ポンプ等、耐食性が
要求される部材に適用されるセラミックコーティング法
に関する。DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a ceramic coating method applied to members requiring corrosion resistance, such as chemical industrial reactors and pumps.
従来、耐食性皮膜を得る方法としては、溶射、メッキ、
化成処理等の方法があり、金属(例えばZn、At、N
i)やセラミック(’r iot 、 At20s等)
を該方法によりコーティングすることで耐食性向上を計
っていた。Traditionally, methods for obtaining corrosion-resistant coatings include thermal spraying, plating,
There are methods such as chemical conversion treatment, and metals (e.g. Zn, At, N
i) and ceramics ('riot, At20s, etc.)
The aim was to improve corrosion resistance by coating with this method.
しかしながら、これらの方法によって生成した皮膜は、
下地に達する貫通欠陥(以下ピンホールと記す)を多数
、含んでいるため耐食性能としては不十分であった。こ
れに対して。However, the films produced by these methods
It contained many penetrating defects (hereinafter referred to as pinholes) that reached the underlying layer, so its corrosion resistance was insufficient. On the contrary.
物理蒸着法(PVD法)および化学蒸着法(CVD法)
によるセラミックコーティングは、原子あるいは分子レ
ベルで皮膜が形成されるためピンホールの極めて少ない
高性能の膜が得られる。しかしながら極めて少ないとは
言え、ピンホールが存在すると言うことは完全な耐食性
皮膜とは言えず、厳しい腐食環境の元では実用できなか
った。本発明者らは。Physical vapor deposition method (PVD method) and chemical vapor deposition method (CVD method)
Ceramic coatings are formed at the atomic or molecular level, resulting in high-performance films with extremely few pinholes. However, although the number of pinholes is extremely small, the presence of pinholes does not mean that the film is completely corrosion-resistant, and cannot be put to practical use in a severe corrosive environment. The inventors.
このピンホールの生成原因について調査した結果、この
ピンホールは、pVD又はCVD皮膜が、基材表面上か
ら、皮膜表面に到る柱状晶の集合したものであり第2図
に模式的に示す様この隣接する柱状晶の境界に欠陥があ
るため、基材に貫通するピンホールが生成するのであジ
、この境界の貫通欠陥除去が最大の問題点であることを
見出した。As a result of investigating the cause of the formation of these pinholes, we found that these pinholes are a collection of columnar crystals in the pVD or CVD film that extend from the surface of the substrate to the surface of the film, as schematically shown in Figure 2. It has been found that since defects exist at the boundaries between adjacent columnar crystals, pinholes are formed that penetrate the base material, and that removing the penetration defects at these boundaries is the biggest problem.
そのため本発明は、基材上に金属をコーティングした後
、該金属被膜を炭化又は窒化することによってセラミッ
クコーティング皮膜を得ることを特徴とするセラミック
コーティング法を要旨とする。Therefore, the gist of the present invention is a ceramic coating method characterized in that a ceramic coating film is obtained by coating a metal on a base material and then carbonizing or nitriding the metal film.
この柱状晶境界の欠陥を無くすということは、要すれば
皮膜の密度を固体盤みに高くすることである。通常、金
属に比較して、その炭化物あるいは窒化物は密度が小さ
い。従って、この金属を炭化あるいは窒化するというこ
とは9体積が大きくなるということであり。Eliminating defects at the columnar crystal boundaries means increasing the density of the film to a solid layer. Typically, carbides or nitrides have a lower density than metals. Therefore, carbonizing or nitriding this metal means that the volume increases.
この体積増加を利用して欠陥を除去する。Defects are removed using this volume increase.
すなわち、最初にコーティングした金属皮膜に含まれる
欠陥を、炭化又は窒化することによって、第1図に示す
様に個々の柱状晶が体積増加し欠陥を除去することがで
きる。又。That is, by carbonizing or nitriding defects contained in the first coated metal film, the volume of each columnar crystal increases as shown in FIG. 1, and the defects can be removed. or.
これを繰返して多層膜とすれば組織が不連続になって貫
通欠陥はさらに少なくなる。If this process is repeated to form a multilayer film, the structure will become discontinuous and the number of through defects will further decrease.
〔実施例1〕
30mmX 30mmX 5mm厚さの炭素鋼(S45
C)基板にPVD法の一種であるHCD(ホロカソード
)法イオンブレーティングによって。[Example 1] Carbon steel (S45
C) By ion blating the HCD (holocathode) method, which is a type of PVD method, on the substrate.
Ti皮膜f 1 mmの厚さでコーティングした。The Ti film was coated with a thickness of 1 mm.
コーティング条件は以下の通りである。The coating conditions are as follows.
(I)HCDガン出カニ 45Vx400A(2)基板
温度 :500℃
−to後、Tiのコーティングを止めて、N2ガスを装
置内に導入し圧力0.5Torrで基板[−500Vの
電圧を印加してグロー放電を起こさせることにより、コ
ーティングしたTi皮膜をイオン窒化させて、約1.1
trrtn厚さのTiN皮膜を得た。次に、このTi
N皮膜の上に、さらに同様の方法でTiをコーティング
し同様の方法で窒化することを4回繰返すことにより、
厚さ約5.5 mmのTiN皮膜を得た。(I) HCD gun output 45V x 400A (2) Substrate temperature: 500°C After -to, stop the Ti coating, introduce N2 gas into the device, and apply a voltage of -500V to the substrate at a pressure of 0.5 Torr. By causing a glow discharge, the coated Ti film is ion nitrided, resulting in approximately 1.1
A TiN film having a thickness of trrtn was obtained. Next, this Ti
By repeating coating Ti on the N film in the same manner and nitriding in the same manner four times,
A TiN film with a thickness of about 5.5 mm was obtained.
次に、この様にして得られた厚さ1.1順のTiN皮膜
、および5.5 rranのTiN皮膜の耐食性を調査
するため、10チHC1水溶液に常温で浸漬した結果、
従来法(反応性イオンブレーティング)で得られた厚さ
1.1 rtrmの皮膜は10分後に、5.5mmの皮
膜は1時間後に微少な腐食点が検出されたのに対して1
本発明によって得られた厚さ1.1 rranの皮膜は
、腐食が認められたのが2時間後でありさらに厚さ5.
5調の皮膜は、10時間後も腐食は認められなかった。Next, in order to investigate the corrosion resistance of the TiN films with a thickness of 1.1 and 5.5 rran obtained in this way, the results were obtained by immersing them in a 10T HC1 aqueous solution at room temperature.
A film with a thickness of 1.1 rtrm obtained by the conventional method (reactive ion blating) had minute corrosion points detected after 10 minutes, and a film with a thickness of 5.5 mm after 1 hour;
Corrosion of the film obtained by the present invention with a thickness of 1.1 rran was observed after 2 hours, and the film had a thickness of 5.1 rran.
No corrosion was observed in the coating of Tone 5 even after 10 hours.
〔実施例2〕
〔実施例1〕と同じ基板を用いて、従来法のCVD法に
よpTici5mm:7−ティングした。コーティング
条件は次の通りである。[Example 2] Using the same substrate as [Example 1], pTici5mm:7-tinting was performed by the conventional CVD method. The coating conditions were as follows.
(1)炉 温:1ooo℃
(2)原料ガス:TiC4,;80cc/閲と流量CH
4; 80 CC/ mr
H2; 2 0 0CC/yrin
(3)炉 圧:大気圧
次に、Tict、とN2ガスのみを流してTiを2.3
mmコーティングした後、ガスをCH4とH,ガスに
切変えて、このTi皮膜を炭化した。この操作全2回繰
返すことにより厚さ5調のTiC皮膜を形成した。これ
らの皮膜を〔実施例1〕と同様の方法により耐食試験を
行った結果、従来法による皮膜は浸漬1時間後に腐食点
が認められたのに対して。(1) Furnace temperature: 1ooo℃ (2) Raw material gas: TiC4; 80cc/cm and flow rate CH
4; 80 CC/mr H2; 2 0 0 CC/yrin (3) Furnace pressure: Atmospheric pressure Next, only Tict and N2 gas were flowed to reduce Ti to 2.3
After coating the Ti film, the gas was changed to CH4 and H gas to carbonize the Ti film. By repeating this operation twice, a TiC film with five different thicknesses was formed. As a result of conducting a corrosion resistance test on these coatings in the same manner as in Example 1, corrosion points were observed after 1 hour of immersion in the coatings prepared by the conventional method.
本発明による皮膜1−t、10時間後も腐食は認められ
なかった。No corrosion was observed in the coating 1-t according to the present invention even after 10 hours.
本発明によるセラミックコーティングは。 Ceramic coating according to the invention.
金属をコーティングした後、これを窒化又は炭化するこ
とでち密な欠陥の少ないセラミック皮膜を得ることがで
きる。After coating the metal, a dense ceramic film with few defects can be obtained by nitriding or carbonizing the metal.
第1図および第2図は9本発明の効果を模式的に示した
もので、第1図は本発明法で得られる皮膜の断面図、第
2図は従来法による被膜の断面図である。
1:皮膜中の柱状晶、2:基材。
硼I興中0Figures 1 and 2 schematically show the effects of the present invention. Figure 1 is a cross-sectional view of a film obtained by the method of the present invention, and Figure 2 is a cross-sectional view of a film obtained by the conventional method. . 1: Columnar crystals in the film, 2: Base material. 0
Claims (1)
又は窒化することによってセラミックコーティング皮膜
を得ることを特徴とするセラミックコーティング法。A ceramic coating method characterized in that a ceramic coating film is obtained by coating a metal on a base material and then carbonizing or nitriding the metal film.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP26879085A JPS62130270A (en) | 1985-11-29 | 1985-11-29 | Ceramic coating method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP26879085A JPS62130270A (en) | 1985-11-29 | 1985-11-29 | Ceramic coating method |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS62130270A true JPS62130270A (en) | 1987-06-12 |
Family
ID=17463312
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP26879085A Pending JPS62130270A (en) | 1985-11-29 | 1985-11-29 | Ceramic coating method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS62130270A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0419331U (en) * | 1990-06-11 | 1992-02-18 | ||
JPH0532110U (en) * | 1991-10-14 | 1993-04-27 | トヨタ車体株式会社 | Lift equipment for lorries |
US6086684A (en) * | 1997-06-04 | 2000-07-11 | Japan Science And Technology Corporation | Electric discharge surface treating method and apparatus |
-
1985
- 1985-11-29 JP JP26879085A patent/JPS62130270A/en active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0419331U (en) * | 1990-06-11 | 1992-02-18 | ||
JPH0532110U (en) * | 1991-10-14 | 1993-04-27 | トヨタ車体株式会社 | Lift equipment for lorries |
US6086684A (en) * | 1997-06-04 | 2000-07-11 | Japan Science And Technology Corporation | Electric discharge surface treating method and apparatus |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6956212B2 (en) | Atomic layer deposition of protective coatings for semiconductor processing chamber components | |
US5645900A (en) | Diamond composite films for protective coatings on metals and method of formation | |
JPH04311569A (en) | Hard multilayered film assembled body and its manufacture | |
JPH0566358B2 (en) | ||
RU2553803C2 (en) | Tribology combined with corrosion resistance: new family of pvd- and pacvd coatings | |
TW202204661A (en) | Methods of protecting aerospace components against corrosion and oxidation | |
JP2002538308A5 (en) | ||
KR100247657B1 (en) | Method for nitriding nickel alloy | |
TW201815673A (en) | High hardness TaC coated carbon material and manufacturing method for same | |
JP2943634B2 (en) | Surface treatment method for vacuum chamber member made of Al or Al alloy | |
JP6077637B2 (en) | DLC / Ti electrode body for water treatment having multilayer interface structure and method for producing the same | |
US20040115377A1 (en) | Tubular structures with coated interior surfaces | |
CN110468384B (en) | Diffusion-resistant layer of single-crystal high-temperature alloy and coating interface and preparation method thereof | |
KR101849997B1 (en) | Methods for coating surface of iron-based alloy and products with high hardness and low friction manufactured thereby | |
WO2021117498A1 (en) | Tantalum carbonate-coated graphite member and method for producing same | |
JPS62130270A (en) | Ceramic coating method | |
US5262202A (en) | Heat treated chemically vapor deposited products and treatment method | |
JPH0553871B2 (en) | ||
JPS62151555A (en) | Corrosion resistant film | |
Murakawa et al. | The possibility of coating cubic BN films on various substrates | |
JPH0525636A (en) | Manufacture of dry tin plated stainless steel for decoration | |
TW202113120A (en) | Method of using ALD technology to produce anti-corrosion coating on the inner wall of gas pipeline having a dense coating and uniform film thickness | |
JPH02149673A (en) | Member coated with rigid carbon film | |
JPS62228648A (en) | Piston ring | |
KR0136183B1 (en) | High hardness chrome coating layer and manufacturing method therefor |