JPS6212998B2 - - Google Patents

Info

Publication number
JPS6212998B2
JPS6212998B2 JP53122799A JP12279978A JPS6212998B2 JP S6212998 B2 JPS6212998 B2 JP S6212998B2 JP 53122799 A JP53122799 A JP 53122799A JP 12279978 A JP12279978 A JP 12279978A JP S6212998 B2 JPS6212998 B2 JP S6212998B2
Authority
JP
Japan
Prior art keywords
cytochrome
approximately
tris
absorption
determined
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP53122799A
Other languages
Japanese (ja)
Other versions
JPS5548393A (en
Inventor
Yasuo Ooshima
Yasuyoshi Motonami
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Kasei Corp
Original Assignee
Mitsubishi Kasei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Kasei Corp filed Critical Mitsubishi Kasei Corp
Priority to JP12279978A priority Critical patent/JPS5548393A/en
Publication of JPS5548393A publication Critical patent/JPS5548393A/en
Publication of JPS6212998B2 publication Critical patent/JPS6212998B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は、C型チトクロムの調製法に関する。
更に詳しくは、本発明は、サーマスサーモフイラ
スHB8菌体から下記の物性値を示す耐熱性の新規
チトクロムを分離する方法に関する。 a 酸化型は360,409,528,693nmに、還元型
は417,522,549,555nmに吸収極大を有す
る。 b 還元型α吸収帯(554.8nm)のミリモル分子
吸光係数が22.0である。 c 等電点がPH3.8である。 d 分子量は沈降平衡法により約11000、ドデシ
ル硫酸ナトリウム存在下ポリアクリルアミドゲ
ル電気泳動法より約10000である。 チトクロムは、ヘム鉄の酸化還元による還元当
量の移動をその特有の機能とするヘム蛋白質であ
り、それは主として呼吸や光合成の様なエネルギ
ー交換の場において働いており、またその他にも
生体に必要な物質の生産や電子伝達に伴う生命現
象に広く関与している生体内物質である。 チトクロムCの薬理作用としては、心臓病やガ
ス中毒症の治療に有効であると言う報告があり、
また、細胞代謝賦活剤、組織呼吸賦活剤の様な酵
素製剤として市販されている。 本発明者等は、比較生化学的研究上、サーマス
サーモフライス(Thermus thermophilus)HB8
のC型チトクロムに着目し、その分離を試み、本
発明に到達した。 すなわち、本発明の要旨は、サーマスサーモフ
イラスHB8菌株の菌体を破砕し、その破砕物から
下記の物性値を示すチトクロム555,549を分離
することを特徴とするC型チトクロムの調製法に
存する。 a 酸化型は360,409,528,693nmに、還元型
は417,522,549,555nmに吸収極大を有す
る。 b 還元型α吸収帯(554.8nm)のミリモル分子
吸光係数が22.0である。 c 等電点がPH3.8である。 d 分子量は沈降平衡法により約11000、ドデシ
ル硫酸ナトリウム存在下ポリアクリルアミドゲ
ル電気泳動法より約10000である。 更に、本発明方法を詳細に説明するに、本発明
において用いられる材料サーマスサーモフイラス
(Thermus thermophilus)HB8(ATCC27634)
は、International J.of Systematic Bacteriol.
24,102〜112に記載されているサーマス属に属す
る菌株である。該菌株の菌体からC型チトクロム
を分離するには、菌体を破砕し、その菌体を破砕
物から分離する。具体的に説明すると、まず菌株
を0.5%ペプトン、0.4%酵母エキス、0.2%塩化ナ
トリウム及び0.1%グルコースを含む培地を使用
して、75℃で約6時間培養し、後期対数増殖期で
集菌し、得られた菌体を常法により、例えば音波
処理により破砕する。そして得られた破砕物から
常法によりチトクロムCを分離する。分離法の1
例を説明すると、破砕物に、EDTA、、塩化マグ
ネシウム、塩化カリ、β―メルカプトエタノール
を含むトリス塩酸緩衝液(PH7.8)を加えて撹拌
し、7500rpmで遠心して得られる上清を、さらに
22000g、15時間遠心し、その沈澱(膜画分)
に、トライトンX―100(和光純薬工業社製、界
面活性剤、トライトンは商標)、塩化カリを含む
トリス塩酸緩衝液(PH7.5)を加えて撹拌し、遠
心して上清を得る。上清を0.5%トライトンX―
100を含むトリス塩酸緩衝液(PH8.5)で透析して
のち、ジエチルアミノエチルセルロースカラムに
加え、同緩衝液に0.05M塩化カリを加えたもので
洗い、さらに0.2M塩化カリを加えたもので溶出
する。溶出液を限外過で濃縮後、0.05Mトリス
塩酸緩衝液(PH8.5)で透析してのち、ジエチル
アミノエチルセルロースカラムに加え、同緩衝液
に0.05M塩化カリを加えたもので洗い、さらに
0.2M塩化カリを加えたもので溶出する。溶出液
を限外過で濃縮後、0.05Mトリス塩酸緩衝液
(PH7.5)で透析し、次いで、ジエチルアミノエチ
ルセルロースカラムに吸着させ、塩化カリの濃度
勾配でチトクロム画分を溶出し、これを再び限外
過で濃縮後、セフアデツクスG―75カラム(ゲ
ル過剤、セフアデツクスは商標)に通し、赤味
を帯びた画分を集め、これを等電点電気泳動にか
けるとPH3.8付近にチトクロム―555,549を得
ることができる。 このようにして得られたチトクロム―555,
549は、その酸化型は360,409,528,693nmに、
還元型は417,522,549,555nmに吸収極大を有
し、還元型α吸収帯(554.8nm)のミリモル分子
吸光係数は22.0である。等電点はPH3.8、分子量
は沈降平衡法より約11000、ドデシル硫酸ナトリ
ウム存在下ポリアクリルアミドゲル電気泳動法よ
り約10000である。 実施例 (1) 培養 サーマスサーモフイラスHB8
(ATCC27634)を1中にペプトン5g、酵母
エキス4g、グリコール1gおよび塩化ナトリ
ウム2gを含む培地を用いて培養した。即ち、
先ず、約3mlの上記培地の入つた20mlの試験管
2本に上記菌を接種し、インキユベーター(75
℃)中に2昼夜放置した。次いで上記培地1
の入つた5の坂口コルベン8本に植えつぎ、
75℃で一夜振とう培養した。更に20のジヤー
フアーメンター4基にこれを植えつぎ、75℃で
約8時間通気培養し、対数増殖後期(クレツト
数約400)で集菌し(シヤープレス型連続遠心
機使用)、生理食塩水約2で軽く洗つた。菌
体は、−20℃で凍結保存した。菌体収量は培地
80に対し、湿重量で約700gであつた。 (2) 菌体の磨砕 −20℃に凍結保存してあつた菌体500g(湿
重量)を室温に約30分間放置し、菌体がまだ溶
けないうちに包丁でサイコロ型に切断した(こ
の操作より以後は4℃でおこなつた。)これを
大きな乳鉢の中に入れ、磨砕用酸化アルミニウ
ム約500gでまぶして、乳棒を用いて機械的に
菌体をすりつぶした。約30分後に、上記の酸化
アルミニウムを適当量(約125g)加え、更に
約1時間磨砕を続けた。菌体がつぶれて全体が
とろりとして来たら次の抽出操作に移つた。 (3) 膜画分の分離 1mMEDTA、10mM塩化マグネシウム、
135mM塩化カリ及び7mMβ―メルカプトエタ
ノールを含んだ50mMトリス―塩酸緩衝液(PH
7.8)を1.3乳鉢中に加え、約30分間乳棒を1
本にして撹拌を続けた。どろどろした懸濁液を
7500rpmで約45分間遠心した。上清を更に
15000rpmで15時間遠心した。膜画分は沈澱と
して得られた。 (4) 膜画分の可溶化 得られた沈澱を、1mM EDTA,10mM塩化
マグネシウム、135mM塩化カリ及び7mMβ―
メルカプトエタノールを含む50mMトリス―塩
酸緩衝液(PH7.8)でホモジエナイズし、
30000rpm2時間遠心した。沈澱に10%トライト
ンX100(和光純薬工業式製、界面活性剤、ト
ライトンは商標)及び0.5Mトリス塩酸緩衝液
(PH7.5)を加え、蛋白、トライトンX―100、
トリス塩酸緩衝液(PH5)の終濃度をそれぞ
れ、20mg/ml、2%、0.05Mとして、ホモジエ
ナイズした。これに塩化カリウムを加えて1M
とし、一夜撹拌を続けたのち、遠心し、上清を
得た。 (5) チトクロム555,549の精製 上記上清を0.5%トライトンX―100を含む
0.05Mトリス塩酸緩衝液(PH8.5)で透析し、
透析液を同じ緩衝液で平衡化しておいてDEAE
―セルロースのカラム(φ5×30cm)に吸着さ
せ、0.05M塩化カリを含む上記緩衝液で洗浄し
たのち、塩化カリの濃度を0.2Mに上げて溶出
液を集めた。ダイアフローメンブレンUM―2
(アミコン社製膜、ダイアフローメンブレンは
商標)を用いた限外過で濃縮したのち、
0.05Mトリス塩酸緩衝液PH7.5で透析した。
0.05Mトリス塩酸緩衝液PH7.5で平衡化してお
いたDEAE―セルロースカラム(φ2×38cm)
に吸着させ、塩化カリの直線濃度勾配(0→
0.3M)の0.05Mトリス塩酸緩衝液PH7.5で展開
した。塩化カリ濃度0.2M付近にチトクロム画
分が得られた。これを再び上記と同じ限外過
で濃縮したのち、セフアデツクスG―75(フア
ルマシア社製ゲル過剤、セフアデツクスは商
標)のカラム(φ1.5×90cm)に通し、10mM
リン酸カリ緩衝液(PH7.0)で展開し、赤味を
帯びた画分を集めた。これを等電点電気泳動
〔1%Carri―er Ampholyte(LKB社製PH勾配
剤、Ca―rrier Ampholyteは商標)PH3.5〜
5.0、48時間以上〕にかけると、PH3.8付近に高
度に精製たれたチトクロム―555,549が得ら
れた。収量は菌体500g(湿重量)当り、約2.6
mgであつた。 (6) チトクロム―55,549の性質の測定 (イ) 酸化型の吸収帯 試料溶液にフエリシアン化カリを、およそ
10μMになるように加え、10mMトリスー塩
酸緩衝液(PH7.8)に透析し、スペクトルを
測定した。360,409,528,693nmに吸収極
大を有していた。 (ロ) 還元型の吸収帯 上記(イ)の試料に微量のハイドロサルフアイ
ト粉末を加え、スペクトルを測定した。
417,522,549,555nmに吸収極大を示し
た。 (ハ) ミリモル分子吸光係数 J.Biol.Chem.,146,605(1942)に記載さ
れた方法に従うピリジンヘモクロム法によ
り、還元型のα吸収帯(554.8nm)のミリモ
ル分子吸光係数を測定したところ、22.0であ
つた。 (ニ) 等電点 Acta Chem.Scand.,20,820(1966)に
記載された方法に従つて等電点を測定したと
ころ、PH3.8であつた。 (ホ) 分子量 Biochemistry,,297(1964)に記載さ
れた方法に従い沈降平衡法により分子量を測
定したところ11000であつた。 J.Biol.Chem.,244,4406(1969)に記載
された方法に従いドデシル硫酸ナトリウムの
存在下ポリアクリルアミドゲル電気泳動法に
より分子量を測定したところ10000であつ
た。 (7) チトクロム―555,549の熱安定性 (1) 695nm吸収帯に対する温度の影響: 600〜730nm領域での酸化型チトクロム
―555,549の吸収スペクトルは25℃、1Mの
グアニジン塩酸塩によつても影響を受けな
い。この温度範囲におけるスペクトルの変化
を、変性剤の1M溶液中で測定したところ、
695nm吸収帯は80℃でも失われなかつた。
(図1) チトクロム―555,549の693nmにおける
吸光度の変化を、馬のチトクロムCの695nm
における吸光度の変化と比較した。(図2) これらの結果は、チトクロム―555,549
が、ヘム鉄と第6配位子メチオニンとの結合
に関して、馬のチトクロムCよりも熱安定性
が高く、高温でも本来の機能を有し、電子伝
達を行ない得ることを示している。 (2) 222nmにおける円偏光二色性の温度依存性 チトクロム―555,549の熱安定性を、
1Mのグアニジン塩酸塩の存在下、222nmに
おける円偏光二色性の減少によつて測定し、
馬のチトクロムCの熱安定性と比較した。
(図3) 即ち、グアニジン塩酸塩の存在下におけ
る、温度による222nmでの円偏光二色性
(the molar ellipticity)の変化を調べた結
果、馬のチトクロムCは、75℃でその所定の
形態を喪失したが、チトクロム―555,549
は、75℃で本来の形態を実質的に保持してい
た。 このことからチトクロム―555,549は、
馬のチトクロムCよりも遥かに熱安定性が高
く、75℃でも安定であることが明らかであ
る。 (8) チトクロム―555,549の新規性 本発明のチトクロム―555,549は、内在性
の膜蛋白質であり、チトクロム酸化酵素によつ
て直接には酸化されない周知のチトクロムC1
に類似している。 チトクロムC1はチトクロムCの一種で薬師
寺・奥貫寺(1940)によりウシ心筋から発見さ
れ、動植物・酵母のミトコンドリア内膜、ある
種の細菌中に見出されている。ヘムCを含み還
元型553,523,418nmに、酸化型は410〜
411nmに吸収帯をもち、組織から界面活性剤に
よつて可溶化抽出される。最小分子量は約
36000、溶液中では約36万の値を示す。標準酸
化還元電位E0=0.223V、等電点PH3.6、自動酸
化せず、チトクロムC酸化型により酸化され、
チトクロムbからチトクロムCへの電子伝達に
関与する。(生物学辞典第2版777頁参照) しかし、通常のチトクロムC1は界面活性剤
を使用しないと会合するのに対し、本発明のチ
トクロム―555,549は界面活性剤を使用しな
いでも会合することがないという点が新規な特
徴である。 つまり、周知のウシ心筋のチトクロムC1
分子量は、ドデシル硫酸ナトリウム(SDS)の
存在下でのポリアクリルアミドゲル電気泳動法
の場合約3.6万、また沈降平衡法の場合約36万
であるが、本発明のチトクロム―555,549の
分子量は、ポリアクリルアミドゲル電気泳動法
及び沈降平衡法ともに約1万であり、界面活性
剤が存在しなくても会合しないことを示してい
る。 以上に述べたように、本発明のチトクロム
555,549は、例えば、周知の馬のチトクロムで
は、形態を喪失する75℃という高い温度でも本来
の形態を実質的に保持しており、高い耐熱性を有
し、また、界面活性剤が存在しなくても会合しな
いと言う周知のチトクロムでは見られない特徴を
有する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for preparing type C cytochromes.
More specifically, the present invention relates to a method for isolating a new heat-resistant cytochrome exhibiting the following physical properties from Thermus thermophilus HB8 cells. a The oxidized form has absorption maxima at 360, 409, 528, and 693 nm, and the reduced form has absorption maxima at 417, 522, 549, and 555 nm. b The millimolar molecular extinction coefficient of the reduced α absorption band (554.8 nm) is 22.0. c The isoelectric point is PH3.8. d The molecular weight is approximately 11,000 as determined by the sedimentation equilibrium method and approximately 10,000 as determined by polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate. Cytochrome is a heme protein whose unique function is to transfer reducing equivalents through redox of heme iron.It mainly works in energy exchange fields such as respiration and photosynthesis, and also plays other roles necessary for living organisms. It is a substance in living organisms that is widely involved in biological phenomena associated with substance production and electron transfer. Regarding the pharmacological effects of cytochrome C, there are reports that it is effective in treating heart disease and gas poisoning.
It is also commercially available as enzyme preparations such as cell metabolism activators and tissue respiration activators. The present inventors conducted a comparative biochemical study on Thermus thermophilus HB8.
We focused on the C-type cytochrome, attempted to isolate it, and arrived at the present invention. That is, the gist of the present invention is a method for preparing C-type cytochrome, which is characterized by crushing the cells of Thermus thermophilus HB8 strain and isolating cytochrome C 555,549 exhibiting the following physical properties from the crushed product. exists in a The oxidized form has absorption maxima at 360, 409, 528, and 693 nm, and the reduced form has absorption maxima at 417, 522, 549, and 555 nm. b The millimolar molecular extinction coefficient of the reduced α absorption band (554.8 nm) is 22.0. c The isoelectric point is PH3.8. d The molecular weight is approximately 11,000 as determined by the sedimentation equilibrium method and approximately 10,000 as determined by polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate. Furthermore, to explain the method of the present invention in detail, the material used in the present invention is Thermus thermophilus HB8 (ATCC27634).
International J. of Systematic Bacteriol.
It is a strain belonging to the genus Thermus described in 24 , 102-112. To isolate C-type cytochrome from the cells of the strain, the cells are crushed and the cells are separated from the crushed material. Specifically, the bacterial strain was first cultured at 75°C for about 6 hours using a medium containing 0.5% peptone, 0.4% yeast extract, 0.2% sodium chloride, and 0.1% glucose, and then harvested at the late logarithmic growth phase. Then, the obtained bacterial cells are disrupted by a conventional method, for example, by sonication. Cytochrome C is then separated from the resulting crushed material by a conventional method. Separation method 1
To explain an example, a Tris-HCl buffer (PH7.8) containing EDTA, magnesium chloride, potassium chloride, and β-mercaptoethanol is added to the crushed material, stirred, and the supernatant obtained by centrifugation at 7500 rpm is further
Centrifuge at 22000g for 15 hours and precipitate (membrane fraction)
Triton X-100 (manufactured by Wako Pure Chemical Industries, Ltd., surfactant, Triton is a trademark) and Tris-HCl buffer (PH7.5) containing potassium chloride are added to the solution, stirred, and centrifuged to obtain a supernatant. Add 0.5% Triton X to the supernatant.
After dialyzing with Tris-HCl buffer (PH8.5) containing 100, add to diethylaminoethyl cellulose column, wash with the same buffer plus 0.05M potassium chloride, and elute with 0.2M potassium chloride. do. The eluate was concentrated by ultrafiltration, dialyzed against 0.05M Tris-HCl buffer (PH8.5), added to a diethylaminoethyl cellulose column, washed with the same buffer plus 0.05M potassium chloride, and further
Elute with 0.2M potassium chloride. After concentrating the eluate by ultrafiltration, it was dialyzed against 0.05M Tris-HCl buffer (PH7.5), and then adsorbed on a diethylaminoethyl cellulose column. The cytochrome fraction was eluted with a concentration gradient of potassium chloride, and this was then filtered again. After concentration by ultrafiltration, it is passed through a Cephadex G-75 column (gel filtration agent, Cephadex is a trademark) to collect a reddish fraction, and when this is subjected to isoelectric focusing, cytochromes are detected at a pH of around 3.8. You can get C -555,549. Cytochrome C -555 obtained in this way,
549, its oxidized form is 360, 409, 528, 693nm,
The reduced form has absorption maxima at 417, 522, 549, and 555 nm, and the millimolar molecular extinction coefficient of the reduced form α absorption band (554.8 nm) is 22.0. The isoelectric point is PH3.8, and the molecular weight is approximately 11,000 by sedimentation equilibrium method and approximately 10,000 by polyacrylamide gel electrophoresis method in the presence of sodium dodecyl sulfate. Example (1) Culture Thermus Thermophilus HB8
(ATCC27634) was cultured using a medium containing 5 g of peptone, 4 g of yeast extract, 1 g of glycol, and 2 g of sodium chloride. That is,
First, the above bacteria were inoculated into two 20 ml test tubes containing about 3 ml of the above medium, and the bacteria were inoculated into two 20 ml test tubes containing about 3 ml of the above medium.
℃) for two days and nights. Then the above medium 1
I planted 8 Sakaguchi Kolben trees with 5 in them.
The culture was incubated overnight at 75°C with shaking. Furthermore, the seeds were planted in four 20 jar fermenters, aerated at 75°C for about 8 hours, and collected at the late stage of logarithmic growth (Cretz number of about 400) (using a shear press type continuous centrifuge), and then cultured in physiological saline. I washed it lightly at about 2. The bacterial cells were stored frozen at -20°C. The bacterial yield is determined by the culture medium.
80, the wet weight was about 700g. (2) Grinding of bacterial cells 500 g (wet weight) of bacterial cells that had been frozen and stored at -20°C was left at room temperature for about 30 minutes, and cut into dice with a knife before the bacterial cells had melted ( (The rest of this procedure was carried out at 4°C.) This was placed in a large mortar, sprinkled with about 500 g of aluminum oxide for grinding, and the bacterial cells were ground mechanically using a pestle. After about 30 minutes, an appropriate amount (about 125 g) of the above aluminum oxide was added, and the grinding was continued for about 1 hour. Once the bacterial cells were crushed and the whole mixture became thick, we moved on to the next extraction operation. (3) Separation of membrane fraction 1mM MEDTA, 10mM magnesium chloride,
50mM Tris-HCl buffer (PH) containing 135mM potassium chloride and 7mM β-mercaptoethanol
Add 7.8) to 1.3 mortar and mix with pestle for about 30 minutes.
I made a book and continued stirring. thick suspension
Centrifugation was performed at 7500 rpm for approximately 45 minutes. Add supernatant
Centrifugation was performed at 15,000 rpm for 15 hours. The membrane fraction was obtained as a precipitate. (4) Solubilization of membrane fraction The obtained precipitate was dissolved in 1mM EDTA, 10mM magnesium chloride, 135mM potassium chloride and 7mM β-
Homogenize with 50mM Tris-HCl buffer (PH7.8) containing mercaptoethanol,
Centrifugation was performed at 30,000 rpm for 2 hours. Add 10% Triton
Homogenization was carried out using Tris-HCl buffer (PH5) at final concentrations of 20 mg/ml, 2%, and 0.05M, respectively. Add potassium chloride to this to make 1M
After stirring overnight, the mixture was centrifuged to obtain a supernatant. (5) Purification of cytochrome C 555,549 The above supernatant contains 0.5% Triton X-100.
Dialyze against 0.05M Tris-HCl buffer (PH8.5),
Equilibrate the dialysate with the same buffer and perform DEAE.
- After adsorbing on a cellulose column (φ5 x 30 cm) and washing with the above buffer containing 0.05M potassium chloride, the concentration of potassium chloride was increased to 0.2M and the eluate was collected. Diaflow membrane UM-2
After concentration by ultrafiltration using a membrane manufactured by Amicon (Diaflow membrane is a trademark),
Dialysis was performed with 0.05M Tris-HCl buffer PH7.5.
DEAE-cellulose column (φ2 x 38 cm) equilibrated with 0.05M Tris-HCl buffer PH7.5
The linear concentration gradient of potassium chloride (0→
0.3M) and 0.05M Tris-HCl buffer PH7.5. A cytochrome fraction was obtained at a potassium chloride concentration of around 0.2M. After concentrating this again by the same ultrafiltration as above, it was passed through a column (φ1.5 x 90 cm) of Cephadex G-75 (gelling agent manufactured by Pharmacia, Cephadex is a trademark), and 10mM
It was developed with potassium phosphate buffer (PH7.0) and the reddish fraction was collected. This was subjected to isoelectric focusing [1% Carrier Ampholyte (PH gradient agent manufactured by LKB, Carrier Ampholyte is a trademark) PH3.5 ~
5.0 for over 48 hours], highly purified cytochrome C -555,549 with a pH of around 3.8 was obtained. The yield is approximately 2.6 per 500g (wet weight) of bacterial cells.
It was mg. (6) Measurement of properties of cytochrome C -55,549 (a) Absorption band of oxidized form Potassium ferricyanide was added to the sample solution and approx.
It was added to a concentration of 10 μM, dialyzed against 10 mM Tris-HCl buffer (PH7.8), and the spectrum was measured. It had absorption maxima at 360, 409, 528, and 693 nm. (b) Absorption band of reduced form A trace amount of hydrosulfite powder was added to the sample in (a) above, and the spectrum was measured.
Absorption maxima were observed at 417, 522, 549, and 555 nm. (c) Millimolar molecular extinction coefficient The millimolar molecular extinction coefficient of the α absorption band (554.8 nm) of the reduced form was measured by the pyridine hemochrome method according to the method described in J.Biol.Chem., 146 , 605 (1942). By the way, it was 22.0. (d) Isoelectric point The isoelectric point was measured according to the method described in Acta Chem.Scand., 20 , 820 (1966), and it was found to be PH3.8. (e) Molecular weight The molecular weight was determined to be 11,000 by the sedimentation equilibrium method according to the method described in Biochemistry, 3 , 297 (1964). The molecular weight was determined to be 10,000 by polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate according to the method described in J. Biol. Chem., 244 , 4406 (1969). (7) Thermal stability of cytochrome C -555,549 (1) Effect of temperature on 695nm absorption band: Oxidized cytochrome C in the 600-730nm region
The absorption spectrum of -555,549 is not affected by 1M guanidine hydrochloride at 25℃. The spectral changes in this temperature range were measured in a 1M solution of the denaturing agent.
The 695nm absorption band was not lost even at 80°C.
(Figure 1) The change in absorbance at 693 nm of cytochrome C -555,549 is compared to that of horse cytochrome C at 695 nm.
compared with the change in absorbance at . (Figure 2) These results indicate that cytochrome C -555,549
However, with regard to the bond between heme iron and the sixth ligand methionine, it has been shown to have higher thermal stability than horse cytochrome C, to have its original function even at high temperatures, and to be able to conduct electron transfer. (2) Temperature dependence of circular dichroism at 222 nm The thermal stability of cytochrome C -555,549 is
measured by reduction in circular dichroism at 222 nm in the presence of 1 M guanidine hydrochloride;
The thermal stability of horse cytochrome C was compared.
(Figure 3) That is, as a result of examining the change in circular dichroism (the molar ellipticity) at 222 nm due to temperature in the presence of guanidine hydrochloride, it was found that horse cytochrome C changed its predetermined form at 75°C. Although lost, cytochrome C -555,549
substantially retained its original morphology at 75°C. From this, cytochrome C -555,549 is
It is clear that it is much more thermostable than equine cytochrome C, and is stable even at 75°C. (8) Novelty of cytochrome C -555,549 Cytochrome C -555,549 of the present invention is an endogenous membrane protein and is a well-known cytochrome C 1 that is not directly oxidized by cytochrome oxidase.
is similar to Cytochrome C 1 is a type of cytochrome C that was discovered in bovine cardiac muscle by Yakushiji and Okunji (1940), and has been found in the mitochondrial inner membrane of animals, plants, and yeast, as well as in certain types of bacteria. Contains heme C, the reduced form has wavelengths of 553, 523, and 418 nm, and the oxidized form has wavelengths of 410 to 418 nm.
It has an absorption band at 411 nm and can be solubilized and extracted from tissues with surfactants. The minimum molecular weight is approx.
36,000, and in solution it shows a value of about 360,000. Standard redox potential E 0 = 0.223V, isoelectric point PH3.6, no auto-oxidation, oxidized by cytochrome C oxidation type,
Involved in electron transfer from cytochrome B to cytochrome C. (Refer to page 777 of the second edition of Biological Dictionary.) However, while ordinary cytochrome C 1 associates without the use of a surfactant, the cytochrome C -555, 549 of the present invention associates without the use of a surfactant. The novel feature is that there is nothing to do. In other words, the well-known molecular weight of bovine myocardial cytochrome C 1 is approximately 36,000 using polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate (SDS), and approximately 360,000 using sedimentation equilibrium method. The molecular weight of the cytochrome C -555,549 of the present invention is approximately 10,000 by both polyacrylamide gel electrophoresis and sedimentation equilibrium methods, indicating that it does not associate even in the absence of a surfactant. As mentioned above, the cytochrome C of the present invention -
555 and 549, for example, have high heat resistance, substantially retaining their original form even at temperatures as high as 75°C, at which the well-known horse cytochrome loses its form, and it also has a surfactant. It has a characteristic not found in the well-known cytochromes, that is, it does not associate even if it is not present.

【図面の簡単な説明】[Brief explanation of the drawing]

図1はグアニジン塩酸塩の存在下での、酸化型
チトクロム―555,549の吸収スペクトルの温度
変化を表わしたものである。チトクロム
(0.194mM)は、1Mのグアニジン塩酸塩を含む
50mMのリン酸緩衝液(PH7.0)に溶解した。図
2はグアニジン塩酸塩の存在下での695nmまたは
693nmでの吸光度の温度変化を表したものであ
る。図中、口は馬のチトクロムC、〇はチトクロ
―555,549、他の条件は、図1と同一であ
る。図3はグアニジン塩酸塩の存在下での、
222nmにおける円偏光二色性の温度変化を表わし
たものである。図中口は馬のチトクロムC、〇は
チトクロム―555,549〔双方共1Mのグアニジ
ン塩酸塩を含む50mMのリン酸緩衝液(PH7.0)
中〕
Figure 1 shows the temperature change in the absorption spectrum of oxidized cytochrome C -555,549 in the presence of guanidine hydrochloride. Cytochrome (0.194mM) contains 1M guanidine hydrochloride
Dissolved in 50mM phosphate buffer (PH7.0). Figure 2 shows 695nm or
It shows the change in absorbance at 693 nm with temperature. In the figure, the mouth is horse cytochrome C, ○ is cytochrome C -555,549, and other conditions are the same as in Figure 1. Figure 3 shows that in the presence of guanidine hydrochloride,
It shows the temperature change of circular dichroism at 222 nm. The opening in the figure is horse cytochrome C, and the ○ is cytochrome C -555, 549 [both in 50mM phosphate buffer containing 1M guanidine hydrochloride (PH7.0)]
During〕

Claims (1)

【特許請求の範囲】 1 サーマスサーモフイラスHB8菌株の菌体を破
砕し、その破砕物から下記の物性値を示すチトク
ロム555,549を分離することを特徴とするC型
チトクロムの調整法。 a 酸化型は360,409,528,693nmに、還元型
は417,522,549,555nmに吸収極大を有す
る。 b 還元型α吸収帯(554.8nm)のミリモル分子
吸光係数が22.0である。 c 等電点がPH3.8である。 d 分子量は沈降平衡法により約11000、ドデシ
ル硫酸ナトリウム存在下ポリアクリルアミドゲ
ル電気泳動法より約10000である。
[Scope of Claims] 1. A method for preparing C-type cytochrome, which comprises crushing the cells of Thermus thermophilus HB8 strain and isolating cytochrome C 555,549 exhibiting the following physical properties from the crushed product. a The oxidized form has absorption maxima at 360, 409, 528, and 693 nm, and the reduced form has absorption maxima at 417, 522, 549, and 555 nm. b The millimolar molecular extinction coefficient of the reduced α absorption band (554.8 nm) is 22.0. c The isoelectric point is PH3.8. d The molecular weight is approximately 11,000 as determined by the sedimentation equilibrium method and approximately 10,000 as determined by polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate.
JP12279978A 1978-10-05 1978-10-05 Preparation of c-type cytochrome Granted JPS5548393A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12279978A JPS5548393A (en) 1978-10-05 1978-10-05 Preparation of c-type cytochrome

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12279978A JPS5548393A (en) 1978-10-05 1978-10-05 Preparation of c-type cytochrome

Publications (2)

Publication Number Publication Date
JPS5548393A JPS5548393A (en) 1980-04-07
JPS6212998B2 true JPS6212998B2 (en) 1987-03-23

Family

ID=14844914

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12279978A Granted JPS5548393A (en) 1978-10-05 1978-10-05 Preparation of c-type cytochrome

Country Status (1)

Country Link
JP (1) JPS5548393A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63180999U (en) * 1987-05-13 1988-11-22

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4867416B2 (en) * 2006-03-22 2012-02-01 日産自動車株式会社 Laminated core structure for rotating electrical machines

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63180999U (en) * 1987-05-13 1988-11-22

Also Published As

Publication number Publication date
JPS5548393A (en) 1980-04-07

Similar Documents

Publication Publication Date Title
Kono et al. Isolation and characterization of the pseudocatalase of Lactobacillus plantarum.
Labeyrie et al. [27] Flavocytochrome b2 or l-lactate cytochrome c reductase from yeast
Meyer et al. The cytochromes of Chlorobium thiosulfatophilum
Ziegler et al. The isolation and properties of a soluble succinic coenzyme Q reductase from reef heart mitochondria
Borchert et al. Combined preparation of ferredoxin, ferredoxin-NADP+ reductase and plastocyanin from spinach leaves
Chaudhry et al. Cytochrome b from Escherichia coli nitrate reductase. Its properties and association with the enzyme complex.
JPH0133158B2 (en)
Linnane et al. Fragmentation of the electron transport chain of Escherichia coli: preparation of a soluble formate dehydrogenase-cytochrome b1 complex
Kumagai et al. Threonine aldolase from Candida humicola: II. Purification, crystallization and properties
Serrano et al. Purification of ferredoxin-NADP+ oxidoreductase from cyanobacteria by affinity chromatography on 2′, 5′-ADP-Sepharose 4B
Volk et al. Isolation, subunit structure and localization of inorganic pyrophosphatase of heart and liver mitochondria
JPS6212998B2 (en)
Sone et al. Cytochrome c-551 from the thermophilic bacterium PS3 grown under air-limited conditions
Smith et al. The identity of Escherichia coli bacterioferritin and cytochrome b1.
OSMUNDSVAG et al. Cellulases from Sporocytophaga myxococcoides: Purification and properties
Kumagai et al. An efficient method for purification of cuprozinc superoxide dismutase from bovine erythrocytes
Ito et al. Purification, crystallization, and properties of bovine milk catalase
EP0218863B1 (en) Microbiologically produced d(-)-mandelate dehydrogenase, process for obtaining it and its use
US4087328A (en) Purification and immobilization of sulfhydryl oxidase
Schink Isolation of a hydrogenase-cytochrome b complex from cytoplasmic membranes of Xanthobacter autotrophicus GZ 29
US4080262A (en) Stabilizing agent for enzymes
JPS6125352B2 (en)
JPS6050435B2 (en) Type C cytochrome of highly thermophilic bacteria
Takakuwa Purification and some properties of cytochrome c-552 from a sulfur-oxidizing bacterium, Thiobacillus thiooxidans
Muratsubaki et al. Rapid Purification of Yeast Cytoplasmic Fumarate Reductase Affinity Chromatography on Blue Sepharose CL–6B