JPS62128946A - Tellurite glass - Google Patents

Tellurite glass

Info

Publication number
JPS62128946A
JPS62128946A JP26583685A JP26583685A JPS62128946A JP S62128946 A JPS62128946 A JP S62128946A JP 26583685 A JP26583685 A JP 26583685A JP 26583685 A JP26583685 A JP 26583685A JP S62128946 A JPS62128946 A JP S62128946A
Authority
JP
Japan
Prior art keywords
glass
zno
refractive index
conventional example
teo2
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP26583685A
Other languages
Japanese (ja)
Other versions
JPH0427180B2 (en
Inventor
Toshitaka Nakajima
敏隆 中嶌
Tetsuo Izumitani
泉谷 徹郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hoya Corp
Original Assignee
Hoya Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoya Corp filed Critical Hoya Corp
Priority to JP26583685A priority Critical patent/JPS62128946A/en
Publication of JPS62128946A publication Critical patent/JPS62128946A/en
Publication of JPH0427180B2 publication Critical patent/JPH0427180B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Glass Compositions (AREA)

Abstract

PURPOSE:To produce the titled high-refractive index tellurite glass with less coloration and wear and having good workability by incorporating TeO2, P2O5, PbO, Li2O, ZnO, and other oxides into the glass. CONSTITUTION:The tellurite glass composed, by mol, of 10-85% TeO2, 1-50% P2O5, 1-50% PbO, 0-30% Li2O, 0-40% ZnO, where the total amt. of Li2O and ZnO is regulated to 1-40%, 0-30% Na2O, 0-30% K2O, 0-25% Rb2O, 0-20% Cs2O, where the total amt. of Na2O, K2O, Rb2O, and Cs2O is controlled to 0-30%, 0-20% MgO, 0-20% CaO, 0-20% SrO, 0-35% BaO, where the total amt. of MgO, CaO, SrO, and BaO is adjusted to 0-35%, 0-5% Ta2O5, 0-20% Nb2O5, where the total amt. of Ta2O5 and Nb2O5 is regulated to 0-20%, 0-15% SiO2, 0-25% GeO2, 0-30% B2O3, 0-10% Al2O3, 0-20% Sb2O3, 0-15% In2O3, 0-4% La2O3, 0-4% Y2O3, 0-4% Gd2O3, 0-4% Yb2O3, 0-4% ZrO2, 0-10% Bi2O3, 0-20% TiO2, and 0-7% WO3 is prepared.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明はチルライ1へガラスに係り、特に、耐摩耗性、
耐久性がよく、着色の少ない、かつ屈折率の高いテルラ
イトガラスに関し、光学ガラス等に利用される。
[Detailed Description of the Invention] [Industrial Field of Application] The present invention relates to Chillai 1 glass, and in particular, to glass with abrasion resistance,
Tellurite glass is highly durable, has little coloring, and has a high refractive index, and is used for optical glasses.

し従来の技術l TeO2をガラス形成酸化物として用いることにより屈
折率の高いガラスが得られることは公知であり、特公昭
48−9083号公報(以下「従来例1」という。)で
TeO2−wo3− Li20系が、さらに特公昭51
−17571号公報(以下「従来例2」という。
However, it is well known that a glass with a high refractive index can be obtained by using TeO2 as a glass-forming oxide, and Japanese Patent Publication No. 48-9083 (hereinafter referred to as "Prior Art Example 1") describes TeO2-wo3. - The Li20 series was further developed in 1977.
-17571 (hereinafter referred to as "Conventional Example 2").

)でTeO2−P2 05 −WO3系が、特公昭52
−28454号公報(以下「従来例3」という。〉でT
e02−ZnO−Na20 、Li20系が、それぞれ
提案されている。従来例1では、TeO2、WO3、L
i20から成る基礎成分中のLi20にて失透性を改善
し、さらに前記基礎成分中に第4の成分を付加ザること
によって耐水性を改善したとしているが、いまだ満足で
きるものではない。従来例2では基礎成分としてP2O
5にて耐水性を改善し、化学的にも安定なガラスが得ら
れたとしているが、従来例1と同様にいまだ満足できる
ものではない。従来例3では、TeO2、ZnO、Na
20.1−i20を基礎成分とし、音響光学素子用ガラ
スとして開発されたものであって、2nOにて安定で化
学的耐久性の優れたガラスを得ることができたとしてい
るが、その化学的耐久性は充分なものではなく、例えば
他の光学ガラス等と比較しても低く、また、ガラス形成
酸化物がTeO2のみであるためにガラスが軟かいとい
う問題点があった。さらに、従来例1及び従来例2にお
いては−03をそれぞれ20〜30%及び8〜22モル
%含有するために、かなり強い黄着色がガラスに認めら
れる。一方、ガラスの摩耗特性については従来例1、従
来例2、従来例3ともに未解決であって、何れも耐摩耗
性が低く、加工性に難があり、また、取扱い上も傷が入
り易いという問題点があった。
), the TeO2-P2 05 -WO3 system was
-28454 (hereinafter referred to as “Conventional Example 3”))
e02-ZnO-Na20 and Li20 systems have been proposed, respectively. In conventional example 1, TeO2, WO3, L
It is said that the devitrification property was improved with Li20 in the base component consisting of i20, and the water resistance was improved by adding a fourth component to the base component, but this is still not satisfactory. In conventional example 2, P2O is used as the basic component.
Although it is said that the water resistance was improved and a chemically stable glass was obtained in Example 5, it is still not satisfactory as in Conventional Example 1. In conventional example 3, TeO2, ZnO, Na
It was developed as a glass for acousto-optic devices using 20.1-i20 as a basic component, and it is said that it was possible to obtain a glass with excellent chemical durability and stability at 2nO. The durability is not sufficient, for example, it is low compared to other optical glasses, and there is also the problem that the glass is soft because the glass forming oxide is only TeO2. Furthermore, in Conventional Example 1 and Conventional Example 2, since -03 is contained in an amount of 20 to 30% and 8 to 22 mol%, respectively, a considerably strong yellow coloring is observed in the glass. On the other hand, the abrasion characteristics of glass have not yet been resolved in Conventional Example 1, Conventional Example 2, and Conventional Example 3, and all of them have low abrasion resistance, are difficult to process, and are easily scratched when handled. There was a problem.

[発明が解決しようとする問題点1 本発明は、以上のような従来技術の問題点を除去するた
めになされたものであり、第1の目的は、ガラスの着色
が少なく、比較的小さな摩耗度を持ち、加工性が良い高
屈折率テルライトガラスを提供することであり、更に第
2の目的は、耐久性、耐失透性に優れたテルライトガラ
スを提供することである。
[Problem to be Solved by the Invention 1] The present invention has been made in order to eliminate the problems of the prior art as described above, and the first purpose is to reduce the coloring of the glass and to reduce the wear and tear. The purpose of the present invention is to provide a high refractive index tellurite glass that has a high refractive index and has good workability.A second object is to provide a tellurite glass that has excellent durability and devitrification resistance.

[問題点を解決するための手段] 本発明者は上記目的を達成させるために鋭意研究を積み
重ねた結果、ガラス形成酸化物となり1qるp2  o
5.成分が、着色を少なくし、かつガラスを硬くすると
同時にガラス化領域を広げること、PbO成分が、ガラ
スの屈折率を上げるとともに、ガラスの安定性を増し、
さらに2nO、Li20成分を添加することにより、p
2  o5の適最との共存下において、著しく耐久性に
優れ、耐失透性にも優れたガラスが得られることを見い
出した。これにより、強い着色を呈する同3成分を添加
しないでも、安定な比較的硬いテルライトガラスが得ら
れることが判明した。
[Means for Solving the Problems] As a result of extensive research in order to achieve the above object, the present inventor has developed a glass-forming oxide with 1q p2 o.
5. The PbO component reduces coloring and hardens the glass while expanding the vitrification area, and the PbO component increases the refractive index of the glass and increases the stability of the glass.
By further adding 2nO and Li20 components, p
It has been found that in coexistence with an optimal amount of 2 o5, a glass with extremely excellent durability and excellent devitrification resistance can be obtained. As a result, it was found that a stable and relatively hard tellurite glass could be obtained without adding the three components that exhibit strong coloration.

そこで、高屈折率ガラスを得る為に、TeO2成分をベ
ースに、P2 05 、 PbO、ZnO、Li20を
必須成分とし、適当量含有させたガラスを見い出して、
本発明を完成するに至った。
Therefore, in order to obtain a high refractive index glass, we found a glass based on the TeO2 component and containing P2 05 , PbO, ZnO, and Li20 as essential components in appropriate amounts.
The present invention has now been completed.

本発明によるテルライトガラスは、モル%で、丁e02
が10〜85、P2O5が 1〜50り望ましくは1〜
40)、PbOが1〜50、L120が0〜30、Zn
Oが0〜40、L120とZnOの金属が1〜40、N
a20が0〜30、K2Oが0〜30、Itb2 oが
0〜25、CsOが0〜20、Na20とK2Oとl1
b2 oとCsOの合量が0〜30、HgOが0〜20
. CaOが0〜20、SrOが0−20、BaOが0
〜35、MgOとCaOとsroとBaOの合mが0〜
35、Ta205が0〜5、Nb2O5が0〜20、T
a2O5とNb2. 05の合量が0〜20、Si 0
2が0〜15、Ge 02が0〜25、B2O3が0〜
30、A1203が0〜10、sb2 o3が0〜20
. In203が0〜15、t−a2 o3が0〜4、
Y2O3が0〜4、Gd203が0〜4、Yb2O3が
0〜4、Zr 02が0〜4.8i203が0〜10、
Ti 02が0〜20(望ましくは0〜10)、WO3
が0〜7それぞれ含有していることを特徴とする。
The tellurite glass according to the invention, in mol %,
is 10-85, P2O5 is 1-50, preferably 1-50.
40), PbO is 1 to 50, L120 is 0 to 30, Zn
O is 0-40, L120 and ZnO metals are 1-40, N
a20 is 0-30, K2O is 0-30, Itb2o is 0-25, CsO is 0-20, Na20, K2O and l1
Total amount of b2 o and CsO is 0 to 30, HgO is 0 to 20
.. CaO is 0-20, SrO is 0-20, BaO is 0
~35, the total m of MgO, CaO, sro, and BaO is 0~
35, Ta205 is 0-5, Nb2O5 is 0-20, T
a2O5 and Nb2. Total amount of 05 is 0 to 20, Si 0
2 is 0 to 15, Ge 02 is 0 to 25, B2O3 is 0 to
30, A1203 is 0-10, sb2 o3 is 0-20
.. In203 is 0 to 15, t-a2 o3 is 0 to 4,
Y2O3 is 0-4, Gd203 is 0-4, Yb2O3 is 0-4, Zr02 is 0-4.8i203 is 0-10,
Ti02 is 0-20 (preferably 0-10), WO3
It is characterized by containing 0 to 7, respectively.

次に、本発明の構成成分の限定理由について述べる。T
eO2はガラス形成酸化物となり、かつ屈折率を高める
成分として必須であるが、85%を越えるとガラスは耐
失透性において不安定になり、10%以下ではGe 0
2 、PbO等を含有しても、耐失透性の点で高屈折率
を得ることが困難となる。また−03 、Ti 02を
含有した場合、高屈折率は得られても着色が増大する。
Next, the reasons for limiting the constituent components of the present invention will be described. T
eO2 becomes a glass-forming oxide and is essential as a component that increases the refractive index, but if it exceeds 85%, the glass becomes unstable in terms of devitrification resistance, and if it is less than 10%, Ge 0
2. Even if PbO or the like is contained, it is difficult to obtain a high refractive index in terms of resistance to devitrification. Furthermore, when -03 and Ti02 are contained, coloring increases even though a high refractive index is obtained.

P2O5は TeO2と同様に、ガラス形成酸化物とな
りガラスの硬度を高め、耐失透性を増し、ガラスを安定
にするのに必須であるが、1%以下ではその効果が少な
く、50%(望ましくは40%)を越えると屈折率が低
くなり耐水性も悪くなる。PbOは、ガラスの屈折率を
上げるとともに、ガラスを安定化し、かつ耐水性を改善
するが、1%以下ではその効果が少なく、50%を越え
ると逆にガラスを不安定にする。2nO及び[120は
、ガラスを安定化し、かつ耐水性をよくするのに必須で
あるが、これ等の合量が1%以下ではその効果が少なく
、それぞれ40%及び30%を越えると、屈折率が低く
なると同時に耐水性を悪くする。その他の成分は必須成
分ではなく、屈折率、分散率などの光学恒数の調整、耐
失透性の改善、熔融性の改善、化学的耐久性の改善等の
目的で適宜添加される。Na20、K20 、Rb20
、CsO 、及びHgO、CaO、SrO、BaOは、
過度に添加すると屈折率が低下したり、硬度が小さくな
り過ぎたり、耐失透性を悪化させたりするので、それぞ
れ合量が30%及び35%以下に限定され、主として耐
失透性から、各成分についてNa20が30%、K20
が30%、Rb20が25%、CsOが20%、及びH
(10が20%、CaOが20%、S ′rOが20%
、BaOが35%以下に限定される。Ta2 05及び
Nb2  o5はガラスの硬度を高め耐久性を改善する
が、これ等の合量で20%を越えるとガラスが不安定に
なると共に難溶性を増し、それぞれ5%及び20%以下
に限定される。Si 02 、Ge 02、B2O3、
AjL2 03 、Sb2 03及びIn2 03はそ
れぞれ15%、25%、30%、10%、20%及び1
5%を越えると、そしてLa2 03、Y2 03 、
Gd2 03 、Yb2 03及び1r02は、何れも
4%を越えると、ガラスが不安定になると共に難溶性を
増ケ。Bi2 03は1()%を越えると強い着色を呈
するようになるので、それ以下に限定される。誓03は
、一方では高屈折率を得るのに有効であるが、その口の
増加と共に着色を増すため1%以下に限定される。Ti
 02は、ガラスの屈折率を高め、耐摩耗性を高めるが
、けが多いと着色を増すため、20%以下に限定され、
望ましくは10%以下が良い。この外、熔解の際の清澄
、潤色等の目的で、安堵のAs2 03.5b203、
F等を添加することを防げるものではない。
Like TeO2, P2O5 becomes a glass-forming oxide and is essential for increasing the hardness of the glass, increasing the devitrification resistance, and making the glass stable. If it exceeds 40%), the refractive index will decrease and the water resistance will also deteriorate. PbO increases the refractive index of glass, stabilizes the glass, and improves water resistance, but if it is less than 1%, the effect is small, and if it exceeds 50%, it makes the glass unstable. 2nO and [120 are essential for stabilizing glass and improving water resistance, but if their total content is less than 1%, their effect will be small, and if it exceeds 40% and 30%, respectively, it will cause refraction. At the same time, the water resistance decreases. Other components are not essential components and are added as appropriate for the purpose of adjusting optical constants such as refractive index and dispersion rate, improving devitrification resistance, improving meltability, and improving chemical durability. Na20, K20, Rb20
, CsO, and HgO, CaO, SrO, BaO are
If added in excess, the refractive index will decrease, the hardness will become too small, and the devitrification resistance will worsen, so the total amount is limited to 30% and 35% or less, respectively, and mainly from the viewpoint of devitrification resistance, For each component Na20 is 30%, K20
is 30%, Rb20 is 25%, CsO is 20%, and H
(10 is 20%, CaO is 20%, S'rO is 20%
, BaO is limited to 35% or less. Ta2 05 and Nb2 05 increase the hardness of the glass and improve its durability, but if their total amount exceeds 20%, the glass becomes unstable and becomes less soluble, so they should be limited to 5% and 20% or less, respectively. be done. Si02, Ge02, B2O3,
AjL2 03 , Sb2 03 and In2 03 are 15%, 25%, 30%, 10%, 20% and 1, respectively.
If it exceeds 5%, then La2 03, Y2 03,
When Gd2 03 , Yb2 03 and 1r02 exceed 4%, the glass becomes unstable and becomes less soluble. If Bi203 exceeds 1()%, it will exhibit strong coloring, so it should be limited to less than that. On the one hand, O3 is effective in obtaining a high refractive index, but it is limited to 1% or less because the coloration increases with the increase in its aperture. Ti
02 increases the refractive index of the glass and improves its abrasion resistance, but it increases discoloration if there are many injuries, so it is limited to 20% or less,
It is preferably 10% or less. In addition, As2 03.5b203 is used for purposes such as clarifying and embellishing during melting.
This does not prevent the addition of F, etc.

[実施例] 次に、本発明のテルライトガラスによる実施組成例(N
01〜No、32)と、前述した従来例1と従来例2及
び従来例3の組成例を第1表及び第2表に、透過率の比
較を図面に示した。表及び図中のNo、 、51とN0
52及びNα53は、それぞれ従来例1と従来例2及び
従来例3を示すものである。また、第1表及び第2表に
おいて、その他の酸化物とは、na20、K20 、I
tb20 、C320、H(10、CaO,5rO1B
aO、Ta2 05 、Nb2 05 、Si 02 
、Ge 02、B2O3、A1203 、Sb2 03
 、In2 03.1、a2 03、Y2 03 、G
d2 03 、Yb2 03、ZrO2、Bi2 03
 、Ti 02 、及びWO3であって、表中の各実施
例においては、数字の下にその物質名を表示した。
[Example] Next, a practical composition example (N
01 to No. 32) and the composition examples of Conventional Example 1, Conventional Example 2, and Conventional Example 3 described above are shown in Tables 1 and 2, and a comparison of transmittance is shown in the drawing. Nos., , 51 and N0 in tables and figures
52 and Nα53 indicate conventional example 1, conventional example 2, and conventional example 3, respectively. In addition, in Tables 1 and 2, other oxides include na20, K20, I
tb20, C320, H(10, CaO, 5rO1B
aO, Ta2 05 , Nb2 05 , Si 02
, Ge 02, B2O3, A1203, Sb2 03
, In2 03.1, a2 03, Y2 03 , G
d2 03 , Yb2 03, ZrO2, Bi2 03
, Ti 02 , and WO3, and in each example in the table, the name of the substance is indicated below the number.

これらのテルライトガラスは、調合した原料(バッチ)
を、金または、白金製ルツボに入れて、熔解炉中にて、
700〜1200℃で熔解し、撹拌清澄し、泡や脈理の
ない清れいなガラスとした後、プレスもしくは型に鋳込
み、常温まで徐冷して製造摩耗度及び耐水性について、
実施例Nα1〜32のうちの数例と、従来例との比較を
第3表に示した。
These tellurite glasses are made from mixed raw materials (batch)
is placed in a gold or platinum crucible and placed in a melting furnace.
After melting at 700-1200℃, stirring and clarifying to make clean glass without bubbles or striae, it is cast into a press or mold and slowly cooled to room temperature.
Table 3 shows a comparison between some of Examples Nα1 to Nα32 and the conventional example.

第  3  表 本発明の実施例N016、No、 17、Nα29及び
No、31の摩耗度は、400〜780であるのに対し
、従来例No、 51、No、52及びN053の摩耗
度は、1030〜1450であることから、本発明のデ
ルライトガラスが従来のチルライ1−ガラスよりも硬く
なって加工性が良くなっていることが判る。また、本発
明による実施例のN。
Table 3 The wear degrees of Examples No. 016, No. 17, Na29 and No. 31 of the present invention are 400 to 780, while the wear degrees of Conventional Examples No. 51, No. 52 and No. 053 are 1030. 1450, it can be seen that the Delrite glass of the present invention is harder and has better workability than the conventional Chirurai 1-glass. Further, N of the embodiment according to the present invention.

16、No、 17、No、29及びN(131の粉末
法耐水性測定値は、0.010〜0.031wt%であ
るのに対し、従来例No、 51、Nα52及びNα5
3の値は、0.044〜0.309wt%であり本発明
のテルライトガラスが、従来の、テルライトガラスより
も耐久性において優れていることが判る。これら摩耗度
、粉末法耐水性の測定は、日本光学硝子工業会規格JO
GIS−1975にもとづいて行った。
The powder method water resistance measurements of No. 16, No. 17, No. 29 and N (131) are 0.010 to 0.031 wt%, whereas conventional example No. 51, Nα52 and Nα5
The value of 3 is 0.044 to 0.309 wt%, which shows that the tellurite glass of the present invention is superior in durability to the conventional tellurite glass. These measurements of abrasion degree and powder method water resistance are based on the Japan Optical Glass Industry Association standard JO.
It was conducted based on GIS-1975.

ガラスの着色については、分光透過率にて判定したが、
図面の曲線(29,51,52及び53は、それぞれ第
1表及び第2表中における試料Nαのガラスを示す。)
が示ずように、本発明によるテルライトガラス(例:曲
線29)が、従来のテルライトガラス(曲線51.52
.53)よりも、さらに短波長域に渡って光を透過し、
かつ、各波長における透過率も高く、着色の少ないガラ
スであることが判る。
The coloring of the glass was determined by spectral transmittance.
Curves in the drawing (29, 51, 52 and 53 indicate the glass of sample Nα in Tables 1 and 2, respectively)
As shown in FIG.
.. 53), it transmits light over a shorter wavelength range,
Moreover, the transmittance at each wavelength is high, and it can be seen that the glass has little coloring.

本発明にて得られたテルライトガラスの熱的特性におけ
る屈伏点は280〜480℃であった。
The thermal characteristics of the tellurite glass obtained in the present invention had a yield point of 280 to 480°C.

[発明の効果] 以上のとおり、本発明のテルライトガラスによれば、高
屈折率を有し、着色が少ないのみならず、特に、従来の
テルライトガラスに比べて、摩耗度が小さく加工性に優
れ、かつ耐久性にも優れており、各種光学ガラスとして
、また低融点ガラスとしても用いることができ、その実
用的価値は多大なものがある。
[Effects of the Invention] As described above, the tellurite glass of the present invention not only has a high refractive index and less coloring, but also has less wear and processability than conventional tellurite glass. It has excellent properties and durability, and can be used as a variety of optical glasses and as a low-melting glass, and has great practical value.

【図面の簡単な説明】[Brief explanation of drawings]

図面は、第2表中の本発明のテルライトガラスの一例と
従来技術によるガラスとの分光透過率の相違を示す特性
図である。
The drawing is a characteristic diagram showing the difference in spectral transmittance between an example of the tellurite glass of the present invention in Table 2 and a glass according to the prior art.

Claims (2)

【特許請求の範囲】[Claims] (1)モル%で、TeO_2が10〜85、P_2 O
_5が1〜50、PbOが1〜50、Li_2 Oが0
〜30、ZnOが0〜40、Li_2 OとZnOの合
量が1〜40、Na_2 Oが0〜30、K_2 Oが
0〜30、Rb_2 Oが0〜25、Cs_2 Oが0
〜20、Na_2 OとK_2 OとRb_2 OとC
s_ Oの合量が0〜30、MgOが0〜20、CaO
が0〜20、SrOが0〜20、BaOが0〜35、M
gOとCaOとSrOとBaOの合量が0〜35、Ta
_2 O_5が0〜5、Nb_2 O_5が0〜20、
Ta_2 O_5とNb_2 O_5との合量が0〜2
0、Si O_2が0〜15、Ge O_2が0〜25
、B_2 O_3が0〜30、Al_2 O_3が0〜
10、Sb_2 O_が0〜20、In_2 O_3が
0〜15、La_2 O_3が0〜4、Y_2 O_3
が0〜4、Gd_2 O_3が0〜4、Yb_2 O_
3が0〜4、Zr O_2が0〜4、Bi_2 O_3
が0〜10、Ti O_2が0〜20、WO_3が0〜
7である組成を包有することを特徴とするテルライトガ
ラス。
(1) In mol%, TeO_2 is 10-85, P_2O
_5 is 1-50, PbO is 1-50, Li_2O is 0
~30, ZnO is 0-40, total amount of Li_2O and ZnO is 1-40, Na_2O is 0-30, K_2O is 0-30, Rb_2O is 0-25, Cs_2O is 0
~20, Na_2 O and K_2 O and Rb_2 O and C
s_ Total amount of O is 0 to 30, MgO is 0 to 20, CaO
is 0-20, SrO is 0-20, BaO is 0-35, M
The total amount of gO, CaO, SrO and BaO is 0 to 35, Ta
_2 O_5 is 0 to 5, Nb_2 O_5 is 0 to 20,
The total amount of Ta_2 O_5 and Nb_2 O_5 is 0 to 2
0, Si O_2 is 0 to 15, Ge O_2 is 0 to 25
, B_2 O_3 is 0-30, Al_2 O_3 is 0-30
10, Sb_2 O_ is 0-20, In_2 O_3 is 0-15, La_2 O_3 is 0-4, Y_2 O_3
is 0 to 4, Gd_2 O_3 is 0 to 4, Yb_2 O_
3 is 0-4, Zr O_2 is 0-4, Bi_2 O_3
is 0 to 10, TiO_2 is 0 to 20, WO_3 is 0 to
A tellurite glass characterized by having a composition of 7.
(2)モル%で、P_2 O_5が1〜40、Ti O
_2が0〜10であることを特徴とする特許請求の範囲
第(1)項記載のテルライトガラス。
(2) In mol%, P_2O_5 is 1 to 40, TiO
The tellurite glass according to claim (1), wherein _2 is 0 to 10.
JP26583685A 1985-11-26 1985-11-26 Tellurite glass Granted JPS62128946A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26583685A JPS62128946A (en) 1985-11-26 1985-11-26 Tellurite glass

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26583685A JPS62128946A (en) 1985-11-26 1985-11-26 Tellurite glass

Publications (2)

Publication Number Publication Date
JPS62128946A true JPS62128946A (en) 1987-06-11
JPH0427180B2 JPH0427180B2 (en) 1992-05-11

Family

ID=17422732

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26583685A Granted JPS62128946A (en) 1985-11-26 1985-11-26 Tellurite glass

Country Status (1)

Country Link
JP (1) JPS62128946A (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6756334B2 (en) * 2001-05-29 2004-06-29 Kabushiki Kaisha Ohara Optical glass
JP2005350672A (en) * 2004-06-10 2005-12-22 General Electric Co <Ge> Composition for scintillator array and method
US7033966B2 (en) 2003-05-21 2006-04-25 Asahi Glass Company, Limited Optical glass and lens
JP2007055883A (en) * 2005-07-28 2007-03-08 Hoya Corp Optical glass, optical element and process for production thereof
DE102005039172B3 (en) * 2005-08-17 2007-04-26 Schott Ag Lead- and arsenic-free optical niobium phosphate glass and its use
US7355788B2 (en) * 2003-07-29 2008-04-08 Alcatel Active optical fiber for Raman amplification
KR100869664B1 (en) 2006-11-13 2008-11-21 한국기초과학지원연구원 Glasses in the series of xK2O-14-xNa2O-14Nb2O5-72TeO2
JP2009263207A (en) * 2008-03-31 2009-11-12 Ohara Inc Optical glass, optical element and preform for precise press forming
US7638448B2 (en) 2006-08-12 2009-12-29 Schott Ag Lead-free niobium-bismuth-phosphate optical glass with a high index of refraction
JP2010105906A (en) * 2008-09-30 2010-05-13 Ohara Inc Optical glass, optical element, and preform for precision press-molding
US7754629B2 (en) * 2006-11-30 2010-07-13 Corning Incorporated Phosphotellurite-containing glasses, process for making same and articles comprising same
WO2011104364A1 (en) * 2010-02-26 2011-09-01 Osram Opto Semiconductors Gmbh Radiation-emitting component comprising a semiconductor chip and a conversion element and method for producing it
US8110513B2 (en) 2007-06-27 2012-02-07 Nikon Corporation Glass composition and optical member and optical instrument using the same
CN102515514A (en) * 2011-12-23 2012-06-27 沈阳大学 Transparent tellurate glass
US8551368B2 (en) 2009-10-28 2013-10-08 Shoei Chemical Inc. Conductive paste for forming a solar cell electrode
US20130298982A1 (en) * 2012-05-10 2013-11-14 E I Du Pont De Nemours And Company Glass composition and its use in conductive silver paste

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6756334B2 (en) * 2001-05-29 2004-06-29 Kabushiki Kaisha Ohara Optical glass
US7033966B2 (en) 2003-05-21 2006-04-25 Asahi Glass Company, Limited Optical glass and lens
US7355788B2 (en) * 2003-07-29 2008-04-08 Alcatel Active optical fiber for Raman amplification
JP2005350672A (en) * 2004-06-10 2005-12-22 General Electric Co <Ge> Composition for scintillator array and method
JP4498315B2 (en) * 2005-07-28 2010-07-07 Hoya株式会社 Optical glass, optical element and manufacturing method thereof
JP2007055883A (en) * 2005-07-28 2007-03-08 Hoya Corp Optical glass, optical element and process for production thereof
DE102005039172B3 (en) * 2005-08-17 2007-04-26 Schott Ag Lead- and arsenic-free optical niobium phosphate glass and its use
US7553785B2 (en) 2005-08-17 2009-06-30 Schott Ag Lead-free and arsenic-free niobium phosphate optical glass
DE102007008300B4 (en) * 2006-08-12 2011-08-25 Schott Ag, 55122 Lead-free optical glass of heavy flint and Lanthanschwerflintlage and its production and use
US7638448B2 (en) 2006-08-12 2009-12-29 Schott Ag Lead-free niobium-bismuth-phosphate optical glass with a high index of refraction
KR100869664B1 (en) 2006-11-13 2008-11-21 한국기초과학지원연구원 Glasses in the series of xK2O-14-xNa2O-14Nb2O5-72TeO2
US7754629B2 (en) * 2006-11-30 2010-07-13 Corning Incorporated Phosphotellurite-containing glasses, process for making same and articles comprising same
US8110513B2 (en) 2007-06-27 2012-02-07 Nikon Corporation Glass composition and optical member and optical instrument using the same
JP2013151421A (en) * 2007-06-27 2013-08-08 Nikon Corp Glass composition, and optical member and optical equipment using the same
JP2009263207A (en) * 2008-03-31 2009-11-12 Ohara Inc Optical glass, optical element and preform for precise press forming
JP2010105906A (en) * 2008-09-30 2010-05-13 Ohara Inc Optical glass, optical element, and preform for precision press-molding
US8551368B2 (en) 2009-10-28 2013-10-08 Shoei Chemical Inc. Conductive paste for forming a solar cell electrode
US10347787B2 (en) 2009-10-28 2019-07-09 Shoei Chemical Inc. Method for forming a solar cell electrode with conductive paste
WO2011104364A1 (en) * 2010-02-26 2011-09-01 Osram Opto Semiconductors Gmbh Radiation-emitting component comprising a semiconductor chip and a conversion element and method for producing it
JP2013520824A (en) * 2010-02-26 2013-06-06 オスラム オプト セミコンダクターズ ゲゼルシャフト ミット ベシュレンクテル ハフツング Radiation emission apparatus provided with semiconductor chip and conversion element, and manufacturing method thereof
US8890140B2 (en) 2010-02-26 2014-11-18 Osram Opto Semiconductor Gmbh Radiation-emitting component with a semiconductor chip and a conversion element and method for the production thereof
CN102515514A (en) * 2011-12-23 2012-06-27 沈阳大学 Transparent tellurate glass
US20130298982A1 (en) * 2012-05-10 2013-11-14 E I Du Pont De Nemours And Company Glass composition and its use in conductive silver paste
US9087937B2 (en) * 2012-05-10 2015-07-21 E I Du Pont De Nemours And Company Glass composition and its use in conductive silver paste

Also Published As

Publication number Publication date
JPH0427180B2 (en) 1992-05-11

Similar Documents

Publication Publication Date Title
US4732875A (en) Optical glass
JPS62100449A (en) Optical glass
JPH05270853A (en) Highly dispersive optical glass
JPH10265238A (en) Optical glass having negative anomalous dispensability
JPH06345481A (en) Production of optical glass
JP2001348244A (en) Optical glass and method for manufacturing optical product
JPS5950048A (en) Optical glass
JPS62128946A (en) Tellurite glass
JPH01308843A (en) Optical glass
JPS58125636A (en) High-refractive index optical glass having refractive index of 1.84-1.87 and abbe number of 30-33
JPH01219036A (en) Optical glass
JPH06107425A (en) Optical glass
JPS63265840A (en) Optical glass
JPH0492834A (en) Optical glass for precise press
US4439530A (en) Optical glass
JPS6140839A (en) Phosphate optical glass
JPH0517180B2 (en)
JPS63274638A (en) Composition for high refractive index low melting point glass
JPH05262533A (en) Optical glass
JPS5930731A (en) High refractive index, low dispersion and low density glass
JPS61163138A (en) Optical glass having high refractive index and low dispersion
JPH10167753A (en) Lead-free crown glass
JPH08175841A (en) Optical glass
JPH06144868A (en) Optical glass
JP3608744B2 (en) Low melting point optical glass