JPS6212944Y2 - - Google Patents

Info

Publication number
JPS6212944Y2
JPS6212944Y2 JP1980081093U JP8109380U JPS6212944Y2 JP S6212944 Y2 JPS6212944 Y2 JP S6212944Y2 JP 1980081093 U JP1980081093 U JP 1980081093U JP 8109380 U JP8109380 U JP 8109380U JP S6212944 Y2 JPS6212944 Y2 JP S6212944Y2
Authority
JP
Japan
Prior art keywords
valve
diaphragm
pressure chamber
valve seat
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1980081093U
Other languages
Japanese (ja)
Other versions
JPS575580U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP1980081093U priority Critical patent/JPS6212944Y2/ja
Publication of JPS575580U publication Critical patent/JPS575580U/ja
Application granted granted Critical
Publication of JPS6212944Y2 publication Critical patent/JPS6212944Y2/ja
Expired legal-status Critical Current

Links

Landscapes

  • Safety Valves (AREA)
  • Fluid-Driven Valves (AREA)

Description

【考案の詳細な説明】 〔産業上の利用分野〕 本考案は、正常流動時に弁体が開弁維持され、
弁座の下流側での漏洩に伴つて弁体が自動的に閉
じられ、さらに、地震などの非常事態発生時に外
部操作で弁体を閉じられるように構成した自動遮
断弁に関する。
[Detailed description of the invention] [Field of industrial application] This invention maintains the valve body open during normal flow.
The present invention relates to an automatic shutoff valve in which a valve body is automatically closed in response to leakage on the downstream side of a valve seat, and furthermore, the valve body is configured to be closed by external operation in the event of an emergency such as an earthquake.

〔従来の技術〕 従来、第5図に示すように、ケースを第1ケー
ス分割部分23a、第2ケース分割部分23b、
第3ケース分割部分23cに3分割形成し、第1
ケース分割部分23aと第2ケース分割部分23
bによつて弁座24とその上流側の弁体25を有
する流路26a,26bを形成し、第2ケース分
割部分23bと第3ケース分割部分23cによつ
て流路26a,26bとは別に形成した空間を、
ダイヤフラム27によつて第1圧力室28aと第
2圧力室28bに区画し、弁体25とダイヤフラ
ム27を連結するロツド29を第2分割ケース部
分23bに対して貫通させて、シール用ダイヤフ
ラム30によつて流路26aと第1圧力室28a
を隔絶し、ダイヤフラム30を閉弁側に付勢する
スプリング31を設け、弁座24の下流側の流路
26bと第1圧力室28aを接続する導圧路32
を第1ケース分割部分23aと第2ケース分割部
分23bに形成し、導圧路32を大気空間に接続
する第1大気開放用流路33aを第2ケース分割
部分23bに形成し、導圧路32と第1大気開放
用流路33aを択一的に開く操作弁34を第2ケ
ース分割部分23bに設け、前記第2圧力室28
bを大気空間に接続する第2大気開放用流路33
bを第3ケース分割部分23cに形成していた
(例えば実開昭54−150127号公報参照)。
[Prior Art] Conventionally, as shown in FIG. 5, a case is divided into a first case divided portion 23a, a second case divided portion 23b,
The third case divided portion 23c is formed into three parts, and the first
Case divided portion 23a and second case divided portion 23
b forms flow passages 26a and 26b having the valve seat 24 and the valve body 25 on the upstream side thereof, and separate from the flow passages 26a and 26b by the second case division part 23b and the third case division part 23c. The space created,
The diaphragm 27 divides the pressure chamber into a first pressure chamber 28a and a second pressure chamber 28b, and a rod 29 that connects the valve body 25 and the diaphragm 27 is passed through the second split case portion 23b to connect the sealing diaphragm 30. Therefore, the flow path 26a and the first pressure chamber 28a
A pressure guiding path 32 is provided which connects the flow path 26b on the downstream side of the valve seat 24 and the first pressure chamber 28a.
are formed in the first case divided portion 23a and the second case divided portion 23b, and a first atmosphere opening flow path 33a that connects the pressure guiding path 32 to the atmospheric space is formed in the second case divided portion 23b. 32 and the first atmosphere opening channel 33a are provided in the second case divided portion 23b, and the second pressure chamber 28
A second atmosphere opening flow path 33 that connects b to atmospheric space.
b is formed in the third case divided portion 23c (see, for example, Japanese Utility Model Application Publication No. 150127/1983).

つまり、第5図に示すように、正常流動時には
導圧路32によつて弁座24の下流側の圧力(ゲ
ージ圧P)を第1圧力室28aに付与し、第1圧
力室28aからダイヤフラム27(有効面積a1
に作用する開弁力P×a1によつて、スプリング3
1による閉弁力F1と弁体25の重力による閉弁
力F2の合力F1+F2に抗して、つまり、P×a1
F1+F2となつて弁体25を開弁維持するように
構成していた。
That is, as shown in FIG. 5, during normal flow, the pressure on the downstream side of the valve seat 24 (gauge pressure P) is applied to the first pressure chamber 28a by the pressure guiding path 32, and the diaphragm is 27 (effective area a 1 )
Due to the valve opening force P×a 1 acting on the spring 3
against the resultant force F 1 +F 2 of the valve closing force F 1 due to 1 and the valve closing force F 2 due to the gravity of the valve body 25, that is, P×a 1 >
The valve body 25 was configured to maintain the valve open by F 1 +F 2 .

また、弁座24の下流側での漏洩に伴う圧力低
下(ゲージ圧ΔP)が生じると、スプリング31
による閉弁力F1と弁体25の重力による閉弁力
F2の合力F1+F2によつて、第1圧力室28aか
らダイヤフラム27に作用する開弁力(P−Δ
P)×a1に抗して、つまりF1+F2>(P−ΔP)×
a1となつて弁体25を閉じるように構成してい
た。
Additionally, if a pressure drop (gauge pressure ΔP) occurs due to leakage downstream of the valve seat 24, the spring 31
The valve closing force due to the valve closing force F 1 and the valve closing force due to the gravity of the valve body 25
Due to the resultant force F 1 +F 2 of F 2 , the valve opening force (P - Δ
P)×a 1 , that is, F 1 +F 2 > (P−ΔP)×
a 1 to close the valve body 25.

そして、第6図に示すように、弁体25が閉じ
られると、弁座24の開口面積a3と上流側の圧力
(ゲージ圧P)の積である閉弁力P×a3が弁体2
5に加わつて、大きな閉弁力F1+F2+P×a3
より弁座24の上流側の圧力変動にかかわらず安
定して閉弁維持されるように構成していた。
As shown in FIG. 6, when the valve body 25 is closed, the valve closing force P×a 3, which is the product of the opening area a 3 of the valve seat 24 and the upstream pressure (gauge pressure P), is applied to the valve body 25 . 2
In addition to the valve closing force F 1 +F 2 +P×a 3 , the valve is stably kept closed regardless of pressure fluctuations on the upstream side of the valve seat 24.

さらに、第7図に示すようい、非常事態発生時
に操作弁34で第2圧力室28bを大気開放する
と、第5図の開弁状態で、スプリング31による
閉弁力F1と弁体25の重力による閉弁力F2の合
力F1+F2によつて、弁座24の上流側の圧力
(ゲージ圧P)とロツド29の受圧面積a4の積で
ある開弁力(P×a4)に抗して、つまりF1+F2
P×a4となつて弁体25を閉じるように構成して
いた。
Furthermore, as shown in FIG. 7, when the second pressure chamber 28b is opened to the atmosphere by the operating valve 34 in the event of an emergency, the valve closing force F 1 by the spring 31 and the valve body 25 in the open state shown in FIG. Due to the resultant force F 1 +F 2 of the valve closing force F 2 due to gravity, the valve opening force (P x a 4 ), that is, F 1 +F 2 >
P×a 4 and the valve body 25 was configured to close.

そして、第7図に示すように、弁体25が閉じ
られると、前述の漏洩発生時の場合と同様に、合
力F1+F2に閉弁力(P×a3)が加わつて安定して
閉弁維持されるように構成していた。
Then, as shown in FIG. 7, when the valve body 25 is closed, the valve closing force (P×a 3 ) is added to the resultant force F 1 +F 2 and stabilized, similar to the case when the leakage occurred. The valve was configured to remain closed.

〔考案が解決しようとする問題点〕[Problem that the invention attempts to solve]

しかし、ケースが3分割されているために構造
が複雑であり、弁座24の下流側流路26bと第
1圧力室28aを別々に形成しているためにケー
スが大型化し、弁座24の下流側流路26bと第
1圧力室28aを接続する導圧路32を2個のケ
ース分割部分23a,23bに形成しているため
に構造が複雑になり、ロツド29の貫通部に対す
るシール用ダイヤフラム30を設けているために
構造が複雑になる欠点があつた。
However, since the case is divided into three parts, the structure is complicated, and since the downstream flow path 26b of the valve seat 24 and the first pressure chamber 28a are formed separately, the case becomes large and the valve seat 24 is separated. Since the pressure guiding path 32 connecting the downstream flow path 26b and the first pressure chamber 28a is formed in the two case division parts 23a and 23b, the structure is complicated, and a diaphragm for sealing the penetration part of the rod 29 is required. 30, the structure is complicated.

本考案の目的は、上述の自動遮断弁に必要な機
能を維持しながら、構造の簡略化と小型化を図る
点にある。
An object of the present invention is to simplify and downsize the structure while maintaining the functions necessary for the automatic shutoff valve described above.

〔問題点を解決するための手段〕[Means for solving problems]

本考案の特徴構成は、ケースを第1ケース分割
部分と第2ケース分割部分とに2分割形成し、前
記ケース内を2分割するダイヤフラムを設け、前
記ダイヤフラムとの協働で弁座下流側流路兼第1
圧力室を形成する前記第1ケース分割部分に、弁
座をその開口が前記ダイヤフラムに対向する状態
で設け、弁体を前記弁座の下流側に配置して前記
ダイヤフラムに取付け、前記弁体に対してそれを
前記弁座に近付けるように作用する付勢手段を設
け、前記第2ケース分割部分と前記ダイヤフラム
とで形成した空間をそのダイヤフラムに臨む第2
圧力室及び第3圧力室に区画する補助ダイヤフラ
ムを設けて、その補助ダイヤフラムの周縁部を前
記ダイヤフラムにかつ中央部を前記第2ケース分
割部分に夫々連結し、前記ダイヤフラムのうち前
記第2圧力室に臨む部分を前記弁座の開口よりも
大面積に形成し、前記第2圧力室に連通する導圧
孔を、その入口が前記弁座の開口に対向する状態
で前記弁体と前記ダイヤフラムに形成し、前記第
2圧力室と前記第3圧力室を接続する加圧流路を
前記補助ダイヤフラムと前記第2ケース分割部分
に形成し、前記第3圧力室を大気空間に接続する
大気開放用流路を前記第2ケース分割部分に形成
し、前記大気開放用流路と前記加圧流路を択一的
に開く操作弁を前記第2ケース分割部分に設け、 正常流動時における前記弁座の上流側及び下流
側でのゲージ圧P、前記弁座の下流側での漏洩に
伴う低下ゲージ圧ΔP、前記付勢手段による閉弁
力F1、前記弁体の重力による閉弁力F2、前記ダ
イヤフラムの有効面積a1、前記第2圧力室に臨む
前記ダイヤフラム部分の面積a2が、次式 P×(a1−a2)>F1+F2>(P−ΔP)×(a1
a2)を満たすように形成したことにあり、その作
用効果は次の通りである。
The characteristic structure of the present invention is that the case is divided into two parts, a first case division part and a second case division part, and a diaphragm is provided that divides the inside of the case into two parts, and in cooperation with the diaphragm, the flow downstream of the valve seat is Michikane 1st
A valve seat is provided in the first case divided portion forming a pressure chamber with an opening facing the diaphragm, a valve body is disposed downstream of the valve seat and attached to the diaphragm, and a valve body is attached to the diaphragm. A biasing means is provided which acts to bring the valve closer to the valve seat, and a space formed by the second case division part and the diaphragm is provided with a biasing means that acts to bring the valve closer to the valve seat, and a space formed by the second case division part and the diaphragm is
An auxiliary diaphragm is provided that partitions the pressure chamber and the third pressure chamber, and the peripheral part of the auxiliary diaphragm is connected to the diaphragm and the center part is connected to the second case division part, and the second pressure chamber of the diaphragm is connected to the diaphragm. A pressure guiding hole communicating with the second pressure chamber is formed between the valve body and the diaphragm with its inlet facing the opening of the valve seat. a pressurizing flow path connecting the second pressure chamber and the third pressure chamber is formed in the auxiliary diaphragm and the second case division part, and an atmospheric release flow path connecting the third pressure chamber to the atmospheric space; a passage is formed in the second case divided part, and an operating valve that selectively opens the atmosphere opening passage and the pressurizing passage is provided in the second case divided part, and the operation valve is provided in the second case divided part, and is located upstream of the valve seat during normal flow. gauge pressure P on the side and downstream side, reduced gauge pressure ΔP due to leakage on the downstream side of the valve seat, valve closing force F 1 due to the biasing means, valve closing force F 2 due to the gravity of the valve body, The effective area a 1 of the diaphragm and the area a 2 of the diaphragm portion facing the second pressure chamber are determined by the following formula: P×(a 1 −a 2 )>F 1 +F 2 >(P−ΔP)×(a 1
a2 ), and its effects are as follows.

〔作 用〕[Effect]

正常流動時には、第1図に示すように、操作弁
17が大気開放用流路21を開きかつ加圧用流路
22を閉じており、第1圧力室S1からダイヤフラ
ム5への圧力による開弁力は、第2圧力室S2と第
1圧力室S1がほぼ同圧であるから、P×(a1
a2)となり、第3圧力室S3のゲージ圧は零である
から、閉弁力は付勢手段14による閉弁力F1
弁体8の重力による閉弁力F2の合力(F1+F2)と
なり、P×(a1−a2)>F1+F2であるから弁体8が
開弁維持される。
During normal flow, as shown in FIG. 1, the operation valve 17 opens the atmosphere opening channel 21 and closes the pressurizing channel 22, and the valve is opened by pressure from the first pressure chamber S1 to the diaphragm 5. Since the second pressure chamber S 2 and the first pressure chamber S 1 have almost the same pressure, the force is P×(a 1
a 2 ) and the gauge pressure in the third pressure chamber S 3 is zero, so the valve closing force is the resultant force (F 1 +F 2 ), and since P×(a 1 −a 2 )>F 1 +F 2 , the valve body 8 is maintained open.

そして、弁座7の下流側で設定量以上の漏洩が
生じてゲージ圧が(P−ΔP)以下になると、開
弁力は(P−ΔP)×(a1−a2)に低下し、閉弁力
は(F1+F2)で不変であり、(P−ΔP)×(a1
a2)<F1+F2であるから弁体8が閉じられる。
Then, when a leak exceeding the set amount occurs on the downstream side of the valve seat 7 and the gauge pressure becomes below (P-ΔP), the valve opening force decreases to (P-ΔP)×(a 1 - a 2 ), The valve closing force remains unchanged at (F 1 + F 2 ), and (P - ΔP) × (a 1 -
Since a 2 )<F 1 +F 2 , the valve body 8 is closed.

また、弁体8が全閉状態になると、第2図に示
すように、第2圧力室S2は導圧孔12により弁座
7の上流側に接続されて、第2圧力室S2のゲージ
圧は弁座上流側のゲージ圧Pとほぼ等しくなり、
第1圧力室S1のゲージ圧は漏洩によつてほぼ零と
なるから、開弁力は、弁座7の開口面積a3と弁座
7の上流側のゲージ圧Pの積(P×a3)になり、
閉弁力は、第2圧力室S2からダイヤフラム5への
圧力による閉弁力(P×a2)、付勢手段14によ
る閉弁力F1、弁体8の重力による閉弁力F2の合
力(P×a2+F1+F2)になり、開口面積a3よりも
第2圧力室S2に臨むダイヤフラム部分5aの面積
a2が大であるから、P×a3<P×a2+F1+F2とな
り、弁座7の上流側の圧力変動にかかわらず安定
して閉弁維持できる。
Furthermore, when the valve body 8 is fully closed, the second pressure chamber S2 is connected to the upstream side of the valve seat 7 through the pressure guiding hole 12 , as shown in FIG. The gauge pressure is almost equal to the gauge pressure P on the upstream side of the valve seat,
Since the gauge pressure in the first pressure chamber S1 becomes almost zero due to leakage, the valve opening force is the product of the opening area a3 of the valve seat 7 and the gauge pressure P on the upstream side of the valve seat 7 (P x a 3 ) becomes;
The valve closing force is the valve closing force (P×a 2 ) due to the pressure from the second pressure chamber S 2 to the diaphragm 5, the valve closing force F 1 due to the urging means 14, and the valve closing force F 2 due to the gravity of the valve body 8. The resultant force is (P×a 2 +F 1 +F 2 ), and the area of the diaphragm portion 5a facing the second pressure chamber S 2 is larger than the opening area a 3
Since a 2 is large, P×a 3 <P×a 2 +F 1 +F 2 , and the valve can be stably kept closed regardless of pressure fluctuations on the upstream side of the valve seat 7.

非常事態発生時には、第1図に示す状態から操
作弁17が自動的に又は人為的に操作されて、加
圧用流路22が開かれかつ大気開放用流路21が
閉じられ、第1圧力室S1、第2圧力室S2及び第3
圧力室S3が互いに接続されてほぼ等しいゲージ圧
Pになる。したがつて、ダイヤフラム5への圧力
に起因する開弁力と閉弁力がほぼ零となり、付勢
手段14による閉弁力F1と弁体8の重力による
閉弁力F2の合力(F1+F2)により弁体8が閉じら
れる。
In the event of an emergency, the operation valve 17 is automatically or artificially operated from the state shown in FIG. S 1 , second pressure chamber S 2 and third pressure chamber
The pressure chambers S 3 are connected to each other and have approximately the same gauge pressure P. Therefore, the valve opening force and the valve closing force caused by the pressure on the diaphragm 5 become almost zero, and the resultant force (F 1 +F 2 ), the valve body 8 is closed.

そして、弁体8が全閉状態になると、第3図に
示すように、第2圧力室S2と第3圧力室S3は導圧
孔12や加圧用流路22により弁座7の上流側に
接続されて、第2及び第3圧力室S2,S3のゲージ
圧は弁座上流側のゲージ圧Pとほぼ等しくなり、
第1圧力室S1のゲージ圧は流体流出によつてほぼ
零となるから、開弁力は、弁座7の開口面積a3
弁座7の上流側ゲージ圧Pの積(P×a3)にな
り、閉弁力は、第2及び第3圧力室S2,S3からダ
イヤフラム5への圧力による閉弁力(P×a1)、
付勢手段14による閉弁力F1、弁体8の重力に
よる閉弁力F2の合力(P×a1+F1+F2)になり、
開口面積a3よりもダイヤフラム5の面積a1が大で
あるから、P×a3<P×a1+F1+F2となり、弁座
7の上流側の圧力変動にかかわらず安定して閉弁
維持できる。
When the valve body 8 is fully closed, as shown in FIG. The gauge pressures of the second and third pressure chambers S 2 and S 3 are approximately equal to the gauge pressure P on the upstream side of the valve seat;
Since the gauge pressure in the first pressure chamber S1 becomes almost zero due to fluid outflow, the valve opening force is calculated by the product of the opening area a3 of the valve seat 7 and the upstream gauge pressure P of the valve seat 7 (P x a 3 ), and the valve closing force is the valve closing force (P×a 1 ) due to the pressure from the second and third pressure chambers S 2 and S 3 to the diaphragm 5,
The resultant force of the valve closing force F 1 by the urging means 14 and the valve closing force F 2 due to the gravity of the valve body 8 (P×a 1 +F 1 +F 2 ) is obtained.
Since the area a 1 of the diaphragm 5 is larger than the opening area a 3 , P×a 3 <P×a 1 +F 1 +F 2 and the valve can be stably closed regardless of pressure fluctuations on the upstream side of the valve seat 7. Can be maintained.

以上要するに、正常流動時の開弁維持、漏洩発
生時の自動閉弁と遮断維持、非常事態発生時の外
部操作による閉弁と遮断維持の全てを良好に行え
るのである。
In short, the valve can be kept open during normal flow, automatically closed and shut off when a leak occurs, and closed and shut off by external operation when an emergency situation occurs.

その上、ケースA1,A2が2分割であるから、
前述の3分割の従来技術よりもケース構造を簡略
化でき、弁座7の下流側流路と第1圧力室S1を兼
用してあるから、前述の別形成の従来技術よりも
ケースを小型化でき、弁体8とダイヤフラム5を
貫通する短くて単純にできる導圧孔12、第2ケ
ース分割部分A2に形成した短くて単純にできる
大気開放用流路21と加圧用流路22を形成する
だけで済むから、前述の長くて2個のケース分割
部分にわたる複雑な導圧路を備えた従来技術より
も構造を簡略化でき、弁体8とダイヤフラム5を
連結するロツドが不要であるから、前述のロツド
及びロツド貫通部に対するシール用ダイヤフラム
を備えた従来技術よりも構造を簡略化でき、全体
として、自動遮断弁の簡略化及び小型化を十分に
図れるようになつた。
Moreover, since cases A 1 and A 2 are split into two,
The case structure can be simplified compared to the three-divided conventional technology described above, and the downstream flow path of the valve seat 7 is also used as the first pressure chamber S1 , so the case can be made smaller than the previously described conventional technology with separate formations. A short and simple pressure guiding hole 12 that penetrates the valve body 8 and the diaphragm 5, and a short and simple air opening flow path 21 and pressurization flow path 22 formed in the second case divided portion A2 are provided. Since it is only necessary to form the valve body, the structure can be simplified compared to the conventional technology described above which has a complicated pressure guiding path extending over two long case division parts, and there is no need for a rod to connect the valve body 8 and the diaphragm 5. Therefore, the structure can be simplified compared to the prior art which includes the aforementioned rod and a sealing diaphragm for the rod penetrating portion, and the automatic shutoff valve as a whole can be sufficiently simplified and miniaturized.

ちなみに、第8図に示すような公知の弁構造を
利用して、自動遮断弁の簡略化を図ることも考え
られるが、そのような構造では自動遮断弁の小型
化を達成できない。つまり、遮断状態において、
閉弁力はスプリング35による閉弁力F1と弁体
36の重力による閉弁力F2の合力(F1+F2)であ
り、開弁力は弁座37の上流側のゲージ圧Pと弁
座37の開口面積a3の積(P×a3)であり、弁座
上流側のゲージ圧Pが数倍に上昇しても安定して
遮断されるようにするためには、閉弁力(F1
F2)を極めて大きくする必要がある。他方そのよ
うな極めて大きな閉弁力(F1+F2)に抗して正常
流動時に開弁維持させるためには、開弁力、すな
わち弁座下流側のゲージ圧Pとダイヤフラム38
の有効面積a1の積(P×a1)を極めて大きくする
必要があり、そのためにダイヤフラム38が大型
化するのである。
Incidentally, it is conceivable to simplify the automatic shutoff valve by using a known valve structure as shown in FIG. 8, but such a structure cannot achieve miniaturization of the automatic shutoff valve. In other words, in the cut-off state,
The valve closing force is the resultant force (F 1 + F 2 ) of the valve closing force F 1 by the spring 35 and the valve closing force F 2 due to the gravity of the valve body 36, and the valve opening force is the gauge pressure P on the upstream side of the valve seat 37. It is the product (P x a 3 ) of the opening area a 3 of the valve seat 37, and in order to stably shut off even if the gauge pressure P on the upstream side of the valve seat increases several times, it is necessary to close the valve. Force (F 1 +
F 2 ) must be made extremely large. On the other hand, in order to resist such an extremely large valve closing force (F 1 +F 2 ) and keep the valve open during normal flow, the valve opening force, that is, the gauge pressure P on the downstream side of the valve seat and the diaphragm 38
It is necessary to make the product (P×a 1 ) of the effective area a 1 extremely large, which makes the diaphragm 38 large.

しかし、本考案によれば、漏洩に伴う遮断時に
は第2圧力室S2に、かつ、非常事態発生に伴う遮
断時には第2及び第3圧力室S2,S3に弁座上流側
の圧力を付与して、弁座上流側の圧力に正比例し
て閉弁力を変化させ、弁座上流側の圧力いかんに
かかわらず安定した遮断を図れるようにし、さら
には、正常流動時には第2圧力室S2による閉弁力
を第1圧力室S1による開弁力の一部で相殺できる
ようにしてあるから、強力な遮断機能の割にはダ
イヤフラム5を小型化できる。
However, according to the present invention, the pressure on the upstream side of the valve seat is applied to the second pressure chamber S 2 when shutting down due to a leak, and to the second and third pressure chambers S 2 and S 3 when shutting down due to an emergency situation. The valve closing force is changed in direct proportion to the pressure upstream of the valve seat, and stable shutoff is achieved regardless of the pressure upstream of the valve seat.Furthermore, during normal flow, the second pressure chamber S Since the valve-closing force caused by 2 can be offset by a part of the valve-opening force caused by the first pressure chamber S1 , the diaphragm 5 can be made smaller despite its strong shutoff function.

〔考案の効果〕[Effect of idea]

その結果、自動遮断弁に必要な漏洩時及び緊急
時の遮断機能を良好に備えさせながら、従来に比
して十分に構造の簡略化と小型化を図れ、製作
面、コスト面及び設置面のいずれにおいても一段
と優れた自動遮断弁を提供できるようになつた。
As a result, while providing the automatic shutoff valve with excellent leakage and emergency shutoff functions, the structure can be sufficiently simplified and downsized compared to conventional valves, reducing manufacturing, cost, and installation costs. In either case, it has become possible to provide an even more superior automatic shutoff valve.

〔実施例〕 次に、第1図ないし第3図により実施例を示
す。
[Example] Next, an example will be shown with reference to FIGS. 1 to 3.

ケースA1,A2を、流体の入口1と出口2に連
通する第1ケース分割部分A1と、その第1ケー
ス分割部分A1に接合した第2ケース分割部分A2
とに2分割形成し、両ケース分割部分A1,A2
うしの接合フランジ3,4間にメインのダイヤフ
ラム5の周縁を加圧保持し、ケースA1,A2内を
ダイヤフラム5で2分割形成し、第1ケース分割
部分A1とダイヤフラム5との協働で弁座下流側
流路兼第1圧力室S1を形成してある。
Cases A 1 and A 2 are connected to a first case divided portion A 1 that communicates with a fluid inlet 1 and an outlet 2, and a second case divided portion A 2 that is joined to the first case divided portion A 1 .
The periphery of the main diaphragm 5 is pressurized between the joining flanges 3 and 4 between both case divided parts A 1 and A 2 , and the inside of the cases A 1 and A 2 is divided into two by the diaphragm 5. The first case divided portion A 1 and the diaphragm 5 cooperate to form a flow path downstream of the valve seat and a first pressure chamber S 1 .

入口1に連通する状態で第1ケース分割部分
A1に形成した筒6の上端に、弁座7をその開口
がダイヤフラム5に対向する状態で取付け、弁座
7の下流側に配置した弁体8を、ダイヤフラム5
の下面に一体的上下移動するように取付け、筒6
に形成したバイパス流路を開閉するリセツト弁1
5を、スプリング16で閉弁付勢した状態で人為
開閉操作自在に設けてある。
The first case divided part is in communication with the inlet 1.
A valve seat 7 is attached to the upper end of the cylinder 6 formed in A 1 with its opening facing the diaphragm 5, and a valve body 8 disposed downstream of the valve seat 7 is attached to the diaphragm 5.
It is installed so that it can move up and down integrally on the bottom surface of the cylinder 6.
Reset valve 1 that opens and closes a bypass flow path formed in
5 is provided so that it can be manually opened and closed in a state where the valve is biased to close by a spring 16.

ダイヤフラム5の上面に取付けた押え板9にリ
ング10を一体形成し、補助ダイヤフラム11の
周縁部をリング10でダイヤフラム5にかつ中央
部を第2ケース分割部分A2の内方への突部13
に夫々連結し、第2ケース分割部分A2とダイヤ
フラム5とで形成した空間をそのダイヤフラム5
に臨む第2圧力室S2と第3圧力室S3に区画し、第
1圧力室S1の圧力を開弁力として、第2圧力室S2
と第3圧力室S3の圧力を閉弁力としてダイヤフラ
ム5に付与するように構成してある。
A ring 10 is integrally formed on a presser plate 9 attached to the upper surface of the diaphragm 5, and the peripheral part of the auxiliary diaphragm 11 is connected to the diaphragm 5 by the ring 10, and the central part is connected to the inward protrusion 13 of the second case division part A2 .
The space formed by the second case divided portion A2 and the diaphragm 5 is connected to the diaphragm 5.
It is divided into a second pressure chamber S 2 and a third pressure chamber S 3 facing toward the
The pressure in the third pressure chamber S3 is applied to the diaphragm 5 as a valve closing force.

ダイヤフラム5のうち第2圧力室S2から閉弁力
を受ける部分5aを弁座7の開口よりも大面積に
形成し、また、ダイヤフラム5に閉弁力F1を付
与するウエイト14を押え板9に取付け、ウエイ
ト14による閉弁力F1と弁体8の重力による閉
弁力F2との合力(F1+F2)を、常に弁体8に付与
するように構成してある。
The portion 5a of the diaphragm 5 that receives the valve-closing force from the second pressure chamber S2 is formed to have a larger area than the opening of the valve seat 7, and the weight 14 that applies the valve-closing force F1 to the diaphragm 5 is formed by a holding plate. 9, and is configured so that the resultant force (F 1 +F 2 ) of the valve closing force F 1 due to the weight 14 and the valve closing force F 2 due to the gravity of the valve body 8 (F 1 +F 2 ) is always applied to the valve body 8.

弁体8、ダイヤフラム5、押え板9を貫通する
導圧孔12を形成し、第2圧力室S2を開弁時に第
1圧力室S1にかつ閉弁時に弁座7の上流側に接続
するように構成してある。
A pressure guiding hole 12 is formed that passes through the valve body 8, diaphragm 5, and presser plate 9, and connects the second pressure chamber S2 to the first pressure chamber S1 when the valve is opened and to the upstream side of the valve seat 7 when the valve is closed. It is configured to do so.

大気開放用流路21を第3圧力室S3に連通させ
て第2ケース分割部分A2に形成し、第3圧力室
S3の大気圧を閉弁力としてダイヤフラム5に付与
できるように構成してある。
The atmosphere opening channel 21 is formed in the second case divided part A2 by communicating with the third pressure chamber S3 , and the third pressure chamber
It is configured so that the atmospheric pressure of S3 can be applied to the diaphragm 5 as a valve closing force.

補助ダイヤフラム11と第2ケース分割部分
A2に、第2圧力室S2と第3圧力室S3を接続する
加圧用流路22を形成し、電磁操作部18で切換
え操作される操作弁17を第2ケース分割部分
A2に付設して、大気開放用流路21と加圧用流
路22のうち前者21のみを開いた非遮断状態と
後者22のみを開いた遮断状態を操作弁17によ
つて選択できるように構成し、地震、火炎、ガス
漏洩等の非常事態を検出する検知器Bからの信号
に基づいて、非常事態が発生すると自動的に操作
弁17が非遮断状態から遮断状態に切換えられる
ように構成してある。
Auxiliary diaphragm 11 and second case division part
A pressurizing flow path 22 connecting the second pressure chamber S 2 and the third pressure chamber S 3 is formed in A 2 , and the operation valve 17 that is switched and operated by the electromagnetic operation section 18 is connected to the second case divided part.
A 2 is attached to the air release passage 21 and the pressurization passage 22 so that a non-blocking state in which only the former 21 is opened and a blocking state in which only the latter 22 is open can be selected by the operating valve 17. The operating valve 17 is configured to automatically switch from a non-shutoff state to a shutoff state when an emergency situation occurs, based on a signal from a detector B that detects an emergency situation such as an earthquake, flame, or gas leak. It has been done.

正常流動時における弁座7の上流側及び下流側
でのゲージ圧P、弁座7の下流側での漏洩に伴う
低下ゲージ圧ΔP、付勢手段14による閉弁力
F1、弁体8の重力による閉弁力F2、ダイヤフラ
ム5の有効面積a1、第2圧力室S2に臨むダイヤフ
ラム部分5aの面積a2が、次式 P×(a1−a2)>F1+F2>(P−ΔP)×(a1
a2)を満たすように形成し、以下のように動作す
べく構成してある。
Gauge pressure P on the upstream and downstream sides of the valve seat 7 during normal flow, reduced gauge pressure ΔP due to leakage on the downstream side of the valve seat 7, and valve closing force by the biasing means 14
F 1 , the valve closing force F 2 due to the gravity of the valve body 8, the effective area a 1 of the diaphragm 5, and the area a 2 of the diaphragm portion 5a facing the second pressure chamber S 2 are calculated using the following formula P×(a 1a 2 )>F 1 +F 2 >(P−ΔP)×(a 1
a2 ), and is configured to operate as follows.

〔正常流動時〕[During normal flow]

第1図に示すように、操作弁17が大気開放用
流路21を開きかつ加圧用流路22を閉じる状態
になつて、第3圧力室S3のゲージ圧が零、第2圧
力室S2のゲージ圧がほぼPとなり、開弁力は第1
圧力室S1からダイヤフラム5への圧力によるP×
(a1−a2)で、閉弁力は付勢力と重力によるF1+F2
となり、したがつて、開弁力が閉弁力より大にな
つて、弁体8が開弁維持される。
As shown in FIG. 1, when the operating valve 17 opens the atmospheric release channel 21 and closes the pressurizing channel 22, the gauge pressure in the third pressure chamber S3 becomes zero and the gauge pressure in the second pressure chamber S The gauge pressure of 2 is almost P, and the valve opening force is 1st.
P× due to pressure from pressure chamber S 1 to diaphragm 5
(a 1a 2 ), and the valve closing force is F 1 + F 2 due to the urging force and gravity.
Therefore, the valve opening force becomes larger than the valve closing force, and the valve body 8 is maintained open.

〔漏洩発生時〕[When a leak occurs]

第1図の状態において、弁座7の下流側で漏洩
が発生してゲージ圧ΔPの圧力低下が生じると、
開弁力は(P−ΔP)×(a1−a2)に低下し、閉弁
力はF1+F2で変化せず、したがつて、閉弁力が
開弁力より大によつて、第2図に示すように弁体
8が閉じられる。
In the state shown in FIG. 1, if a leak occurs on the downstream side of the valve seat 7 and the pressure decreases by the gauge pressure ΔP,
The valve opening force decreases to (P - ΔP) x (a 1 - a 2 ), and the valve closing force does not change at F 1 + F 2 , so if the valve closing force is larger than the valve opening force, , the valve body 8 is closed as shown in FIG.

そして、弁体8が全閉状態になると、弁座7の
上流側の圧力が導圧孔12によつて第2圧力室S2
に付与され、第1圧力室S1のゲージ圧はほぼ零に
なり、開弁力は弁座の開口(面積a3)からダイヤ
フラム5への圧力によるP×a3で、第2圧力室S2
の圧力による閉弁力はP×a2であり、a2>a3であ
るから、弁体8はP×(a2−a3)+F1+F2の力で閉
弁維持される。
When the valve body 8 is fully closed, the pressure on the upstream side of the valve seat 7 is transferred to the second pressure chamber S 2 by the pressure guiding hole 12.
, the gauge pressure in the first pressure chamber S 1 becomes almost zero, and the valve opening force is P×a 3 due to the pressure from the opening of the valve seat (area a 3 ) to the diaphragm 5. 2
Since the valve closing force due to the pressure is P×a 2 and a 2 >a 3 , the valve body 8 is maintained closed by the force of P×(a 2 −a 3 )+F 1 +F 2 .

〔非常事態発生時〕[When an emergency situation occurs]

第3図に示すように、検知器Bと電磁操作部1
8によつて自動的に操作弁17が加圧用流路22
を開きかつ大気開放用流路21を閉じる状態に切
換えられ、弁座7の下流側圧力が導圧孔12、第
2圧力室S2、加圧用流路22から第3圧力室S3
付与され、ダイヤフラム5の両側のゲージ圧が全
体にわたつてほぼPになり、したがつて、弁体8
はF1+F2の力で閉じられる。
As shown in Fig. 3, the detector B and the electromagnetic operation section 1
8 automatically closes the operation valve 17 to the pressurizing channel 22.
is switched to open and the atmospheric release flow path 21 is closed, and the pressure on the downstream side of the valve seat 7 is applied from the pressure guiding hole 12, the second pressure chamber S 2 , and the pressurization flow path 22 to the third pressure chamber S 3 . , the gauge pressure on both sides of the diaphragm 5 becomes approximately P over the entire area, and therefore the valve body 8
is closed by the force F 1 + F 2 .

そして、弁体8が全閉状態になると、弁座7の
上流側圧力が導圧孔12、第2圧力室S2、加圧用
流路22から第3圧力室S3に付与され、第2圧力
室S2と第3圧力室S3のゲージ圧はほぼPとなり、
第1圧力室S1のゲージ圧は流体流出に伴つてほぼ
零になり、開弁力は弁座7の開口からダイヤフラ
ム5への圧力によるP×a3で、閉弁力はP×a1
F1+F2になり、a1>a3であるから、弁体8はP×
(a1−a3)+F1+F2の力で閉弁維持される。
Then, when the valve body 8 is fully closed, the upstream pressure of the valve seat 7 is applied from the pressure guiding hole 12, the second pressure chamber S 2 , and the pressurizing flow path 22 to the third pressure chamber S 3 , and The gauge pressure in pressure chamber S 2 and third pressure chamber S 3 is approximately P,
The gauge pressure in the first pressure chamber S 1 becomes almost zero as the fluid flows out, the valve opening force is P×a 3 due to the pressure from the opening of the valve seat 7 to the diaphragm 5, and the valve closing force is P×a 1 +
Since F 1 + F 2 and a 1 > a 3 , the valve body 8 is P×
The valve is kept closed by the force of (a 1 − a 3 ) + F 1 + F 2 .

〔リセツト時〕[At reset]

弁8の全閉状態でリセツト弁15を開くと共
に、操作弁17で大気開放用流路21を開き、弁
座7の下流側で流出が無い状態にすると第1圧力
室S1の圧力が上昇し、第1圧力室S1による開弁力
の増大や第3圧力室S3による閉弁力の減少で弁体
8が開弁される。
When the reset valve 15 is opened with the valve 8 fully closed, and the air release passage 21 is opened using the operation valve 17, so that there is no outflow on the downstream side of the valve seat 7, the pressure in the first pressure chamber S1 increases. However, the valve body 8 is opened due to an increase in the opening force of the first pressure chamber S 1 and a decrease in the closing force of the third pressure chamber S 3 .

そして、弁座7の下流側で流路が開いていると
リセツト弁15が開いても第1圧力室S1の圧力が
余り上昇せず、弁体8の全閉状態が維持され、不
側に流体が流出することを阻止できる。
If the flow path is open on the downstream side of the valve seat 7, even if the reset valve 15 is opened, the pressure in the first pressure chamber S1 will not increase much, and the fully closed state of the valve body 8 will be maintained, and the can prevent fluid from flowing out.

〔別実施例〕[Another example]

次に別実施例を説明する。 Next, another embodiment will be described.

ウエイト14に代えてスプリングを用いてもよ
く、それらを付勢手段14と称する。
A spring may be used instead of the weight 14, and these are referred to as biasing means 14.

操作弁17の操作手段は適当に変更でき、例え
ば、第1図に示すように、手動スイツチSWによ
る電磁操作部18への指令で非遮断状態から遮断
状態に切換えられるように構成したり、第3図に
示すように、スプリング16′で遮断状態になる
ように付勢された操作弁17を回転操作型カム式
ストツパー19で非遮断状態を維持できるように
形成して、ストツパー19の人為操作で非遮断状
態と遮断状態の切換を行えるように構成してもよ
い。
The operating means of the operation valve 17 can be changed as appropriate, for example, as shown in FIG. As shown in FIG. 3, the operation valve 17, which is biased to be in the closed state by a spring 16', is formed so that it can be maintained in the non-closed state by a rotary operation type cam type stopper 19, and the stopper 19 can be manually operated. It may also be configured such that switching between the non-blocking state and the blocking state can be performed with.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図ないし第3図は本考案の実施例を示す断
面図であり、第1図は正常流動時、第2図は漏洩
発生時、第3図は緊急遮断時を夫々示す。第4図
は本考案の別実施例を示す断面図である。第5図
ないし第7図は従来例を示し、第5図は正常流動
時、第6図は漏洩発生時、第7図は緊急遮断時を
夫々示す。第8図は比較例を示す断面図である。 5……ダイヤフラム、5a……ダイヤフラムの
部分、7……弁座、8……弁体、11……補助ダ
イヤフラム、12……導圧孔、14……付勢手
段、17……操作弁、21……大気開放用流路、
22……加圧用流路、A1……第1ケース分割部
分、A2……第2ケース分割部分、S1……第1圧
力室、S2……第2圧力室、S3……第3圧力室。
1 to 3 are sectional views showing an embodiment of the present invention, in which FIG. 1 shows the state during normal flow, FIG. 2 shows the state when leakage occurs, and FIG. 3 shows the state during emergency shutoff. FIG. 4 is a sectional view showing another embodiment of the present invention. 5 to 7 show conventional examples, with FIG. 5 showing normal flow, FIG. 6 showing leakage, and FIG. 7 showing emergency shutoff. FIG. 8 is a sectional view showing a comparative example. 5... Diaphragm, 5a... Diaphragm part, 7... Valve seat, 8... Valve body, 11... Auxiliary diaphragm, 12... Pressure guiding hole, 14... Biasing means, 17... Operation valve, 21... Atmosphere opening flow path,
22... Pressurization channel, A 1 ... First case divided portion, A 2 ... Second case divided portion, S 1 ... First pressure chamber, S 2 ... Second pressure chamber, S 3 ... Third pressure chamber.

Claims (1)

【実用新案登録請求の範囲】 ケースA1,A2を第1ケース分割部分A1と第2
ケース分割部分A2とに2分割形成し、前記ケー
スA1,A2内を2分割するダイヤフラム5を設
け、前記ダイヤフラム5との協働で弁座下流側流
路兼第1圧力室S1を形成する前記第1ケース分割
部分A1に、弁座7をその開口が前記ダイヤフラ
ム5に対向する状態で設け、弁体8を前記弁座7
の下流側に配置して前記ダイヤフラム5に取付
け、前記弁体8に対してそれを前記弁座7に近付
けるように作用する付勢手段14を設け、前記第
2ケース分割部分A2と前記ダイヤフラム5とで
形成した空間をそのダイヤフラム5に臨む第2圧
力室S2及び第3圧力室S3に区画する補助ダイヤフ
ラム11を設けて、その補助ダイヤフラム11の
周縁部を前記ダイヤフラム5にかつ中央部を前記
第2ケース分割部分A2に夫々連結し、前記ダイ
ヤフラム5のうち前記第2圧力室S2に臨む部分5
aを前記弁座7の開口よりも大面積に形成し、前
記第2圧力室S2に連通する導圧孔12を、その入
口が前記弁座7の開口に対向する状態で前記弁体
8と前記ダイヤフラム5に形成し、前記第2圧力
室S2と前記第3圧力室S3を接続する加圧用流路2
2を前記補助ダイヤフラム11と前記第2ケース
分割部分A2に形成し、前記第3圧力室S3を大気
空間に接続する大気開放用流路21を前記第2ケ
ース分割部分A2に形成し、前記大気開放用流路
21と前記加圧用流路22を択一的に開く操作弁
17を前記第2ケース分割部分A2に設け、 正常流動時における前記弁座7の上流側及び下
流側でのゲージ圧P、前記弁座7の下流側での漏
洩に伴う低下ゲージ圧ΔP、前記付勢手段14に
よる閉弁力F1、前記弁体8の重力による閉弁力
F2、前記ダイヤフラム5の有効面積a1、前記第2
圧力室S2に臨む前記ダイヤフラム部分5aの面積
a2が、次式 P×(a1−a2)>F1+F2>(P−ΔP)×(a1
a2)を満たすように形成してある自動遮断弁。
[Scope of claims for utility model registration] Cases A 1 and A 2 are divided into the first case divided part A 1 and the second case.
A diaphragm 5 is provided which divides the inside of the cases A 1 and A 2 into two, and cooperates with the diaphragm 5 to create a flow path and first pressure chamber S 1 on the downstream side of the valve seat. A valve seat 7 is provided in the first case division part A 1 forming the valve seat 7 with its opening facing the diaphragm 5 , and a valve body 8 is provided in the first case division part A 1 forming the valve seat 7 .
A biasing means 14 is disposed on the downstream side of the diaphragm 5 and acts on the valve element 8 to bring it closer to the valve seat 7 . 5 is provided with an auxiliary diaphragm 11 that partitions the space formed by the diaphragm 5 into a second pressure chamber S 2 and a third pressure chamber S 3 facing the diaphragm 5. are respectively connected to the second case divided portion A2 , and a portion 5 of the diaphragm 5 facing the second pressure chamber S2 .
A is formed to have a larger area than the opening of the valve seat 7, and the pressure guiding hole 12 communicating with the second pressure chamber S2 is inserted into the valve body 8 with its inlet facing the opening of the valve seat 7. and a pressurizing channel 2 formed in the diaphragm 5 and connecting the second pressure chamber S2 and the third pressure chamber S3 .
2 is formed in the auxiliary diaphragm 11 and the second case division part A2 , and an atmosphere opening passage 21 connecting the third pressure chamber S3 to the atmospheric space is formed in the second case division part A2. , an operation valve 17 that selectively opens the atmosphere opening flow path 21 and the pressurization flow path 22 is provided in the second case divided portion A2 , and the operation valve 17 is provided on the upstream and downstream sides of the valve seat 7 during normal flow. gauge pressure P at , reduced gauge pressure ΔP due to leakage on the downstream side of the valve seat 7, valve closing force F 1 by the biasing means 14, and valve closing force due to the gravity of the valve body 8.
F 2 , the effective area a 1 of the diaphragm 5, the second
Area of the diaphragm portion 5a facing the pressure chamber S2
a 2 is calculated using the following formula: P×(a 1 − a 2 )>F 1 +F 2 >(P−ΔP)×(a 1
a 2 ) automatic shutoff valve configured to meet the requirements of
JP1980081093U 1980-06-09 1980-06-09 Expired JPS6212944Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1980081093U JPS6212944Y2 (en) 1980-06-09 1980-06-09

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1980081093U JPS6212944Y2 (en) 1980-06-09 1980-06-09

Publications (2)

Publication Number Publication Date
JPS575580U JPS575580U (en) 1982-01-12
JPS6212944Y2 true JPS6212944Y2 (en) 1987-04-03

Family

ID=29443501

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1980081093U Expired JPS6212944Y2 (en) 1980-06-09 1980-06-09

Country Status (1)

Country Link
JP (1) JPS6212944Y2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2890718B1 (en) * 2005-09-13 2009-03-06 Prodecfu Sarl FLUID FLOW CONTROL VALVE.

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5268023U (en) * 1975-11-17 1977-05-20
JPS54150127U (en) * 1978-04-12 1979-10-18
JPS5554654U (en) * 1978-10-02 1980-04-12

Also Published As

Publication number Publication date
JPS575580U (en) 1982-01-12

Similar Documents

Publication Publication Date Title
US6092545A (en) Magnetic actuated valve
JP3790778B2 (en) Automatic adjustment valve device
WO2021139541A1 (en) Synchronous switch valve core having voltage regulating function
JPS6120751B2 (en)
EP0204666B1 (en) A two-way reversible-flow hydraulic control valve
JPS6212944Y2 (en)
WO2005074510A3 (en) Device for the regulation of flow applied to flow valves working under pressure differential
US7117889B2 (en) Three-way valve
JP2862391B2 (en) Control valve
JP2997216B2 (en) Three-way valve
JPS6347926Y2 (en)
JP3769096B2 (en) Pressure control valve for switching valve
JPH0342293Y2 (en)
JP2612916B2 (en) Pressure medium operated valve device
JP3851378B2 (en) Automatic adjustment valve device
JPH0247816Y2 (en)
JPH0512540Y2 (en)
JPH0330886Y2 (en)
JP2757212B2 (en) Emergency shut-off valve
JPH04102780A (en) Automatic adjusting lift valve device
JPH03156618A (en) Reducing valve
JPH02138579A (en) Constant flow rate regulation valve device
JPS6111449Y2 (en)
JPS6035564B2 (en) hydraulic control valve device
JP2535458Y2 (en) Pilot type 2 port valve