JPS62127218A - Improved vent type injection molder - Google Patents

Improved vent type injection molder

Info

Publication number
JPS62127218A
JPS62127218A JP26800685A JP26800685A JPS62127218A JP S62127218 A JPS62127218 A JP S62127218A JP 26800685 A JP26800685 A JP 26800685A JP 26800685 A JP26800685 A JP 26800685A JP S62127218 A JPS62127218 A JP S62127218A
Authority
JP
Japan
Prior art keywords
screw
vent hole
piping
vent
vacuum pump
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26800685A
Other languages
Japanese (ja)
Inventor
Takeshi Moriwaki
森脇 毅
Yoshiyuki Nose
能瀬 良幸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kishimoto Sangyo Co Ltd
Original Assignee
Kishimoto Sangyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kishimoto Sangyo Co Ltd filed Critical Kishimoto Sangyo Co Ltd
Priority to JP26800685A priority Critical patent/JPS62127218A/en
Publication of JPS62127218A publication Critical patent/JPS62127218A/en
Pending legal-status Critical Current

Links

Landscapes

  • Injection Moulding Of Plastics Or The Like (AREA)

Abstract

PURPOSE:To prevent molten material in an injection molder from overflowing by a method wherein pressurized gas is forced in an air vent hole simultaneously with the stopping of the rotation of the screw in the vent type injection molder having the air vent hole. CONSTITUTION:Under the state that a screw is being rotated for the plasticization and metering of material after the finish of an injection stroke, a three-way selector valve 6 is changed over in the direction of a piping 7 communicating to a vacuum pump. Accordingly, volatile matter is sucked through a vent hole 3 and a piping 5 into the vacuum pump so as to obtain high deaeration effect. When the metering comes to an end, the screw stops and the three-way selector valve 6 is changed over in the direction of a pressurized gas piping 8 in interlocking with the stopping of the screw. After being cooled down, a molded part is released from molds through the opening of the molds. When the molds are closed, the injection stroke is started and the screw advances. When a cooling stroke starts after the finish of the injection stroke, the rotation of the screw starts and the three-way selector valve 6 is changed over in the direction of the vacuum pump side piping 7 in interlocking with the starting of the rotation of the screw so as to start the deaeration again.

Description

【発明の詳細な説明】 (a)産業上の利用分野 本発明は、合成樹脂用射出成形機に係り、更に詳しくは
シリンダーに、ベント孔(脱気孔)を有するベント式射
出成形機の改良に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (a) Industrial Application Field The present invention relates to an injection molding machine for synthetic resin, and more particularly to an improvement of a vent type injection molding machine having a vent hole (deaeration hole) in the cylinder. It is something.

(b)従来の技術 従来、多くのプラスチック材料は、吸水性を有する為、
射出成形を行うに際して事前に予備乾燥を行う必要があ
る。
(b) Conventional technology Conventionally, many plastic materials have water absorption properties, so
It is necessary to perform preliminary drying before injection molding.

即ち水分を含有したま一成形すると成形品表面に銀条を
発生したり、又は成形品内部に気泡を生じたりして成形
品の不良化を招くのみならず、例えばポリカーボネート
やポリエチレンテレフタレートのような材料の場合は、
加水分解反応により主鎖の切断をおこし、大幅に物性が
低下する。
In other words, when molded in a mold containing moisture, silver streaks may appear on the surface of the molded product, or air bubbles may be generated inside the molded product, resulting in a defective molded product. For materials,
The hydrolysis reaction causes cleavage of the main chain, resulting in a significant decrease in physical properties.

更に近年、強化材や充填材を配合したプラスチック材料
の普及が目覚ましいが、これらの強化材や充填材にも表
面に水分を吸着していたり、又ある程度の吸水性のもの
があり、且つ一般に強化材料は高温度で成形加工される
ことが多い為、僅かの残留水分でも成形品の外観や物性
に与える影響は大きくなる。
Furthermore, in recent years, plastic materials containing reinforcing materials and fillers have become widespread, but some of these reinforcing materials and fillers also absorb moisture on their surfaces or have some degree of water absorption, and are generally not reinforced. Since materials are often molded at high temperatures, even a small amount of residual moisture has a significant effect on the appearance and physical properties of molded products.

又、このような吸水性の充填材等は、ポリエチレンやポ
リプロピレン等の非吸水性の材料に配合した場合にも水
分による上述のような悪影響を生じる。
Further, even when such water-absorbing fillers and the like are blended with non-water-absorbing materials such as polyethylene and polypropylene, the above-mentioned adverse effects due to moisture occur.

この為に、従来一般に熱風式乾燥機、除湿式熱風乾燥器
、真空乾燥器等を使用して予備乾燥を行つた後に射出成
形を行うが、これらの乾燥器は比較的高価な設備であり
、且つ多量の電力を消費するのみならず、気象環境によ
っては十分に材料を乾燥することが困難であり、更に乾
燥の程度が再現性に乏しい点がある為、不測の製品不良
を生じるおそれがあった。
For this purpose, injection molding is generally performed after preliminary drying using a hot air dryer, dehumidifying hot air dryer, vacuum dryer, etc., but these dryers are relatively expensive equipment; In addition to consuming a large amount of electricity, it is difficult to dry the material sufficiently depending on the weather environment, and the degree of drying is not reproducible, so there is a risk of unexpected product defects. Ta.

又、この他、プラスチック材料が成形機シリンダー内で
加熱される際、部分的に分解してガスを発生し、これが
水分の場合と同様に、成形品の表面状態の不良や、気泡
発生等の製品不良の原因となる。特にこの現象が顕著な
材料として、メタアクリル樹脂等がある。
In addition, when plastic materials are heated in the cylinder of a molding machine, they partially decompose and generate gas, which, like moisture, can cause problems such as poor surface condition of molded products and the generation of bubbles. This may cause product defects. Materials in which this phenomenon is particularly noticeable include methacrylic resin and the like.

上記のような、成形材料を予備乾燥する方法の欠点を解
決する為、射出成形機のシリンダーにベント孔(a気孔
)を設け、発生した水蒸気、分解ガス等を大気中に放出
することにより、或いは真空で吸引することにより、成
形工程中に連続して脱気する方法、所謂ベント式射出成
形法が開発されているが、後述するように種々の問題点
がある為未だ普及するに至っていない。
In order to solve the above-mentioned drawbacks of the method of pre-drying the molding material, vent holes (a-pores) are provided in the cylinder of the injection molding machine to release the generated water vapor, decomposition gas, etc. into the atmosphere. Alternatively, a method of continuously degassing during the molding process by vacuum suction, the so-called vent injection molding method, has been developed, but it has not yet become widespread due to various problems as described below. .

(c)発明が解決しようとする問題点 ベント式の成形法は、押出成形法においては、古くから
採用、実施されており、大きな効果を発揮することが実
証されている。
(c) Problems to be Solved by the Invention The vent-type molding method has been adopted and practiced for a long time in extrusion molding, and has been proven to be highly effective.

然しながら、同様の方法が、スクリューインライン式射
出成形機にも採用されたが、射出成形機の場合には、主
として作業の安定性に問題がある為、未だ一般的に利用
されていない。
However, although a similar method has been adopted for screw in-line injection molding machines, it has not yet been generally used in injection molding machines, mainly due to problems with work stability.

即ち、この問題点は、成形工程中に、シリンダー中の溶
融樹脂が、ベント孔より溢出し、ベント孔を閉塞する現
象がしばしば発生し、安定した脱気効果が期待されない
点であった。
That is, this problem is that during the molding process, the molten resin in the cylinder often overflows from the vent hole and blocks the vent hole, so that a stable deaeration effect cannot be expected.

これは、押出機の場合は、運転中はスクリューは一定速
度で連続回転し、溶融樹脂は連続して前方へ搬送される
為、ベント孔下部をスクリューフライトに押されて通過
し、水分や揮発物は連続してベント孔より脱気される。
In the case of an extruder, the screw continuously rotates at a constant speed during operation, and the molten resin is continuously transported forward, so the screw flight passes through the lower part of the vent hole, causing moisture and volatilization. Materials are continuously degassed through vent holes.

即ち、押出機では、常に定常状態で運転が行われる為、
ベント孔より熔融樹脂が溢出蓄積等することがないから
である。
In other words, since the extruder always operates in a steady state,
This is because the molten resin does not overflow and accumulate from the vent hole.

これに対し、スクリューインライン式射出成形機におい
ては、スクリューは材料供給、可塑化の役割を果たす点
においては押出機の場合と同じであるが、一定量の溶融
材料が可塑化され、後退したスクリューの前方に計量さ
れて溜った後に、スクリューは油圧等により前方へ圧送
され、スクリュー先端部に計量された材料を高圧、高速
で金型内へ射出する役割を果たす、そして次の材料供給
、可塑化は、金型内へ射出された材料が冷却固化する間
に行われるが、この時間は、成形サイクルを一定に保つ
必要上、冷却所要時間よりも多少短くなるように設定さ
れる。
On the other hand, in a screw in-line injection molding machine, the screw plays the same role as an extruder in that it plays the role of material supply and plasticization, but a certain amount of molten material is plasticized and the retracted screw After the material is measured and accumulated in front of the screw, the screw is forced forward by hydraulic pressure, etc., and the screw tip plays the role of injecting the measured material into the mold at high pressure and high speed, and then the next material supply and plasticization. This is done while the material injected into the mold is cooled and solidified, but this time is set to be somewhat shorter than the required cooling time due to the need to keep the molding cycle constant.

その結果、計量工程が終了すると一旦スクリユーは回転
を停止し、射出工程が終了すると再び回転を開始する。
As a result, the screw temporarily stops rotating when the metering process ends, and starts rotating again when the injection process ends.

この際スクリューが回転している時間と停止している時
間の比率は、多くの場合1:4乃至1:1の間である。
In this case, the ratio of the time the screw is rotating to the time it is stopped is often between 1:4 and 1:1.

スクリューが停止している間、ベント孔下部の材料は水
分等の揮発により発泡、膨張し、ベント孔内に盛り上り
易く、この盛り上った材料はスクリュー山の外にあり、
しかもシリンダー内壁に接していない為、次のスクリュ
ー回転によりスクリューに巻き込まれて前方へ搬送され
ない場合が生じる。この現象が繰返されると、ベント孔
に溶融樹脂が蓄積しついには完全にベント孔を閉塞する
While the screw is stopped, the material at the bottom of the vent hole foams and expands due to the volatilization of water, etc., and tends to swell into the vent hole, and this swelled material is outside the screw mountain.
Moreover, since it is not in contact with the inner wall of the cylinder, it may get caught up in the screw during the next rotation of the screw and not be transported forward. When this phenomenon is repeated, the molten resin accumulates in the vent hole and eventually completely blocks the vent hole.

そしてこの状態のもとでは、もはや脱気は行われなくな
る。
Under this condition, degassing is no longer performed.

この傾向は、特にベント孔を真空乃至減圧状態にて揮発
物を強力に吸引除去することを試みる場合に一層顕著に
なる。
This tendency becomes more noticeable especially when attempting to remove volatile substances by strong suction under a vacuum or reduced pressure condition through the vent hole.

即ち、ベント孔下部の溶融材料は、真空乃至減圧下にお
いては、より大量の揮発物が放出される結果、著しく体
積が増大し、ベント孔を容易に閉塞する。従って、射出
成形の場合は、シリンダーにベント孔を設けた、いわゆ
るベント式射出成形機の運転は、ベント孔を大気中に開
放して、揮発物を大気中に自然放散させる運転条件しか
採用出来ず、その場合でも尚ベント孔が閉塞されること
により成形作業の中断を起こしたり、或いはベント孔閉
塞に気づかぬ侭に作業を続けて、成形品中に脱気効果不
十分に起因する不良品発生のおそれが生じた。
That is, under vacuum or reduced pressure, the molten material at the bottom of the vent hole significantly increases in volume as a result of releasing a larger amount of volatile matter, and easily blocks the vent hole. Therefore, in the case of injection molding, the only way to operate a so-called vent-type injection molding machine, which has a vent hole in the cylinder, is to open the vent hole to the atmosphere and allow the volatile matter to naturally dissipate into the atmosphere. Even in this case, the molding operation may be interrupted due to the vent hole being blocked, or the molding operation may be continued without realizing that the vent hole is blocked, resulting in defective products due to insufficient deaeration effect in the molded product. There was a risk of an outbreak.

更に、大気中への揮発物の自然放散によっては、微量の
水分の存在により、ポリマー主鎖の切断を生じるような
加水分解反応を起こす材料の場合には、十分の脱気効果
が得られない。
Furthermore, due to the natural dissipation of volatiles into the atmosphere, sufficient degassing effects cannot be obtained in the case of materials that undergo hydrolysis reactions that cause scission of the polymer main chain due to the presence of trace amounts of moisture. .

その為、止むを得ず乾燥装置を併用するような手段をと
らねばならず、設備上或いは省エネルギー上、有利性を
発揮できないのが実状である。
Therefore, it is unavoidable to take measures such as using a drying device in combination, and the actual situation is that advantages cannot be achieved in terms of equipment or energy saving.

本発明者は、従来のベント式スクリューインライン式射
出成形機の上記のような問題点を解決し、安定した成形
作業を行い得る、改良されたベント式射出成形機を提供
することを目的とし鋭意研究の結果、本発明を完成した
ものである。
The present inventor has worked diligently to solve the above-mentioned problems of conventional vented screw in-line injection molding machines, and to provide an improved vented injection molding machine that can perform stable molding operations. As a result of research, the present invention was completed.

(d)問題点を解決する為の手段及びその作用以下に、
本発明の構造を、実施例を示した図面に基づいて説明す
る。
(d) Measures to solve the problem and their effects:
The structure of the present invention will be explained based on the drawings showing examples.

第1図は、射出工程が終了し、スクリューが回転して材
料を可塑化、計量している状態の本発明に係るベント式
射出成形機実施例の部分断面図である。
FIG. 1 is a partial sectional view of an embodiment of the vented injection molding machine according to the present invention, with the injection process completed and the screw rotating to plasticize and meter the material.

この工程においては、三方切換弁(6)は、真空ポンプ
(図示せず)への配管(5)の方向へ切換えられる。従
って揮発分は、ベント孔(3)、配管(5)を経て真空
ポンプへ吸引され、高度の脱気効果が得られる。しかも
この工程においては溶融材料はスクリュー山により連続
して前方へ搬送されベント孔内へ盛り上がることはない
In this step, the three-way switching valve (6) is switched in the direction of the line (5) to the vacuum pump (not shown). Therefore, the volatile matter is sucked into the vacuum pump through the vent hole (3) and the piping (5), and a high degree of degassing effect can be obtained. Furthermore, in this step, the molten material is continuously conveyed forward by the screw crest and does not bulge into the vent hole.

第2図は、同じく計量が終了した状態の断面図である。FIG. 2 is a cross-sectional view of the same state after measurement has been completed.

計量が終了するとスクリューが停止し、これに連動して
三方切換弁(6)は、加圧ガス配管(8)の方向へ切換
えられる。
When the metering is completed, the screw stops, and in conjunction with this, the three-way switching valve (6) is switched to the direction of the pressurized gas pipe (8).

加圧ガス配管(8)は加圧ガス貯蔵容器(図示せず)に
接続されており、加圧ガスは配管(5)、ベント孔(3
)を経てベント部の熔融材料を加圧する。その結果、ベ
ント孔下部の溶融材料からの揮発分の揮発は抑制され、
材料は発泡、膨張することがない為ベント孔に盛り上が
り、ベント孔を閉塞するようなことがない。
The pressurized gas pipe (8) is connected to a pressurized gas storage container (not shown), and the pressurized gas is supplied to the pipe (5) and the vent hole (3).
) to pressurize the molten material in the vent section. As a result, the volatilization of volatile matter from the molten material at the bottom of the vent hole is suppressed,
Since the material does not foam or expand, it will not bulge in the vent hole and block the vent hole.

冷却工程が終了し、金型が開いて成形品が離型し、金型
が閉じると、射出工程に入りスクリューが前進する。
When the cooling process is completed, the mold is opened and the molded product is released, and the mold is closed, the injection process begins and the screw advances.

射出工程が終了して冷却工程に入ると、スクリューは回
転を開始し、これと連動して三方切換弁(6)は、真空
ポンプ側配管(7)の方向へ切り換えられ、第1図の状
態に復帰する。
When the injection process is completed and the cooling process begins, the screw starts rotating, and in conjunction with this, the three-way switching valve (6) is switched to the direction of the vacuum pump side piping (7), resulting in the state shown in Figure 1. to return to.

即ち、上記のような構造によって、従来のベント式射出
成形機でしばしば経験されるスクリュー回転停止時の溶
融材料によるベント孔閉塞は、スクリュー回転停止の都
度ベント部に加圧ガスを圧入して、揮発分の蒸発を抑制
し、溶融材料の発泡、膨張を抑えることにより避けるこ
とが出来る。
That is, with the above structure, pressurized gas is injected into the vent part each time the screw rotation stops, and pressurized gas is injected into the vent part every time the screw rotation stops, which is often experienced in conventional vent-type injection molding machines. This can be avoided by suppressing evaporation of volatile components and suppressing foaming and expansion of the molten material.

この際圧入する加圧ガスは、溶融材料と好ましくない反
応、ポリマーの劣化等を起こすものでなければ種類は問
わないが、一般に価格、安全性等の見地から窒素ガスが
好ましい。
The pressurized gas to be injected at this time may be of any type as long as it does not cause undesirable reactions with the molten material or deterioration of the polymer, but nitrogen gas is generally preferred from the viewpoints of cost, safety, etc.

加圧の際の圧力は、揮発分の濃度により異なるが、一般
にゲージ圧2−/−乃至20kg/−の範囲である。
The pressure during pressurization varies depending on the concentration of volatile components, but is generally in the range of gauge pressure 2-/- to 20 kg/-.

以上の操作を繰り返すことにより、溶融材料はベント部
を通過する際に真空で脱気された後、計量部(9)に溜
り、射出工程に移行される為、水分やポリマーの熱分解
により発生した揮発分は、十分に脱気された状態で金型
内に射出されるのである。
By repeating the above operations, the molten material is degassed in vacuum as it passes through the vent section, then accumulates in the metering section (9) and is transferred to the injection process, resulting in generation of moisture and polymer thermal decomposition. The volatile matter is injected into the mold in a sufficiently degassed state.

(e)発明の効果 上述したように、この発明に係る構造による改良された
ベント式射出成形機は、十分に脱気された樹脂材料を安
定的に成形することにより、予備乾燥装置等を用いるこ
となく、成形品の表面状態の向上、成形品内部の気泡発
生の防止等を達成し、更に重要なことは、加水分解を起
こし易いポリマーにおいて強度、伸度の著しい向上が認
められる等極めて大きな効果を示すものである。
(e) Effects of the Invention As described above, the improved vent-type injection molding machine with the structure according to the present invention uses a pre-drying device etc. by stably molding a sufficiently deaerated resin material. It achieved improvements in the surface condition of the molded product and prevention of air bubbles inside the molded product without causing any damage, and more importantly, significant improvements in strength and elongation were observed in polymers that easily undergo hydrolysis. It shows the effectiveness.

勿論、この発明はベント孔より真空若しくは減圧で吸引
しない自然放散の運転条件においても、ベント孔は溶融
材料により閉塞されることがない為、安定した脱気状態
で運転を行うことが出来る。
Of course, the present invention can operate in a stable degassing state even under natural dissipation operating conditions in which vacuum or reduced pressure is not drawn from the vent hole, since the vent hole is not clogged with molten material.

更に、この発明に係る構造は、簡単な部品と工作により
従来のベント式射出成形機に簡易に取り付けることが出
来、運転も成形機のリミットスイッチに接続することに
より、自動化が容易である等、その工業上の実用的効果
は掘めて大である。
Furthermore, the structure according to the present invention can be easily attached to a conventional vent-type injection molding machine using simple parts and work, and the operation can be easily automated by connecting it to the limit switch of the molding machine. Its practical industrial effects are enormous.

【図面の簡単な説明】[Brief explanation of drawings]

図面は本発明に係る改良されたベント式射出成形機実施
例の部分断面図である。 第1図は、射出工程が終了し、スクリューが回転し、材
料を可塑化、計量している状態(脱気中)を示し、第2
図は計量が終了した状態(ガス加圧中)を示す。 図中 1−−−・−・−射出成形機シリンダ−2−−−−−・
・射出成形機スクリュー3−・−・−シリンダーに設け
たベント孔4−−−−一−・・−・ベント部チャンバー
5−・−−−−一−−−・ベント部配管6−−−−・−
一−−−三方切換弁 7−・−・−一一一一一真空ポンプへの配管若しくは大
気中へ開放する配管
The drawing is a partial cross-sectional view of an embodiment of an improved vented injection molding machine according to the present invention. Figure 1 shows a state in which the injection process has been completed, the screw is rotating, and the material is being plasticized and measured (during degassing).
The figure shows the state after measurement has been completed (gas is being pressurized). In the figure 1-----Injection molding machine cylinder 2-----
・Injection molding machine screw 3------Vent hole provided in the cylinder 4------1------Vent part chamber 5---------1----Vent part piping 6--- −・−
1----Three-way switching valve 7-----11111 Piping to the vacuum pump or piping opened to the atmosphere

Claims (1)

【特許請求の範囲】[Claims] シリンダーに脱気用ベント孔を設けたベント式射出成形
機において、スクリューの回転中脱気作用を行い、スク
リュー回転停止と連動して、該ベント孔を加圧気体をも
つて加圧し、溶融材料の溢出を防止することを特徴とす
るベント式射出成形機。
In a vent-type injection molding machine with a vent hole for degassing in the cylinder, deaeration is performed while the screw is rotating, and when the screw rotation is stopped, the vent hole is pressurized with pressurized gas to remove the molten material. A vent-type injection molding machine characterized by preventing overflow of.
JP26800685A 1985-11-27 1985-11-27 Improved vent type injection molder Pending JPS62127218A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26800685A JPS62127218A (en) 1985-11-27 1985-11-27 Improved vent type injection molder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26800685A JPS62127218A (en) 1985-11-27 1985-11-27 Improved vent type injection molder

Publications (1)

Publication Number Publication Date
JPS62127218A true JPS62127218A (en) 1987-06-09

Family

ID=17452597

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26800685A Pending JPS62127218A (en) 1985-11-27 1985-11-27 Improved vent type injection molder

Country Status (1)

Country Link
JP (1) JPS62127218A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05261783A (en) * 1992-03-16 1993-10-12 Power Supply Kk Vent-type injection molding machine
JPH0760803A (en) * 1993-08-24 1995-03-07 Nissei Plastics Ind Co Injection molding method of green polyethylene terephthalate
US6187229B1 (en) 1995-11-10 2001-02-13 Nissei Plastic Industrial Co., Ltd. Process for injection molding information recording disks

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5595546A (en) * 1979-01-12 1980-07-19 Mitsubishi Heavy Ind Ltd Injection molding machine

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5595546A (en) * 1979-01-12 1980-07-19 Mitsubishi Heavy Ind Ltd Injection molding machine

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05261783A (en) * 1992-03-16 1993-10-12 Power Supply Kk Vent-type injection molding machine
JPH0760803A (en) * 1993-08-24 1995-03-07 Nissei Plastics Ind Co Injection molding method of green polyethylene terephthalate
US6187229B1 (en) 1995-11-10 2001-02-13 Nissei Plastic Industrial Co., Ltd. Process for injection molding information recording disks

Similar Documents

Publication Publication Date Title
EP0876891B1 (en) Method of obtaining a gas-introduced fiber-reinforced resin injection molding and injection molding machine for carrying out the method
US8168098B2 (en) Method of injection molding thermoplastic resin using supercritical fluid and injection molding apparatus
US3697204A (en) Apparatus for injection molding articles of foam material
US6929763B2 (en) Injection molding method
CA2718920C (en) Molded thermoplastic articles
US8105529B1 (en) Heated injection molding system and method
CA2000412A1 (en) Methods of injection molding and extruding wet hygroscopic ionomers
EP1393879B1 (en) Forming device for thermoplastic resin formed part
JP4094248B2 (en) Kneading and devolatilization extrusion equipment using supercritical fluid
KR20110003351A (en) Method of manufacture of a foamed core class "a" article
JPS62127218A (en) Improved vent type injection molder
Ramos‐De Valle Principles of polymer processing
US6103154A (en) Method of molding cross-linked foamed compositions
JPS62124923A (en) Improved vent type injection molding machine
TWI750771B (en) Injection machine for recycled plastic injection molding system
KR102429304B1 (en) A vacuum injection molding apparatus and method for Teflon mold
JP2640715B2 (en) Injection molding method for undried polyethylene terephthalate
JPS6258293B2 (en)
WO2018163998A1 (en) Manufacturing method and manufacturing device for foam molded article
CN213860338U (en) Automobile air duct forming device
CN215282835U (en) PC injection molding and pressing forming die for complex thin wall
JP3851439B2 (en) Manufacturing method of difficult-to-mold resin molded products
KR200146626Y1 (en) Rubber extrusion machine
US3293345A (en) Process for the ejection of molded plastic parts from hot molds
JPS62127219A (en) Improved vent type injection molder