JPS62127686A - Laser doppler speed indicator - Google Patents

Laser doppler speed indicator

Info

Publication number
JPS62127686A
JPS62127686A JP26783885A JP26783885A JPS62127686A JP S62127686 A JPS62127686 A JP S62127686A JP 26783885 A JP26783885 A JP 26783885A JP 26783885 A JP26783885 A JP 26783885A JP S62127686 A JPS62127686 A JP S62127686A
Authority
JP
Japan
Prior art keywords
speed
variation
moving object
distance
laser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP26783885A
Other languages
Japanese (ja)
Other versions
JPH0355797B2 (en
Inventor
Hideo Tashiro
秀夫 田代
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP26783885A priority Critical patent/JPS62127686A/en
Publication of JPS62127686A publication Critical patent/JPS62127686A/en
Publication of JPH0355797B2 publication Critical patent/JPH0355797B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To reduce an error in speed measurement due to variation in measured distance by measuring the quantity of variation in the measured distance between an optical transmission system and a moving body from reference distance and correcting the error in speed measurement. CONSTITUTION:An optical displacement meter 11 which uses the principle of triangulation measures the quantity DELTAlp of variation in the measured distance between optical transmission systems 5a and 5b and moving body 1 from the reference distance l0 and the quantity DELTAlp of variation outputted by the displacement meter 11 and a speed measured value v' outputted by a speed computing element 10 are inputted to a measured distance correcting circuit 13. The measured distance correcting circuit 13 performs arithmetic operation shown by an equation. When a proportional constant (k) is set equal to an error in measurement per unit measured distance variation, the output v'' of the measured distance correcting circuit 13 becomes equal to the speed (v) of the moving body 1 and the error in speed measurement due to variation in measured distance is reduced.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、光のドツプラ効果を利用して鉄鋼。[Detailed description of the invention] [Industrial application field] This invention utilizes the Doppler effect of light to produce steel.

非鉄金属等製造ラインの移動物体の速度を非接触で測定
するレーザドツプラ速度計に関するものである。
This invention relates to a laser Doppler velocimeter that non-contactly measures the speed of moving objects on a production line for non-ferrous metals.

〔従来の技術〕[Conventional technology]

一般に、移動物体の速度を光のドツプラ効果を利用して
測定するには、第2図に示すような構成のレーザドツプ
ラ速度計が用いられていた。第2図は例えば三菱電機枝
軸voz、5B・No7・1984第34頁〜第38頁
に記載の光フアイバセンサーレーザ干渉計−に示された
従来のレーザドツプラ速度計の構成図であり2図におい
て+11は移動物体。
Generally, a laser Doppler velocimeter having a configuration as shown in FIG. 2 has been used to measure the speed of a moving object using the Doppler effect of light. FIG. 2 is a configuration diagram of a conventional laser Doppler velocimeter shown in, for example, the optical fiber sensor laser interferometer described in Mitsubishi Electric Branch Axis Voz, 5B No. 7, 1984, pages 34 to 38. +11 is a moving object.

(2)けレーザ、(3)はレーザ光を2分割するビーム
スプリッタ、  (4a)、 (4b)はビームスプリ
ッタ(3)で2分割されたレーザ光を送信光学系(5a
)、 (51))に導びぐための光ファイバケーブル、
  (4(りは後述する受信光学系の受信光を伝送する
光ファイバケーブル、(6)は移動物体(1)から散乱
された光を受信するための受信光学系、(7)は受信光
を電気信号に変換する光検出器、(8)は増幅器、(9
)は周波数追跡器、αOは速度演算器である。
(2) is a laser beam, (3) is a beam splitter that splits the laser beam into two, (4a), (4b) is an optical system (5a) that transmits the laser beam that is split into two by the beam splitter (3).
), (51)),
(4) is an optical fiber cable that transmits the received light of the receiving optical system (described later), (6) is the receiving optical system that receives the light scattered from the moving object (1), and (7) is the optical fiber cable that transmits the received light. A photodetector that converts into an electrical signal, (8) is an amplifier, (9
) is a frequency tracker, and αO is a speed calculator.

第2図に示すごとく、移動物体(1)にレーザ(2)か
’ 発信したレーザ光をビームスプリッタ(3)で2分
割し、各々の光を光ファイバケーブル(4a)(4b)
と送信光学系(5a)(5b)で、互いに反対方向から
移動物体(1)上に交差させて照射すると、各々の送光
ビームに対応した移動物体(11の散乱光の波長は。
As shown in Figure 2, the laser beam (2) transmitted to the moving object (1) is split into two by the beam splitter (3), and each beam is sent to the optical fiber cable (4a) (4b).
When the transmitting optical systems (5a) and (5b) cross-irradiate the moving object (1) from opposite directions, the wavelength of the scattered light from the moving object (11) corresponding to each transmitted light beam is:

移動物体(11の速mvに応じて、いわゆる正負のドツ
プラシフトを起こす。この2つの正負のドツプラシフト
を受けた散乱光を受信光学系(6)で受信[。
A so-called positive and negative Doppler shift occurs depending on the speed mv of the moving object (11). The scattered light that has undergone these two positive and negative Doppler shifts is received by the receiving optical system (6).

光ファイバケーブル(4C)で光検出器(7)に導びき
電気信号に変換すると、この電気信号の中には。
When the optical fiber cable (4C) leads to the photodetector (7) and converts it into an electrical signal, some of the electrical signals.

受信光の強さに比例する直流信号と第(1)式に示すド
ツプラ周波数fclの交流信号(以下ドツプラ信号とい
う)が存在する。
There are a DC signal proportional to the intensity of received light and an AC signal (hereinafter referred to as a Doppler signal) having a Doppler frequency fcl shown in equation (1).

ここに V:移動物体の速度 λ ;レーザ光の波長 ψ;2つの送光ビームの交点角 光検出器(71で電気信号に変換されたドツプラ信号は
微弱なため増幅器(8)で増幅された後2周波数追跡器
(9)でドツプラ周波数fdを計測し、第(1)式によ
り速度演算器Onで速度演算することによシ移動物体f
ilの速度■を求めることができる。このことは公知の
事実である。
where V: velocity of the moving object λ; wavelength ψ of the laser beam; intersection angle of the two transmitted light beams. By measuring the Doppler frequency fd with the second frequency tracker (9) and calculating the speed with the speed calculator On according to equation (1), the moving object f can be detected.
The velocity ■ of il can be found. This is a known fact.

第3図は、送信光学系(5a)、 (5b)からの2条
のビームの交差部を示す図であり1図中りはビーム径、
Δθけビーム拡がり、A点、B点、0点は2条のビーム
の交差点を示すもので、それぞれ。
Figure 3 is a diagram showing the intersection of two beams from the transmission optical system (5a) and (5b), and the beam diameter,
Δθ beam spread, point A, point B, and point 0 indicate the intersection of two beams, respectively.

ビームの下限、中央、上限の交差点を示す。Indicates the intersection of the lower, middle, and upper limits of the beam.

tは、送信光学系(5a)、(5b)かち移動物体+1
1までの測定距離、2・Δtは、 2条のビームの交差
点A、  0間の距離、ψけB点でのビーム交差角。
t is transmission optical system (5a), (5b) or moving object +1
The measurement distance to 1, 2・Δt is the distance between the intersection A and 0 of the two beams, and the beam intersection angle at point ψ and B.

ψ1はA点でのビーム交差角、ψ2は0点でのビーム交
差角である。
ψ1 is the beam intersection angle at point A, and ψ2 is the beam intersection angle at point 0.

レーザドツプラ速度計では、2条のビーム各々のドツプ
ラシフトを受けた散乱光を受信してドツプラ信号を得る
ため、移動物体(1)は第3図のビーム交差部(A、1
点間)になければならない。
In a laser Doppler velocimeter, in order to obtain a Doppler signal by receiving scattered light that has undergone a Doppler shift from each of the two beams, the moving object (1)
between the points).

通常、移動物体(1)の走行ラインP(以下パスライン
という)か2条のビームの交差点Bf通)。
Usually, the traveling line P (hereinafter referred to as a path line) of the moving object (1) or the intersection Bf of two beams).

2条ビームの交差する中心線に垂直になるように送信光
学系(5a)、 (5b)を配置し、このときの測定距
離toを基準距離とし、速度演算器α〔の速度計測値V
′を移動物体(1)の速度Vに等しくなるように校正す
る。
The transmitting optical systems (5a) and (5b) are arranged perpendicular to the center line where the two beams intersect, and the measured distance to at this time is used as the reference distance, and the speed measurement value V of the speed calculator α
' is calibrated to be equal to the velocity V of the moving object (1).

この場合移動物体il+のパスラインPが平行移動して
も、A点、0点を越えなければ、ドツプラ信号が得られ
移動物体(11の速度Vの計測が可能となる。すなわち
、ビーム交差部の長さ2・Δtが、移動物体(1)の速
度計測可能な許芥パスラインP変動範囲を示す。
In this case, even if the path line P of the moving object il+ moves in parallel, if it does not exceed point A or point 0, a Doppler signal will be obtained and the velocity V of the moving object (11) can be measured. In other words, the beam intersection The length 2·Δt indicates the variation range of the allowed path line P in which the speed of the moving object (1) can be measured.

移動物体(1+のパスラインPが、B点を通る場合は、
ビーム交差角けψであるためドツプラ周波数fdは速度
Vに対して第fi1式で与えられる。しかしながら、パ
スラインPが変動してA点を通る場合、ビーム拡がシΔ
θによりビーム交差角ψ1はψ1−ψ+2・Δθとなる
ため、ドツプラ周波数f+Hは次式で与えられる。
If the moving object (1+ path line P passes through point B,
Since the beam intersection angle is ψ, the Doppler frequency fd is given by the fi1 equation for the velocity V. However, when the path line P fluctuates and passes through point A, the beam spread is
Since the beam crossing angle ψ1 becomes ψ1-ψ+2·Δθ due to θ, the Doppler frequency f+H is given by the following equation.

同様に、パスラインPが変動して0点を通る場合、ビー
ム交差角ψ2けψ2=ψ−2Δθとなるためドツプラ周
波数fd2け次式で与えられる。
Similarly, when the path line P fluctuates and passes through the 0 point, the beam intersection angle ψ2 times ψ2 = ψ-2Δθ, which is given by the Doppler frequency fd2 order equation.

第(11式〜第(31式から明ちかなように、移動物体
fi1がパスラインP変動を起こすと、移動物体(1)
の速度Vに対[て得られるドツプラ周波数は異った値と
なシ、ドツプラ周波数から移動物体(1)の速度■を算
出する速度演算器Hの速度計+1111 f直V′は誤
差を含むこととなる。
As is clear from equations (11 to 31), when the moving object fi1 causes a change in the path line P, the moving object (1)
The Doppler frequency obtained for the velocity V of [ is a different value, and the velocity meter + 1111 f direct V' of the velocity calculator H that calculates the velocity of the moving object (1) from the Doppler frequency contains an error. That will happen.

今、パスラインPが、A点かko点まで変動したときの
測定誤差率εは、第(1)弐〜第(3)式からパスライ
ンがB点f通ったときのドツプラ周波数fdを基準とり
、て次式で与えられる。
Now, the measurement error rate ε when the path line P changes to point A or point ko is based on the Doppler frequency fd when the path line passes through point B from equations (1) to (3). is given by the following equation.

2・sin (Δθ) m−・・・・−曲(4) jan ((L) ビーム交差部の長さ2・ΔtId”、ビーム径りとビー
ム交差角ψかI−はぼ次式で近似できる。
2・sin (Δθ) m−・・・−Song (4) jan ((L) Length of beam intersection 2・ΔtId”, beam radius and beam intersection angle ψ or I− are approximated by the following equation can.

従って、パスラインPni位距離変動当υの測定誤差δ
は、第(41,第(5)式から次式で与えられる。
Therefore, the measurement error δ of the path line Pni distance variation υ
is given by the following equation from equations (41 and (5)).

δ =□ 2・Δt ・・・・・・ (6) 通常、ビーム拡がりΔθけ数mrad以下、以下広ビー
ム交差角10°以下に設計されるので、龜Δθ勾Δθ、
 cos (71ζ1となシ、第(6)式は次式で近似
される。
δ = □ 2・Δt (6) Normally, the beam spread Δθ is designed to be less than the number mrad, and the wide beam intersection angle is less than 10°, so the angle Δθ slope Δθ,
cos (71ζ1), equation (6) is approximated by the following equation.

例えば、ビーム拡がりΔθを3  、ビーム径りを41
′′としたときの測定誤差δは2X3X10    r
ad 4市 m−1・5X10   (、;ゝ  =−=−(Fil
とかり、パスラインP変動1闘当シ約−0,15←)の
611定誤差となる。ここで第181式の符号の←)は
For example, the beam spread Δθ is 3 and the beam diameter is 41.
'', the measurement error δ is 2X3X10 r
ad 4 city m-1・5X10 (,;ゝ =-=-(Fil
This results in a constant error of 611 for the pass line P fluctuation (approximately -0,15←). Here, the sign of formula 181 is ←).

パスラインPが測定距離lとして長くなる方向に変動し
たときに負の測定誤差を与えることを示すものであり、
測定距離変動にほぼ比f11シた測定誤差を与える。
This indicates that when the path line P changes in the direction of increasing the measurement distance l, a negative measurement error is given.
A measurement error approximately equal to f11 is given to the measurement distance variation.

第3図のB点を通るパスラインPを基準としてこのとき
の測定距離ioからのパスライン変動量をΔtpとする
と、速度演算器顛の速度計測値V′は2次式で与えられ
る。
If the path line P passing through point B in FIG. 3 is used as a reference and the amount of path line variation from the measured distance io at this time is Δtp, then the speed measurement value V' of the speed calculator is given by a quadratic equation.

v’=v(1+δ、Δtp )−−−−−−−9−f9
)パスライン変動量Δtpは、測定距離tが基準距離t
oより長く力る方向を(−1−)とし9反対に短くなる
方向を←)とする。
v'=v(1+δ,Δtp)---9-f9
) The pass line variation amount Δtp is determined when the measured distance t is the reference distance t.
Let the direction in which the force is longer than o be (-1-), and the direction in which the force is shorter than 9, on the contrary, be ←).

一般的に、鉄鋼ライン等の移動物体(11のバスライン
PH,通板時の板のバタッキにより数n〜数10vm変
動する。従って、送信光学系(5a)、 (5b)と移
動物体(1+間の測定距離が変化することとなり。
Generally, the PH of a moving object such as a steel line (bus line 11) fluctuates by several nm to several tens of vm due to the flap of the plate during threading. Therefore, the transmission optical system (5a), (5b) and the moving object (1 The measured distance between them will change.

速度計測値に誤差を生ずる。This causes an error in the speed measurement value.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記従来のレーザドツプラ速度計は、移動物体(1)の
パスライン変動に伴なう測定距離の基準距離Aoからの
変動量Δtpにほぼ比例した速度計測誤差を生ずると因
う問題を有し、でいた。
The conventional laser Doppler speedometer described above has a problem in that it produces a speed measurement error that is approximately proportional to the amount of variation Δtp of the measurement distance from the reference distance Ao due to the path line variation of the moving object (1). there was.

この発明は、かかる問題点を解決するためになされてた
もので、測定距離変動に伴なう速度計測誤差を低減した
レーザドツプラ速度計を得ることを目的とするものであ
る。
The present invention has been made to solve these problems, and an object thereof is to obtain a laser Doppler speedometer that reduces speed measurement errors caused by fluctuations in measurement distance.

〔問題点を解決するだめの手段〕[Failure to solve the problem]

この発明に係わるレーザドツプラ速度計は、送信光学系
(5a)、 (5b)と移動物体fil lJfの測定
距離の基準距離toからの変動計Δtpを計測する変位
計と、上記変位計の出力を用いて速度測定誤差を補正す
る測定距離補正回路を設けたものである。
The laser Doppler velocimeter according to the present invention uses transmission optical systems (5a) and (5b), a displacement meter that measures a variation meter Δtp of the measurement distance of a moving object filJf from a reference distance to, and the output of the displacement meter. A measurement distance correction circuit is provided to correct speed measurement errors.

〔作用〕[Effect]

この発明にお層ては、送信光学系(5a)、 (5b)
と移動物体(11間の測定距離の基準距離toからの変
動量Δtpを計測する変位計と速度演算器O1の出力端
に測定距離補正l路を設けて、測定距離変動にほぼ比例
して速度測定誤差を生ずる速度演算器σ〔の速度出力を
測定距離変動Δtpを計測する変位計の出力でもって測
定誤差を低減するように補正する。
In this invention, the transmission optical system (5a), (5b)
A displacement meter for measuring the amount of variation Δtp in the measured distance from the reference distance to between the moving object and the moving object (11) and a measured distance correction path are provided at the output end of the speed calculator O1, and the speed is adjusted approximately in proportion to the measured distance variation. The speed output of the speed calculator σ which causes the measurement error is corrected using the output of the displacement meter that measures the measurement distance variation Δtp so as to reduce the measurement error.

〔実施例〕〔Example〕

第1図は、この発8JJによる一実施例を示すレーザド
ツプラ速度言」のブロック図であり、以下図面に従い説
明する。
FIG. 1 is a block diagram of a "laser Doppler speed converter" showing one embodiment of this invention, and will be described below with reference to the drawings.

図中、(1)〜Q0は上記従来と同じものである。+1
11は三角611]量の原理を用論た光学変位計で代表
される非接触な変位計、卸は送信光学系(5a)、 (
5b)。
In the figure, (1) to Q0 are the same as the above-mentioned conventional device. +1
11 is a triangle 611] A non-contact displacement meter, represented by an optical displacement meter that uses the principle of quantity, is a transmission optical system (5a), (
5b).

受信光学系(6)と変位計01+を一体化したプローブ
A probe that integrates the receiving optical system (6) and displacement meter 01+.

03)は速度演算器00の出力を補正する測定距離補正
l路である。
03) is a measurement distance correction path that corrects the output of the speed calculator 00.

以上の構成のレーザドツプラ速度計にpbで。PB to the laser Doppler speedometer with the above configuration.

変位計(II)は送信光学系(5a)、 csb)と移
動物体(1)間の測定距離の基準距離toからの変動量
Δtpを計測し、変位計(11]の出力である変動量Δ
tpと速度演算器θ1の出力である速度計測値V′とは
それぞれ測定距離補正回路o;3)に入力される。測定
距離補正回路α;やでは第01式に示す演算を行ってい
る。
The displacement meter (II) measures the amount of variation Δtp of the measurement distance between the transmission optical system (5a), csb) and the moving object (1) from the reference distance to, and calculates the amount of variation Δtp which is the output of the displacement meter (11).
tp and the speed measurement value V' which is the output of the speed calculator θ1 are respectively input to the measured distance correction circuit o; 3). The measured distance correction circuit α performs the calculation shown in Equation 01.

■! に;比例定数 V″;測定距離補正回路(I3)の出力今、第OI式の
比例定数kf第(8)式に示す単位測定距離変動当りの
測定誤差δに等しくなるように設定すれば、第(9)、
第Q1式から測定距離補正回路(13の出力V“は、移
動物体fllの速度Vと等しくなり、測定距離変動によ
る速度測定誤差を低減したレーザドツプラ速度計とηる
■! Proportionality constant V'': Output of the measurement distance correction circuit (I3) Now, if the proportionality constant kf of the OI equation is set to be equal to the measurement error δ per unit measurement distance change shown in the equation (8), then Section (9),
From equation Q1, the output V" of the measurement distance correction circuit (13) is equal to the velocity V of the moving object fll, and it is determined that the laser Doppler velocimeter is a laser Doppler velocimeter that reduces speed measurement errors due to measurement distance fluctuations.

〔発明の効果〕〔Effect of the invention〕

以上のように、この発明によれば、送信光学系(5a)
、 (5b)ど移動物体(1)間の測定距離変動量ΔA
l)を計測する変位計と、速度演算器α〔の出力端に測
定距離補正l路0ait設はで、測定距離変動量Δtp
と速度演算器01の出力である速度計測値V′とを第0
1式に示す補正を行うことにより、測定距離変動に伴う
速度測定誤差を低減したレーザドツプラ速度計が提供で
きる。
As described above, according to the present invention, the transmission optical system (5a)
, (5b) Measured distance variation ΔA between moving objects (1)
A displacement meter that measures l) and a measurement distance correction l path 0ait are installed at the output end of the speed calculator α, and the measurement distance variation amount Δtp
and the speed measurement value V' which is the output of the speed calculator 01.
By performing the correction shown in Equation 1, it is possible to provide a laser Doppler speedometer that reduces speed measurement errors due to fluctuations in measurement distance.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の一実施例を示すレーザドツプラ速度
計の構成図、第2図は従来のレーザドツプラ速度計の構
成図、第3図は送信光学系のビーム交差部を示す図であ
る。 図中、01)は変位計、 62はプローブ、 (13は
測定距離補正回路である。 なお1図中同一符号は同一・または相当部分を示すO
FIG. 1 is a block diagram of a laser Doppler velocimeter showing an embodiment of the present invention, FIG. 2 is a block diagram of a conventional laser Doppler velocimeter, and FIG. 3 is a diagram showing a beam intersection of a transmitting optical system. In the figure, 01) is a displacement meter, 62 is a probe, and (13 is a measurement distance correction circuit. The same reference numerals in the figure indicate the same or equivalent parts.

Claims (1)

【特許請求の範囲】[Claims] 特定の波長を出力するレーザと、上記レーザの出力ビー
ムを2分割するビームスプリッタと、上記2分割したレ
ーザビームを伝送する光ファイバケーブルと、上記伝送
されたレーザビームを受けて移動物体上互いに反対方向
から交差させて照射する二つの送信光学系と、上記二つ
の照射ビームの各々について移動物体の速度に応じてド
ップラシフトを起した散乱光を一緒に受信する受信光学
系と、上記受信光学系で受信したドップラ信号を含む散
乱光を伝送する光ファイバケーブルと、上記伝送された
散乱光を電気変換する光検出器と、上記光検出器の出力
を増幅する増幅器と、上記増幅された信号からドップラ
周波数を検出する周波数追跡器と、上記周波数追跡器の
出力信号であるドップラ周波数から移動物体の速度を演
算する速度演算器を備えたレーザドップラ速度計におい
て、上記移動物体と上記送信光学系間の測定距離変動量
を検出する変位計と、上記測定距離変動により速度測定
誤差を生ずる上記速度演算器の出力を上記変位計の出力
を用いて上記速度測定誤差を低減するように補正する測
定距離補正回路とを具備したことを特徴とするレーザド
ップラ速度計。
A laser that outputs a specific wavelength, a beam splitter that splits the output beam of the laser into two, an optical fiber cable that transmits the laser beam that is split into two, and a cable that receives the transmitted laser beam and is mounted on a moving object opposite to each other. two transmitting optical systems that emit radiation from different directions, a receiving optical system that simultaneously receives scattered light that has undergone a Doppler shift in accordance with the speed of the moving object for each of the two irradiated beams, and the receiving optical system. an optical fiber cable that transmits the scattered light including the Doppler signal received by the receiver, a photodetector that electrically converts the transmitted scattered light, an amplifier that amplifies the output of the photodetector, and a In a laser Doppler velocimeter that includes a frequency tracker that detects a Doppler frequency and a speed calculator that calculates the speed of a moving object from the Doppler frequency that is an output signal of the frequency tracker, there is a distance between the moving object and the transmitting optical system. a displacement meter that detects the amount of variation in the measurement distance; and a measurement distance that corrects the output of the speed calculator that causes a speed measurement error due to the variation in the measurement distance so as to reduce the speed measurement error using the output of the displacement meter. A laser Doppler velocimeter characterized by comprising a correction circuit.
JP26783885A 1985-11-28 1985-11-28 Laser doppler speed indicator Granted JPS62127686A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26783885A JPS62127686A (en) 1985-11-28 1985-11-28 Laser doppler speed indicator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26783885A JPS62127686A (en) 1985-11-28 1985-11-28 Laser doppler speed indicator

Publications (2)

Publication Number Publication Date
JPS62127686A true JPS62127686A (en) 1987-06-09
JPH0355797B2 JPH0355797B2 (en) 1991-08-26

Family

ID=17450323

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26783885A Granted JPS62127686A (en) 1985-11-28 1985-11-28 Laser doppler speed indicator

Country Status (1)

Country Link
JP (1) JPS62127686A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7029301B2 (en) 2003-03-20 2006-04-18 Sony Computer Entertainment Inc. Connection device, connector unit, connectors, and electronic equipment

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7029301B2 (en) 2003-03-20 2006-04-18 Sony Computer Entertainment Inc. Connection device, connector unit, connectors, and electronic equipment

Also Published As

Publication number Publication date
JPH0355797B2 (en) 1991-08-26

Similar Documents

Publication Publication Date Title
US4948257A (en) Laser optical measuring device and method for stabilizing fringe pattern spacing
JPH02287267A (en) Electric field measuring instrument
JPS62127686A (en) Laser doppler speed indicator
JPS6356924B2 (en)
JP2924301B2 (en) Speedometer
JPS62240805A (en) Length measuring apparatus
US3558230A (en) Light beam deflection sensor
JPH0345193Y2 (en)
JPH0654220B2 (en) Laser speckle strain measuring device
JPH06105292B2 (en) Laser doppler velocimeter
GB2289814A (en) Laser doppler velocimeter
JPH0545128A (en) Method for measuring length of moving object
JP2911516B2 (en) Laser doppler speedometer
JPS62127687A (en) Laser doppler speed indicator
EP0851210B1 (en) Non-contact strain meter
JPH0577272B2 (en)
RU2804868C1 (en) Laser relative speed recorder for ships
Botcherby et al. Length and velocity measurement by laser
RU115497U1 (en) RELATIVE RELATIVE SPEED LASER METER AND SHIP MOTOR DIRECTIONS
SU822037A1 (en) Correlation speed meter
SU781700A2 (en) Apparatus for measuring direction of two-dimensional flow
JPH04220586A (en) Method for detecting inclination and position deviation of object to be measured in measurement of speed and length of object to be measured in laser doppler system
JPS6148748A (en) Optical measuring device
SU1566870A1 (en) Method of determining mutual displacement object point
JPS63101702A (en) Optical length measuring gauge