JPS6212769B2 - - Google Patents

Info

Publication number
JPS6212769B2
JPS6212769B2 JP55078346A JP7834680A JPS6212769B2 JP S6212769 B2 JPS6212769 B2 JP S6212769B2 JP 55078346 A JP55078346 A JP 55078346A JP 7834680 A JP7834680 A JP 7834680A JP S6212769 B2 JPS6212769 B2 JP S6212769B2
Authority
JP
Japan
Prior art keywords
extractive distillation
stage
column
distillation column
hydrocarbons
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55078346A
Other languages
Japanese (ja)
Other versions
JPS574926A (en
Inventor
Hiroshi Hokari
Shinzo Hayama
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zeon Corp
Original Assignee
Nippon Zeon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Zeon Co Ltd filed Critical Nippon Zeon Co Ltd
Priority to JP7834680A priority Critical patent/JPS574926A/en
Priority to YU01134/81A priority patent/YU113481A/en
Priority to AR81285219A priority patent/AR242624A1/en
Priority to AU70300/81A priority patent/AU541746B2/en
Priority to HU811276A priority patent/HU187335B/en
Priority to GB8114421A priority patent/GB2077753B/en
Priority to IN498/CAL/81A priority patent/IN152086B/en
Priority to NO811982A priority patent/NO156447C/en
Priority to CA000379589A priority patent/CA1180301A/en
Priority to MX187764A priority patent/MX159551A/en
Priority to AT0264881A priority patent/AT375330B/en
Publication of JPS574926A publication Critical patent/JPS574926A/en
Publication of JPS6212769B2 publication Critical patent/JPS6212769B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D3/00Distillation or related exchange processes in which liquids are contacted with gaseous media, e.g. stripping
    • B01D3/34Distillation or related exchange processes in which liquids are contacted with gaseous media, e.g. stripping with one or more auxiliary substances
    • B01D3/40Extractive distillation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C7/00Purification; Separation; Use of additives
    • C07C7/04Purification; Separation; Use of additives by distillation
    • C07C7/05Purification; Separation; Use of additives by distillation with the aid of auxiliary compounds
    • C07C7/08Purification; Separation; Use of additives by distillation with the aid of auxiliary compounds by extractive distillation

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Vaporization, Distillation, Condensation, Sublimation, And Cold Traps (AREA)

Description

【発明の詳細な説明】 本発明は、極性抽出溶剤を用いて2段の抽出蒸
留工程によりC4炭化水素混合物から比較的易溶
性炭化水素である1・3−ブタジエンを分離する
方法において、先ず第1段目の抽出蒸留工程にお
いてパラフイン系及びオレフイン系炭化水素など
の比較的難溶性炭化水素を除去し、次いで第2段
目の抽出蒸留工程においてアセチレン系炭化水素
などの1・3−ブタジエンより易溶性の炭化水素
を除去することから成る2段の抽出蒸留法におけ
る改良方法に関するものである。なお、本発明で
いう比較的難溶性炭化水素及び比較的易溶性炭化
水素とは、抽出溶剤に対する炭化水素類の溶解性
の差を定性的に表現したもので、パラフイン系炭
化水素及びオレフイン系炭化水素は比較的難溶性
炭化水素であり、共役ジエン系炭化水素及びアセ
チレン系炭化水素は比較的易溶性炭化水素という
ことができる。 共役ジオレフイン系炭化水素、特に1・3−ブ
タジエンは合成ゴム、繊維、樹脂等の重要な出発
原料となる。1・3−ブタジエンは、LPG、ナフ
サ、灯油等の熱分解によつてエチレン等を製造す
る際に副生するC4炭化水素留分中に可成りの量
が含まれている。また、パラフイン系又はオレフ
イン系炭化水素の脱水素あるいはその他の合成法
によつても得られるが、いずれにしても一般には
パラフイン系炭化水素、オレフイン系炭化水素、
共役ジオレフイン系炭化水素等の混合物として得
られる。これらの炭化水素混合物から1・3−ブ
タジエンを分離精製する方法として、ジメチルホ
ルムアミド、N−メチルピロリドン、フルフラー
ル、アセトニトリル等の抽出溶剤を用いる1段乃
至2段法による抽出蒸留法が知られている。 通常、抽出蒸留は抽出蒸留塔と放散塔よりなる
装置を用いて行なわれ、その際抽出蒸留塔は常圧
乃至加圧下にて操作され、また放散塔は抽出溶剤
に溶解している比較的易溶性炭化水素をできるだ
け完全に放散させるために常圧又は減圧下で操作
される。第1段目の抽出蒸留工程の放散塔塔頂よ
り回収された比較的易溶性炭化水素は更に精製す
るために第2段目の抽出蒸留工程の抽出蒸留塔へ
送られるが、その場合液化してポンプによつて送
るか圧縮機によつて昇圧したのち移送するのが常
である。第2段目の抽出蒸留工程において1・3
−ブタジエンより易溶性の炭化水素が抽出溶剤の
存在下にて蒸留分離され、1・3−ブタジエンは
第2段目の抽出蒸留塔塔頂より回収されて製品と
して取り出されるか、あるいは更に継続して微量
不純物の除去のための次の工程に付されることに
なる。 而して、本発明によれば抽出溶剤を用いて抽出
蒸留塔と放散塔とを有する抽出蒸留工程を2段に
組合せた2段抽出蒸留法により炭化水素混合物か
ら特定の比較的易溶性炭化水素を分離する方法に
おいて、第1段抽出蒸留塔塔底圧を第2段抽出蒸
留塔塔底圧より高い圧力にて操作すると共に、第
1段抽出蒸留塔と第1段放散塔との間にプレスト
リツピング塔を設け、該プレストリツピング塔を
第1段抽出蒸留塔塔底圧と等しいか或いは低く且
つ第2段抽出蒸留塔塔底圧と等しいか或いは高い
圧力にて操作することにより、プレストリツピン
グ塔において発生した比較的易溶性炭化水素ガス
を第1段放散塔と圧縮機あるいはポンプを経由す
ることなく直接第2段抽出蒸留塔へ圧送すること
を特徴とする方法が提供される。 本発明のこのような方法によれば、第1段目の
抽出蒸留工程と第2段目の抽出蒸留工程の間に介
在するポンプあるいは圧縮機の電力を削減し、か
つ第1段目の放散塔の負荷を軽減することができ
るなど大きな効果を奏する。本発明においては、
プレストリツピング塔にて放散される比較的易溶
性炭化水素の量を最大にすることが次の操作であ
る第1段放散塔のストリツピング操作及び第1段
放散塔から第2段抽出蒸留塔への比較的易溶性炭
化水素の移送のための圧縮機の負荷あるいは液輸
送のポンプの負荷を最少に軽減することになる。
それ故、本発明においては、プレストリツピング
塔における放散操作の補助としてプレストリツピ
ング塔内の抽出溶剤の液温を上げるためのリボイ
ラーをプレストリツピング塔に設置することが望
ましい。 次に図面に従つて本発明を説明するが、この例
はC4炭化水素から比較的易溶性炭化水素である
1・3−ブタジエンの分離方法を示す一例であつ
て、これによつて本発明が限定されるものでない
ことは明らかである。 第1図は本発明方法による抽出蒸留プロセスを
示しており、第2図は従来法による抽出蒸留プロ
セスを示している。原料炭化水素混合物はライン
1から第1段抽出蒸留塔DAの中間部へ供給され
る。抽出蒸留により比較的難溶性炭化水素は塔頂
部に濃縮され、全量がライン2を経由して留出物
として系外に取り出される。抽出溶剤は第1段抽
出蒸留塔DAの塔頂部にライン3により供給さ
れ、塔の下方に流下しながら抽出蒸留操作によつ
て比較的易溶性炭化水素に富む溶液となる。抽出
蒸留塔内の溶剤濃度は通常高濃度に維持する必要
があり、その供給量は原料炭化水素混合物の数倍
乃至十数倍を目安に蒸留計算により定められる。
本発明の方法においては、ジメチルホルムアミ
ド、N−メチルピロリドン、フルフラール、アセ
トニトリル等の極性溶剤、就中ジメチルホルムア
ミドが好適に使用できる。 第1段抽出蒸留塔は塔頂における比較的難溶性
炭化水素が冷却水によつて凝縮され得る温度に平
衡な圧力によつて操作されるのが通常であり、塔
底では塔内の圧力損失により塔頂より数気圧高く
なつている。第1段抽出蒸留塔塔底には抽出蒸留
により必要とされる熱を供給するためのリボイラ
ーEAが設備されており、このリボイラーは塔底
より抜き出される抽出溶剤中への比較的易溶性炭
化水素の溶解量をコントロールする役目をも果し
ている。すなわち、ライン4より抜き出される抽
出溶剤中の比較的易溶性炭化水素濃度は塔底にお
ける該炭化水素蒸気濃度と平衡関係にあり高温で
は溶解度が下り、低温では溶解度が上るので、比
較的易溶性炭化水素の抽出溶剤中への溶解量を温
度によつて増減させることができる。一方、比較
的易溶性炭化水素を溶解する抽出溶剤を一定以上
の高温に維持すると1・3−ブタジエンの重合が
促進され、生成したポリマーが装置内に付着し熱
交換器等の機能の低下をきたすので、実験的又は
経験的に塔底温度の上限は決められることにな
る。通常の抽出蒸留では第1段目の抽出蒸留塔塔
底温度をこの上限温度以下に保つため、必然的に
比較的易溶性炭化水素の抽出溶剤への溶解量は最
適な塔底抽出量よりも大きくなり抽出蒸留塔の物
質収支を取る必要上過剰に溶解した比較的易溶性
炭化水素を第1段目の放散塔DC、圧縮機Kを経
由して第1段目の抽出蒸留塔DAにライン8によ
り戻す方法がとられている。 第1段目の抽出蒸留塔塔底より抜き出された抽
出物を含む抽出溶剤はライン4を経て本発明方法
により新たに設けられたプレストリツピング塔
DBへ送り、該プレストリツピング塔を第1段抽
出蒸留塔塔底圧と等しいかより低く且つ第2段抽
出蒸留塔塔底圧と等しいかより高い圧力にて操作
することによつて抽出溶剤中の比較的易溶性炭化
水素の一部を蒸発せしめ、さらに好ましくはプレ
ストリツピング塔塔底部に設置したリボイラー
EBで比較的易溶性炭化水素の蒸発に要する熱を
補給することにより、できるだけ多くの比較的易
溶性炭化水素を蒸発せしめ、発生ガスを直接第2
段抽出蒸留塔へ圧力移送すれば、従来法における
第1段放散塔における比較的易溶性炭化水素のス
トリツピング操作及び第1段放散塔から第2段抽
出蒸留塔への比較的易溶性炭化水素の移送のため
の圧縮機の負荷を軽減させることが可能となる。
本発明で使用するプレストリツピング塔としては
空塔あるいはケトル型の熱交換器が適宜利用でき
る。 プレストリツピング塔塔底より抜き出された抽
出溶剤はライン5を通つて第1段放散塔DCに送
られ、ここで抽出溶剤より完全に比較的易溶性炭
化水素を分離回収する。放散された比較的易溶性
炭化水素は蒸気として圧縮機Kに導入し、第1段
抽出蒸留塔塔底圧力よりやや高い圧力まで昇圧さ
れ、圧縮された炭化水素ガスの全量あるいは大部
分がライン8により第1段抽出蒸留塔塔底に戻さ
れる。なお、第1段抽出蒸留塔における比較的易
溶性炭化水素中の比較的難溶性炭化水素の濃度は
圧縮機より排出されるガスの一部をライン9によ
り第2段抽出蒸留塔へ供給することによりコント
ロールされる。 第2段抽出蒸留工程は第1段抽出蒸留工程で分
離回収した比較的易溶性炭化水素類の内から更に
易溶性のアセチレン系炭化水素類などを抽出溶剤
の存在下にて抽出蒸留法により除去する工程であ
り、第2段抽出蒸留塔DEとアセチレン系炭化水
素類を含む抽出溶剤からアセチレン系炭化水素類
などを放散する第2段放散塔DFから構成されて
いる。第1段抽出蒸留工程からの比較的易溶性炭
化水素がライン10によつて第2段抽出蒸留塔
DEへ供給され、ここで、ライン12からの抽出
溶剤と向流に接触し、アセチレン系炭化水素類な
どの濃縮を行い、目的回収物である1・3−ブタ
ジエンは第2段抽出蒸留塔DEの塔頂よりライン
13によつて回収され、通常は微量不純物の除去
のために更に数次に及ぶ蒸留工程にかけられ最終
製品として系外に取り出されることになる。 一方、アセチレン系炭化水素類などを吸収した
溶剤溶液は、第2段抽出蒸留塔DEの塔底からラ
イン14によつて第2段放散塔DFの塔頂に送ら
れ、アセチレン系炭化水素類は第2段放散塔中央
付近よりライン17により抜き出され同伴する溶
剤を回収したのち、燃料などに供される。なお、
第2段放散塔塔頂ガスは1・3−ブタジエンを可
成り濃い濃度で含んでいるのでライン15によつ
て圧縮機Kの吸込側に戻して回収することが望ま
しい。 第1放散塔DC及び第2放散塔DFの塔底から
夫々ライン11,16により抜き出された1・3
−ブタジエン及びアセチレン系炭化水素類などを
含まない抽出溶剤は、溶剤のもつ熱を回収した
後、水冷却器EGで所定の温度に調節され、流量
をコントロールした上で夫々第1段抽出蒸留塔及
び第2段抽出蒸留塔へ再循環される。 以上の如く、本発明の方法によれば第1段抽出
蒸留塔塔底において分離回収した比較的易溶性炭
化水素の大部分を第1段放散塔DC及び圧縮機を
経由させないで第2段抽出蒸留塔へ供給すること
ができるので、従来の2段抽出蒸留法よりも第1
段放散塔の負荷を下げ、かつ圧縮機の動力を著し
く軽減することができるなどの利点を有する。 以下、実施例を挙げて本発明を具体的に説明す
る。 実施例 第1図(本発明法)及び第2図(従来法)に示
す装置を用いた。各塔の段数は次の通りである。 第1抽出蒸留塔 140段 第1放散塔 15段 プレストリツピング塔 室塔 第2抽出蒸留塔 60段 第2放散塔 20段 第1段抽出蒸留塔の中段に、次の組成を有する
原料を毎時15.29Nm3の割合で供給し、塔頂より
ジメチルホルムアミド溶剤を毎時276の割合で
供給し抽出蒸留を行つた。 〔C4炭化水素混合物組成〕比較的難溶性炭化水素 重量% ブタン類 2.5 1−ブテン 18.0 i−ブテン 24.7 2−ブテン類 9.6比較的易溶性炭化水素 重量% 1・3−ブタジエン 43.6 メチルアセチレン 0.1 1・2−ブタジエン 0.2 エチルアセチレン 0.2 ビニルアセチレン 0.6 C5炭化水素類 0.5 第1段抽出蒸留塔、第2段抽出蒸留塔及びプレ
ストリツピング塔の操作条件は次表の通りであ
り、このとき圧縮機の吸込ガス量は毎時7.1Nm3
であつた。参考までに従来法による第2図の場
合、同一操作条件で圧縮機の吸込ガス量は毎時
11.4Nm3であつた。なお、本発明法及び従来法と
も第1段抽出蒸留塔塔頂の比較的難溶性炭化水素
の1・3−ブタジエン濃度は0.2重量%であり、
第2段抽出蒸留塔塔頂から回収分離された1・3
−ブタジエンの純度は96.5重量%であつた。 【表】
DETAILED DESCRIPTION OF THE INVENTION The present invention provides a method for separating 1,3-butadiene, a relatively easily soluble hydrocarbon, from a C4 hydrocarbon mixture by a two-stage extractive distillation process using a polar extraction solvent. Relatively insoluble hydrocarbons such as paraffinic and olefinic hydrocarbons are removed in the first extractive distillation process, and then 1,3-butadiene such as acetylene hydrocarbons are removed in the second extractive distillation process. The present invention relates to an improved two-stage extractive distillation process consisting of removing easily soluble hydrocarbons. In addition, relatively poorly soluble hydrocarbons and relatively easily soluble hydrocarbons as used in the present invention qualitatively express the difference in solubility of hydrocarbons in an extraction solvent, and include paraffinic hydrocarbons and olefinic hydrocarbons. Hydrogen is a relatively poorly soluble hydrocarbon, and conjugated diene hydrocarbons and acetylene hydrocarbons can be said to be relatively easily soluble hydrocarbons. Conjugated diolefin hydrocarbons, especially 1,3-butadiene, are important starting materials for synthetic rubbers, fibers, resins, etc. A considerable amount of 1,3-butadiene is contained in the C4 hydrocarbon fraction produced as a by-product when producing ethylene and the like through thermal decomposition of LPG, naphtha, kerosene, and the like. It can also be obtained by dehydrogenating paraffinic or olefinic hydrocarbons or by other synthetic methods, but in any case, generally paraffinic hydrocarbons, olefinic hydrocarbons,
Obtained as a mixture of conjugated diolefin hydrocarbons, etc. As a method for separating and purifying 1,3-butadiene from these hydrocarbon mixtures, a one- or two-stage extractive distillation method using an extraction solvent such as dimethylformamide, N-methylpyrrolidone, furfural, or acetonitrile is known. . Normally, extractive distillation is carried out using a device consisting of an extractive distillation column and a stripping column. At this time, the extractive distillation column is operated under normal pressure or pressurized pressure, and the stripping column is a relatively simple device that is dissolved in the extraction solvent. It is operated under normal or reduced pressure in order to dissipate soluble hydrocarbons as completely as possible. The relatively easily soluble hydrocarbons recovered from the top of the stripping column in the first extractive distillation process are sent to the extractive distillation column in the second extractive distillation process for further purification, but in that case they are not liquefied. Usually, it is sent by a pump or after being pressurized by a compressor and then transferred. 1.3 in the second stage extractive distillation process
- Hydrocarbons that are more easily soluble than butadiene are separated by distillation in the presence of an extraction solvent, and 1,3-butadiene is recovered from the top of the second stage extractive distillation column and taken out as a product, or further continued. The sample is then subjected to the next step to remove trace impurities. According to the present invention, specific relatively easily soluble hydrocarbons can be extracted from a hydrocarbon mixture by a two-stage extractive distillation method in which an extractive distillation process having an extractive distillation column and a stripping column is combined into two stages using an extraction solvent. In this method, the bottom pressure of the first-stage extractive distillation column is operated at a pressure higher than the bottom pressure of the second-stage extractive distillation column, and the pressure between the first-stage extractive distillation column and the first-stage stripping column is By providing a pre-stripping column and operating the pre-stripping column at a pressure equal to or lower than the first-stage extractive distillation column bottom pressure and equal to or higher than the second-stage extractive distillation column bottom pressure, Provided is a method characterized in that a relatively easily soluble hydrocarbon gas generated in a pre-stripping column is directly pumped to a second stage extractive distillation column without passing through a first stage stripping column and a compressor or pump. . According to such a method of the present invention, the power of the pump or compressor interposed between the first-stage extractive distillation process and the second-stage extractive distillation process can be reduced, and the power consumption of the first-stage extractive distillation process can be reduced. This has great effects, such as being able to reduce the load on the tower. In the present invention,
The next operation is to maximize the amount of relatively easily soluble hydrocarbons stripped in the pre-stripping column.The stripping operation of the first stage stripping column and from the first stage stripping column to the second stage extractive distillation column. The load on the compressor for transferring relatively easily soluble hydrocarbons or the load on the pump for liquid transfer is reduced to a minimum.
Therefore, in the present invention, it is desirable to install a reboiler in the pre-stripping column to increase the liquid temperature of the extraction solvent in the pre-stripping column as an aid to the dispersion operation in the pre-stripping column. Next, the present invention will be explained according to the drawings. This example is an example showing a method for separating 1,3-butadiene, which is a relatively easily soluble hydrocarbon, from C4 hydrocarbons. It is clear that this is not a limitation. FIG. 1 shows the extractive distillation process according to the method of the present invention, and FIG. 2 shows the extractive distillation process according to the conventional method. The raw hydrocarbon mixture is fed from line 1 to the middle part of the first stage extractive distillation column DA. Relatively insoluble hydrocarbons are concentrated at the top of the column by extractive distillation, and the entire amount is taken out of the system as a distillate via line 2. The extraction solvent is supplied to the top of the first-stage extractive distillation column DA through line 3, and as it flows down the column, it is subjected to extractive distillation operations to become a solution relatively rich in easily soluble hydrocarbons. The concentration of the solvent in the extractive distillation column usually needs to be maintained at a high concentration, and its supply amount is determined by distillation calculations, with the amount being several to ten times as large as the raw material hydrocarbon mixture.
In the method of the present invention, polar solvents such as dimethylformamide, N-methylpyrrolidone, furfural, and acetonitrile, especially dimethylformamide, can be suitably used. The first-stage extractive distillation column is normally operated at a pressure that is equilibrated to the temperature at which relatively insoluble hydrocarbons at the top of the column can be condensed by cooling water, and at the bottom of the column there is a pressure loss within the column. Therefore, the temperature is several atmospheres higher than the top of the tower. A reboiler EA is installed at the bottom of the first-stage extractive distillation column to supply the heat required for extractive distillation. It also plays a role in controlling the amount of hydrogen dissolved. In other words, the concentration of relatively easily soluble hydrocarbons in the extraction solvent drawn out from line 4 is in an equilibrium relationship with the hydrocarbon vapor concentration at the bottom of the column, and the solubility decreases at high temperatures and increases at low temperatures. The amount of hydrocarbon dissolved in the extraction solvent can be increased or decreased depending on the temperature. On the other hand, if the extraction solvent that dissolves relatively easily soluble hydrocarbons is maintained at a high temperature above a certain level, the polymerization of 1,3-butadiene will be promoted, and the resulting polymer will adhere to the inside of the equipment, causing a decline in the functionality of heat exchangers, etc. Therefore, the upper limit of the bottom temperature must be determined experimentally or empirically. In normal extractive distillation, the temperature at the bottom of the extractive distillation column in the first stage is kept below this upper limit temperature, so the amount of relatively easily soluble hydrocarbons dissolved in the extraction solvent is inevitably higher than the optimal amount extracted from the bottom. Due to the need to balance the mass of the extractive distillation column, the relatively easily soluble hydrocarbons dissolved in excess are passed through the first-stage stripping column DC and compressor K to the first-stage extractive distillation column DA. 8 has been adopted. The extraction solvent containing the extract extracted from the bottom of the first-stage extractive distillation column passes through line 4 to a pre-stripping column newly installed by the method of the present invention.
DB and operating the pre-stripping column at a pressure equal to or lower than the first stage extractive distillation column bottom pressure and equal to or higher than the second stage extractive distillation column bottom pressure. A reboiler is preferably installed at the bottom of the prestripping column to evaporate a portion of the relatively easily soluble hydrocarbons in the prestripping column.
By replenishing the heat required to evaporate relatively easily soluble hydrocarbons with EB, as much relatively easily soluble hydrocarbons as possible can be evaporated and the generated gas can be directly
Pressure transfer to the stage extractive distillation column eliminates the stripping operation of relatively easily soluble hydrocarbons in the first stage stripping column and the transfer of relatively easily soluble hydrocarbons from the first stage stripping column to the second stage extractive distillation column in the conventional method. It becomes possible to reduce the load on the compressor for transfer.
As the pre-stripping column used in the present invention, an empty column or a kettle type heat exchanger can be used as appropriate. The extraction solvent extracted from the bottom of the pre-stripping tower is sent through line 5 to the first stage stripping tower DC, where relatively easily soluble hydrocarbons are completely separated and recovered from the extraction solvent. The released relatively easily soluble hydrocarbons are introduced as vapor into the compressor K, and the pressure is increased to a pressure slightly higher than the bottom pressure of the first stage extractive distillation column. is returned to the bottom of the first stage extractive distillation column. The concentration of relatively poorly soluble hydrocarbons in the relatively easily soluble hydrocarbons in the first stage extractive distillation column is determined by supplying a portion of the gas discharged from the compressor to the second stage extractive distillation column via line 9. controlled by. The second stage extractive distillation process further removes easily soluble acetylene hydrocarbons from among the relatively easily soluble hydrocarbons separated and recovered in the first stage extractive distillation process in the presence of an extraction solvent. This process consists of a second-stage extractive distillation column DE and a second-stage stripping column DF that dissipates acetylene hydrocarbons and the like from the extraction solvent containing acetylene hydrocarbons. Relatively easily soluble hydrocarbons from the first stage extractive distillation process are transferred via line 10 to the second stage extractive distillation column.
The 1,3-butadiene is supplied to the DE, where it comes into contact with the extraction solvent from line 12 in a countercurrent flow to concentrate acetylene hydrocarbons, etc. It is recovered from the top of the column via line 13, and is usually subjected to several further distillation steps to remove trace impurities, and then taken out of the system as a final product. On the other hand, the solvent solution that has absorbed acetylene hydrocarbons is sent from the bottom of the second extractive distillation column DE to the top of the second stripping column DF via line 14, and the acetylene hydrocarbons are After being extracted from near the center of the second stage stripping tower through line 17 and collecting the accompanying solvent, it is used as fuel. In addition,
Since the second-stage stripping column top gas contains 1,3-butadiene at a fairly high concentration, it is desirable to return it to the suction side of the compressor K via line 15 and recover it. 1 and 3 extracted from the bottoms of the first stripping tower DC and the second stripping tower DF through lines 11 and 16, respectively.
- After recovering the heat of the extraction solvent that does not contain butadiene or acetylene hydrocarbons, it is adjusted to a predetermined temperature with a water cooler EG, and after controlling the flow rate, it is passed through the first extractive distillation column. and recycled to the second stage extractive distillation column. As described above, according to the method of the present invention, most of the relatively easily soluble hydrocarbons separated and recovered at the bottom of the first stage extractive distillation column are extracted in the second stage without passing through the first stage stripping column DC and the compressor. Since it can be supplied to the distillation column, the first
It has the advantage of lowering the load on the stage stripping tower and significantly reducing the power of the compressor. The present invention will be specifically described below with reference to Examples. Example The apparatus shown in FIG. 1 (method of the present invention) and FIG. 2 (conventional method) was used. The number of stages in each tower is as follows. 1st extractive distillation column 140-stage 1st stripping tower 15-stage pre-stripping column Chamber 2nd extractive distillation column 60-stage 2nd stripping tower 20-stage 1st extractive distillation column Into the middle stage of the 1st extractive distillation column, a raw material having the following composition is charged every hour. Extractive distillation was carried out by feeding dimethylformamide solvent at a rate of 276 / hour from the top of the column. [C 4 hydrocarbon mixture composition] Relatively poorly soluble hydrocarbons ( wt% ) Butanes 2.5 1-butene 18.0 i-butene 24.7 2-butenes 9.6 Relatively easily soluble hydrocarbons (wt %) 1,3-butadiene 43.6 Methylacetylene 0.1 1・2-Butadiene 0.2 Ethyl acetylene 0.2 Vinyl acetylene 0.6 C5 hydrocarbons 0.5 The operating conditions of the first stage extractive distillation column, second stage extractive distillation column and pre-stripping column are as shown in the table below. The suction gas amount is 7.1Nm 3 per hour.
It was hot. For reference, in the case of the conventional method shown in Figure 2, the amount of gas sucked into the compressor per hour under the same operating conditions is
It was 11.4Nm3 . In addition, in both the method of the present invention and the conventional method, the concentration of 1,3-butadiene in the relatively poorly soluble hydrocarbon at the top of the first stage extractive distillation column is 0.2% by weight.
1 and 3 collected and separated from the top of the second stage extractive distillation column
- The purity of the butadiene was 96.5% by weight. 【table】

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の方法に従う抽出蒸留法の一例
を示す線図、第2図は従来法に従う抽出蒸留法を
示す線図である。 図において、DAは第1段抽出蒸留塔、DBはプ
レストリツピング塔、DCは第1段放散塔、DEは
第2段抽出蒸留塔、DFは第2段放散塔、EA,
EB,EC,EE,EF及びEGは熱交換器、Kは圧
縮機、1〜17は導管である。
FIG. 1 is a diagram showing an example of the extractive distillation method according to the method of the present invention, and FIG. 2 is a diagram showing an example of the extractive distillation method according to the conventional method. In the figure, DA is the first extractive distillation column, DB is the pre-stripping column, DC is the first stripping column, DE is the second extractive distillation column, DF is the second stripping column, EA,
EB, EC, EE, EF and EG are heat exchangers, K is a compressor, and 1 to 17 are conduits.

Claims (1)

【特許請求の範囲】 1 極性抽出溶剤の存在下で抽出蒸留塔と放散塔
とを有する抽出蒸留工程を2段に組合せた抽出蒸
留法によりC4炭化水素混合物から1・3−ブタ
ジエンを分離する方法において、第1段抽出蒸留
塔塔底圧を第2段抽出蒸留塔塔底圧より高い圧力
で操作すると共に、第1段抽出蒸留塔と第1段放
散塔との間にプレストリツピング塔を設けて該プ
レストリツピング塔を第1段抽出蒸留塔塔底圧と
等しいか或いは低く且つ第2段抽出蒸留塔塔底圧
と等しいか或いは高い圧力で操作することによ
り、プレストリツピング塔において発生した比較
的易溶性炭化水素ガスを直接第2段抽出蒸留塔へ
圧送することを特徴とするC4炭化水素混合物か
ら1・3−ブタジエンを分離する方法。 2 極性抽出溶剤がジメチルホルムアミドである
特許請求の範囲第1項記載の分離方法。
[Claims] 1. Separation of 1,3-butadiene from a C 4 hydrocarbon mixture in the presence of a polar extraction solvent by an extractive distillation method that combines two stages of extractive distillation steps having an extractive distillation column and a stripping column. In the method, the bottom pressure of the first-stage extractive distillation column is operated at a pressure higher than the bottom pressure of the second-stage extractive distillation column, and a pre-stripping column is provided between the first-stage extractive distillation column and the first-stage stripping column. and operating the prestripping column at a pressure equal to or lower than the bottom pressure of the first stage extractive distillation column and equal to or higher than the bottom pressure of the second stage extractive distillation column. A method for separating 1,3-butadiene from a C 4 hydrocarbon mixture, characterized in that the relatively easily soluble hydrocarbon gas generated is directly pumped to a second stage extractive distillation column. 2. The separation method according to claim 1, wherein the polar extraction solvent is dimethylformamide.
JP7834680A 1980-06-12 1980-06-12 Separation of relatively easily soluble hydrocarbon from hydrocarbon mixture Granted JPS574926A (en)

Priority Applications (11)

Application Number Priority Date Filing Date Title
JP7834680A JPS574926A (en) 1980-06-12 1980-06-12 Separation of relatively easily soluble hydrocarbon from hydrocarbon mixture
YU01134/81A YU113481A (en) 1980-06-12 1981-05-04 Process for the separation of relativey easily soluble hydrocarbons from a hydrocarbon mixture
AR81285219A AR242624A1 (en) 1980-06-12 1981-05-06 Process for extractive distillation of hydrocarbons
AU70300/81A AU541746B2 (en) 1980-06-12 1981-05-08 Extractive distillation of hydrocarbons e.g. isoprene butadiene
HU811276A HU187335B (en) 1980-06-12 1981-05-11 Process for the separation of easily soluble hydrocarbon components from hydrocarbon mixtures
GB8114421A GB2077753B (en) 1980-06-12 1981-05-12 Process for extractive distillation of hydrocarbons
IN498/CAL/81A IN152086B (en) 1980-06-12 1981-05-12
NO811982A NO156447C (en) 1980-06-12 1981-06-11 PROCEDURE FOR SEPARATION OF RELATIVELY EASY LOOSED HYDROCARBONES FROM A HYDROCARBON MIXTURE.
CA000379589A CA1180301A (en) 1980-06-12 1981-06-11 Process for separating relatively easily soluble hydrocarbons from a hydrocarbon mixture
MX187764A MX159551A (en) 1980-06-12 1981-06-11 IMPROVED PROCEDURE FOR SEPARATING 1,3-BUTADIENE
AT0264881A AT375330B (en) 1980-06-12 1981-06-12 METHOD FOR SEPARATING RELATIVELY EASILY SOLUBLE HYDROCARBONS FROM A HYDROCARBON MIXTURE

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7834680A JPS574926A (en) 1980-06-12 1980-06-12 Separation of relatively easily soluble hydrocarbon from hydrocarbon mixture

Publications (2)

Publication Number Publication Date
JPS574926A JPS574926A (en) 1982-01-11
JPS6212769B2 true JPS6212769B2 (en) 1987-03-20

Family

ID=13659421

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7834680A Granted JPS574926A (en) 1980-06-12 1980-06-12 Separation of relatively easily soluble hydrocarbon from hydrocarbon mixture

Country Status (11)

Country Link
JP (1) JPS574926A (en)
AR (1) AR242624A1 (en)
AT (1) AT375330B (en)
AU (1) AU541746B2 (en)
CA (1) CA1180301A (en)
GB (1) GB2077753B (en)
HU (1) HU187335B (en)
IN (1) IN152086B (en)
MX (1) MX159551A (en)
NO (1) NO156447C (en)
YU (1) YU113481A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4134391B2 (en) * 1998-04-07 2008-08-20 日本ゼオン株式会社 Separation and purification apparatus and method for separation and purification of unsaturated hydrocarbons
PL201117B1 (en) * 2003-10-20 2009-03-31 Polski Koncern Naftowy Orlen S Method for releasing butadiene
US8080140B2 (en) 2007-04-18 2011-12-20 Exxonmobil Chemical Patents Inc. Process for debottlenecking a system for the separation of a conjugated diolefin
JP5246027B2 (en) * 2009-05-12 2013-07-24 Jsr株式会社 Method for producing butadiene

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54138508A (en) * 1978-04-05 1979-10-27 Goodyear Tire & Rubber Separation of conjugate dioleffin

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54138508A (en) * 1978-04-05 1979-10-27 Goodyear Tire & Rubber Separation of conjugate dioleffin

Also Published As

Publication number Publication date
IN152086B (en) 1983-10-15
AR242624A1 (en) 1993-04-30
YU113481A (en) 1983-12-31
AU541746B2 (en) 1985-01-17
JPS574926A (en) 1982-01-11
HU187335B (en) 1985-12-28
NO156447B (en) 1987-06-15
MX159551A (en) 1989-07-03
CA1180301A (en) 1985-01-02
NO156447C (en) 1987-09-23
AT375330B (en) 1984-07-25
GB2077753B (en) 1983-09-21
AU7030081A (en) 1981-12-17
GB2077753A (en) 1981-12-23
ATA264881A (en) 1983-12-15
NO811982L (en) 1981-12-14

Similar Documents

Publication Publication Date Title
SU725552A1 (en) Method of separating mixture of different saturation degree c4-hydrocarbons
JP5038573B2 (en) Method and apparatus for processing C4-cuts
JP4283966B2 (en) Integrated deethanizer / ethylene fractionator
JP5327485B2 (en) Method for separating 1,3-butadiene from crude C4 fraction using acetylene conversion
US6337429B1 (en) Method for separating a C4-hydrocarbon mixture
US7871514B2 (en) Extractive distillation processes using water-soluble extractive solvents
EP2257353B1 (en) Improved extractive distillation processes using water-soluble extractive solvents
US8252150B1 (en) Extractive distillation process for recovering butadiene from C4 hydrocarbon mixtures
EP0004658A1 (en) Acetylenes removal from diolefin streams by extractive distillation
TW201934525A (en) Method for separating aromatic hydrocarbon using extractive distillation
KR101084866B1 (en) Method for the Separation of a Crude C4 Cut
JPS6143331B2 (en)
RU2318791C2 (en) Crude 1,3-butadiene processing method
CN100378048C (en) Method of extracting, rectifying and separating aromatic hydrocarbons and extracting and rectifying apparatus
US3798132A (en) Butadiene recovery process
JPS6212769B2 (en)
US2356986A (en) Process for separating hydrocarbons
JPS6210483B2 (en)
US4713940A (en) Process for obtaining C2+ or C3+ hydrocarbons from gaseous mixtures
JPS60156623A (en) Separation of c4-hydrocarbon mixture by extractive distillation
KR840002342B1 (en) Process for extractive distillation of hydrocarbons
KR810001632B1 (en) Separation of a mixture of c4/hydrocarbons by extractive
JP2020506184A (en) Method for obtaining pure 1,3-butadiene
JPS6217976B2 (en)
JPS6327441A (en) Method for separating hydrocarbon blend