JPS62126899A - Excitation control system for variable speed pumping-up power plant - Google Patents

Excitation control system for variable speed pumping-up power plant

Info

Publication number
JPS62126899A
JPS62126899A JP60264867A JP26486785A JPS62126899A JP S62126899 A JPS62126899 A JP S62126899A JP 60264867 A JP60264867 A JP 60264867A JP 26486785 A JP26486785 A JP 26486785A JP S62126899 A JPS62126899 A JP S62126899A
Authority
JP
Japan
Prior art keywords
excitation
output
speed
variable speed
command
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60264867A
Other languages
Japanese (ja)
Other versions
JPH0326039B2 (en
Inventor
Tadaatsu Kato
加藤 忠厚
Hiroto Nakagawa
博人 中川
Goo Nohara
野原 哈夫
Masuo Goto
益雄 後藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kansai Electric Power Co Inc
Hitachi Ltd
Original Assignee
Kansai Electric Power Co Inc
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kansai Electric Power Co Inc, Hitachi Ltd filed Critical Kansai Electric Power Co Inc
Priority to JP60264867A priority Critical patent/JPS62126899A/en
Publication of JPS62126899A publication Critical patent/JPS62126899A/en
Publication of JPH0326039B2 publication Critical patent/JPH0326039B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Control Of Eletrric Generators (AREA)
  • Protection Of Generators And Motors (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Abstract

PURPOSE:To suppress a variation in a terminal voltage of an induction machine by controlling the gain of the secondary excitation control system of the machine on the basis of defect detection information. CONSTITUTION:A speed command and an opening command of a governor valve are calculated on the basis of a static head and an output command by a command value calculator. The phase angles of the secondary windings 22a-22c of an induction generator 11 are calculated on the basis of an output command, the output of an induction generator 1, a speed command and a speed by a phase angle calculator. An excitation amount is set on the basis of the output of the phase angle calculator, the speed and the output of an excitation amount regulator by the secondary winding excitation amount setter. Constant current controllers 23a-23c control currents of the secondary windings 22a-22c on the basis of the set excitation amount. Gains 25a-25c of the controllers 23a-23c are controlled by information obtained through a voltage transformer 27 and a current transformer 28.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、2次励磁付の誘導機を任意の回転数で運転す
る可変速揚水発電システムの励磁制御力、式に係り、特
に発電及び揚水の自動周波数制御(AFC)運転時に安
定に目標値に制御するに好適な可変速揚水発電システム
の励磁制御方式に関するものである。
Detailed Description of the Invention [Field of Application of the Invention] The present invention relates to an excitation control force and formula for a variable speed pumped storage power generation system that operates an induction machine with secondary excitation at an arbitrary rotation speed, and particularly relates to power generation and pumped storage power generation systems. The present invention relates to an excitation control method for a variable speed pumped storage power generation system suitable for stable control to a target value during automatic frequency control (AFC) operation.

〔発明の背景〕[Background of the invention]

従来の揚水発電システムは、揚水時に負荷の調整ができ
ないこと、発電運転時に、系統より要求される発電力が
変化すること、ならびに揚水運転時には揚程が変化する
こと等の理由により、システムの効率が変化するという
欠点があった。
In conventional pumped storage power generation systems, the efficiency of the system deteriorates due to reasons such as the inability to adjust the load during pumping, the power required by the grid changes during power generation operation, and the head change during pumped storage operation. The downside is that it changes.

このため1発電力、揚程にかかわらず、上記システムを
最高効率で運転させるための研究が進められている。そ
の研究の動向は、従来同期機であった揚水発電機を2次
励磁付の誘導機とし、同期速度以外の回転数で運転する
、いわゆる可変速発電システムを採用する方向に進んで
いる。このような可変速発電システムを採用することに
より。
For this reason, research is underway to operate the above system at maximum efficiency regardless of power generation or lift. The research trend is moving toward adopting a so-called variable-speed power generation system, in which the pumped storage generator, which was previously a synchronous machine, is replaced with an induction machine with secondary excitation, and is operated at a rotation speed other than the synchronous speed. By adopting such a variable speed power generation system.

発電力、揚程にかかわらず、システムを最高効率で運転
することが可能となる。そこで、この可変速発電システ
ムを実現するための研究が種々進められている。この可
変速発電システムについては。
The system can be operated at maximum efficiency regardless of power generation or lift height. Therefore, various studies are being carried out to realize this variable speed power generation system. About this variable speed power generation system.

既に、昭和59年電気学会全国大会論文、&553「大
容量同期電動機の可変速運転特性」において紹介されて
いるものの、具体的な制御方式については、何等ふれら
れていなかった。
Although it has already been introduced in the 1981 National Conference Paper of the Institute of Electrical Engineers of Japan, &553 ``Variable Speed Operating Characteristics of Large-Capacity Synchronous Motors'', there was no mention of a specific control method.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、発電及び揚水の各種運転状態において
高効率で運転できると共に、AFC運転時に安定した目
標値に制御でき、かつ、事故時に電圧の変動の小さい可
変速揚水発電システムの励磁制御方式を提供することに
ある。
An object of the present invention is to provide an excitation control method for a variable speed pumped storage power generation system that can operate with high efficiency in various operating states of power generation and pumping, can be controlled to a stable target value during AFC operation, and has small voltage fluctuations in the event of an accident. Our goal is to provide the following.

(発明の概要〕 本発明は、任意の発電力をうる運転条件が、有効落差、
回転数及びガバナのペン開度との関連より定まること、
この運転条件のうち1本システムの効率が回転数で定ま
ること、上記の回転数が、水車入力と発電機出力との差
で定まること等の知見に基づき、回転数を目標値にあう
ように制御すると共に、発電機出力を指令値にあわせる
ように内部位相角を制御すると共に、2次励磁制御系の
ゲインを可変速機の事故検出情報をもとに制御し、可変
速機の端子電圧の変動を抑制しようとするものである。
(Summary of the invention) The present invention provides that the operating conditions for obtaining any power generation are effective head,
Determined from the relationship between rotation speed and governor pen opening,
Based on the knowledge that one of these operating conditions is that the efficiency of the system is determined by the number of revolutions, and that the above number of revolutions is determined by the difference between the turbine input and the generator output, the number of revolutions was adjusted to match the target value. In addition to controlling the internal phase angle to match the generator output with the command value, the gain of the secondary excitation control system is controlled based on the accident detection information of the variable speed machine, and the terminal voltage of the variable speed machine is controlled. The aim is to suppress fluctuations in

〔発明の実施例〕[Embodiments of the invention]

第1図は、可変速発電システムの概要を示すものであり
、−次、二次側共、3相巻線からなる。
FIG. 1 shows an outline of a variable speed power generation system, and both the negative and secondary sides are composed of three-phase windings.

同図で、1が固定子を、2が回転子を示す。In the figure, 1 indicates a stator and 2 indicates a rotor.

5a〜5Cは固定子のa、b、C相巻線を、6a〜6c
は1回転子のa、b、C相巻線を示す。更に、定格周波
数をf、すベリをSとすると、回転子の速度はf (1
−5)であり、回転子の励磁巻線をすべりSの周波数で
励磁することにより、回転子の回転磁界はすベリ零(同
期速度)で回転し、固定子の回転磁界速度と同一になる
。7は回転子の回転数を測定する測定部を示し、この出
力により、3ですべり周波数を検出し、4ですベリ周波
数に応じた電圧を発生させ、2次巻線を励磁することを
示している。このようにすることにより、任意の回転数
で運転を行っても、常に電機子巻線にて、系統周波数の
電圧を発生させることができる。すなわち、第1図の例
では、回転子の回転磁界は。
5a to 5C are the a, b, and C phase windings of the stator, and 6a to 6c are
indicates the a, b, and c phase windings of one rotor. Furthermore, if the rated frequency is f and the clearance is S, then the rotor speed is f (1
-5), and by exciting the excitation winding of the rotor at the frequency of slip S, the rotor's rotating magnetic field rotates at zero (synchronous speed) and becomes the same as the stator's rotating magnetic field speed. . 7 indicates a measurement unit that measures the rotation speed of the rotor, and from this output, 3 detects the slip frequency, and 4 generates a voltage according to the slip frequency to excite the secondary winding. There is. By doing so, even if the engine is operated at any rotational speed, the voltage at the system frequency can always be generated in the armature winding. That is, in the example of FIG. 1, the rotating magnetic field of the rotor is.

f (1−S)+f−8=f     ・・・ (1)
となり、すべりにかかわらず、定格周波数の出力の得ら
れることになる。この方式において、系統事故時に端子
電圧の変動を抑制する励磁制御方式を立案しようとする
のが本願の主旨である。
f (1-S)+f-8=f... (1)
Therefore, regardless of slippage, output at the rated frequency can be obtained. In this system, the gist of the present application is to devise an excitation control system that suppresses fluctuations in terminal voltage in the event of a system fault.

第2図は、本システムの具体例を示すものであり、可変
速機が系統に接続、運転している場合を示しである。S
は、電力系統を、1,2は第1図と同一の固定子及び回
転子を示している。静落差H及び出力指令P0 が与え
られると、15の指令値算出回路で、効率を考慮しきガ
バナ弁の開度指令値及び速度指令値が算出される。14
は調速機の弁開度設定器であり、指令値算出回路15よ
りの開度指令値が14の開度設定器により時間遅れをも
って調速機の弁開度13となる。12(±水車部であり
、この特性は、静落差H1調速機の弁開度及び回転数N
で定まる。この水車特性により得られる入力より可変速
機の回転子1は回転する。
FIG. 2 shows a specific example of this system, and shows a case where a variable speed machine is connected to the grid and is in operation. S
1 and 2 indicate a power system, and 1 and 2 indicate the same stator and rotor as in FIG. When the static head difference H and the output command P0 are given, the 15 command value calculation circuit calculates the opening command value and the speed command value of the governor valve in consideration of efficiency. 14
is a valve opening setting device of the speed governor, and the opening command value from the command value calculation circuit 15 becomes the valve opening 13 of the speed governor with a time delay by the opening setting device 14. 12 (± water turbine part, this characteristic is the valve opening degree and rotation speed N of the static head H1 governor
It is determined by The rotor 1 of the variable speed machine rotates based on the input obtained from this water wheel characteristic.

11は速度発電機を示し、この出力により、速度Nが検
出される。19は電流変成器を、20は電圧変成器を示
し、21で、電流変成器19及び電圧変成器20の出力
をもとに、有効電力を算出する。
Reference numeral 11 indicates a speed generator, and the speed N is detected by the output of this generator. Reference numeral 19 indicates a current transformer, and reference numeral 20 indicates a voltage transformer. At 21, active power is calculated based on the outputs of the current transformer 19 and the voltage transformer 20.

16は、2次巻線の位相角算出部であり、21の出力P
、出力指令値P、、速度指令値N0.速度Nにより算出
する。17は、2次回路の励磁量を設定する設定部であ
り、18は励磁量の絶対値を制御する励磁量調整部を示
す、23a、23b。
16 is a phase angle calculating section of the secondary winding, and the output P of 21 is
, output command value P, , speed command value N0. Calculated based on speed N. 17 is a setting unit that sets the excitation amount of the secondary circuit; 18 is an excitation amount adjustment unit that controls the absolute value of the excitation amount; 23a, 23b;

23cは17で設定した励磁量をもとに、a、b。23c is a, b based on the excitation amount set in step 17.

C相の定電流制御を行う部分である。22a。This is the part that performs constant current control of the C phase. 22a.

22b、22cは定電流制御23 a 〜23 cで算
出した励磁量によりa、b、C相で励磁する励磁巻線で
ある。このようなシステムにおいて、従来の考えにもと
づく定電流制御系のゲインを固定とした場合には、系統
事故時に端子電圧が著しく変動する。このため、系統事
故時に端子電圧が変動しないような励磁方式を確立する
必要がある。
22b and 22c are excitation windings that are excited in the a, b, and C phases according to the excitation amounts calculated by the constant current controls 23a to 23c. In such a system, if the gain of the constant current control system is fixed based on the conventional concept, the terminal voltage will fluctuate significantly in the event of a system fault. Therefore, it is necessary to establish an excitation method that prevents terminal voltage fluctuations in the event of a system fault.

本発明は、第2図の励磁量を制御する定電流制御部の最
適システムを確立しようとするものである。
The present invention attempts to establish an optimal system for a constant current control section that controls the amount of excitation shown in FIG.

以下、本発明の一実施例を第3図により具体的に説明す
る。
Hereinafter, one embodiment of the present invention will be explained in detail with reference to FIG.

第3図は、2次励磁付の誘導機を任意の回転数で運転す
る、いわゆる可変速揚水発電システムG1が、送電線り
を介して、系統8に接続、運転している例を示すもので
ある。送電線りには、電圧変成器PT、、電流変成器C
T、が設置されている。
Figure 3 shows an example in which a so-called variable speed pumped storage power generation system G1, in which an induction machine with secondary excitation is operated at an arbitrary rotation speed, is connected to grid 8 via a power transmission line and is operated. It is. For power transmission lines, voltage transformer PT, current transformer C
T is installed.

一般に、揚水発電機には、フランシス水車が使用され、
水車出力と効率の関係は、第4図のように示される。同
図は、横軸に水車出力、縦軸に効率をとり、回転数をパ
ラメータとして示したものである* Pi + Px 
は水車出力を、η8.η2は効率を、N、 、 N2は
回転数を示す、出力P□では回転数N、で、出力P2で
は回転数N2で、それぞれの出力における最高効率η1
.η2となることを示している。このように、出力によ
って、効率が最高となる回転数は異なっており、これら
の最高効率の点で運転しようとするのが本システムの特
徴である。
Generally, Francis turbines are used for pumped storage generators.
The relationship between water turbine output and efficiency is shown in Figure 4. The figure shows the water turbine output on the horizontal axis, efficiency on the vertical axis, and rotation speed as a parameter * Pi + Px
is the water turbine output, η8. η2 is the efficiency, N, , N2 is the rotational speed, the output P□ is the rotational speed N, and the output P2 is the rotational speed N2, and the maximum efficiency η1 at each output is
.. This shows that η2. In this way, the rotational speed at which the efficiency is the highest varies depending on the output, and a feature of this system is that it attempts to operate at these points of maximum efficiency.

第3図において、可変速揚水発電システムG1は、操作
端Tより、本システムに要求される発電力の制御指令が
与えられると、発電機の特性、水の落差を考慮した上で
、高効率の運転ができるよう、発電機の回転数、水車の
ガバナ弁Vの開度が制御指令部、Cにおいて求められ、
これらの値にあうような運転ができるよう制御されてい
る。このような状態で、発電機出力の低下指令が与えら
れると、あらかじめ与えである手法により、発電機出力
、落差をもとに、発電機の効率が最高となるよう、回転
数、弁開度を制御し、効率のよい運転を行うことになる
In Fig. 3, when the variable speed pumped storage power generation system G1 is given a control command for the generated power required for this system from the operating end T, it is operated with high efficiency, taking into consideration the characteristics of the generator and the head of the water. The rotational speed of the generator and the opening degree of the governor valve V of the water turbine are determined by the control command unit C so that the
The vehicle is controlled to operate to meet these values. In such a situation, when a command to reduce the generator output is given, the rotation speed and valve opening are adjusted based on the generator output and head to maximize the efficiency of the generator, using a method given in advance. This will enable efficient operation.

一方、発電機回転数の定格よりのずれは、励磁回路E、
の情報として、すベリ周波数を用いることにより、前述
のように、定格周波数の出力の得られることになる。
On the other hand, the deviation of the generator rotation speed from the rated value is caused by the excitation circuit E,
By using the Suberi frequency as the information, an output at the rated frequency can be obtained as described above.

次に2次励磁の具体例について説明する。第2図に示す
ように、3相の2次励磁巻線は、次のようにあられされ
る。すなわち、第3図の操作端Tより与えられた指令に
より、 a p b H’C相の励磁量をうるための関
数のうちの位相角Δδを求める。
Next, a specific example of secondary excitation will be explained. As shown in FIG. 2, the three-phase secondary excitation winding is constructed as follows. That is, the phase angle Δδ of the function for obtaining the excitation amount of the a p b H′C phase is determined by the command given from the operating end T in FIG.

a、b、Q相の励磁電圧をV fa y V 1> H
V 1゜とすると、 と表わされる。ここで、E:すべり及び可変速機の運転
状態で定まる電圧値、δ。:可変速機の運転状態で定ま
る位相角、Δδ:制御指令部の出力を制御される位相角
とする。上式を用いて、制御を行う場合に、無効電力の
制御指令に対しては、電圧Eで、有効電力の制御指令に
対しては、位相角Δδで制御すればよい。
The excitation voltage of a, b, and Q phases is V fa y V 1> H
When V is 1°, it is expressed as follows. Here, E: voltage value, δ, determined by slip and operating conditions of the variable speed machine. : phase angle determined by the operating state of the variable speed machine, Δδ: phase angle to be controlled by the output of the control command section. When performing control using the above equation, control may be performed using voltage E for a reactive power control command, and control using a phase angle Δδ for an active power control command.

第5図は、従来の定電流制御部23a〜23cの詳細を
示したものであり、2次巻線制御量設定部17の出力と
、電流変成器24a〜24cの出力の差を比較部26a
〜26cでとり、この出力に、ゲイン25a〜25cを
乗することにより。
FIG. 5 shows the details of the conventional constant current control units 23a to 23c, and compares the difference between the output of the secondary winding control amount setting unit 17 and the output of the current transformers 24a to 24c using a comparison unit 26a.
~26c and multiplying this output by gains 25a~25c.

制御を行っている。is under control.

第3図において、送電線りの地点Fで事故が起き、70
 m pで2回線で構成されている送電線の1回線を開
放した場合の端子電圧の変化は、定電流制御系のゲイン
を一定とした場合には、端子電圧に大きな変動があられ
れる。これは、事故のため電機子電流が増大し、回転子
電流に変化が生ずる。このため、定電流制御系の電流に
大きな差があられれ、大きな励磁量が要求されるためで
ある。
In Figure 3, an accident occurred at point F on the power transmission line, and the
When one circuit of a power transmission line composed of two circuits is opened in mp, the terminal voltage will change significantly if the gain of the constant current control system is kept constant. This is because the armature current increases due to the accident, causing a change in the rotor current. This is because there is a large difference in the current of the constant current control system, and a large amount of excitation is required.

この励磁量を抑制するため、第6図に示すように、定電
流制御系のゲイン25a〜25cを電圧変成器27及び
電流変成器28を介して得た情報をもとに、保護リレー
29(不足電圧リレー又は過電流リレー等)により、事
故の有無を判定し。
In order to suppress this amount of excitation, as shown in FIG. (undervoltage relay, overcurrent relay, etc.) to determine whether there is an accident.

事故を検出した場合には、前述の定電流制御系のゲイン
25a〜25cを低下させ、電機子電流の変化により生
ずる2次励磁の制御量を減少させる。
When an accident is detected, the gains 25a to 25c of the constant current control system described above are lowered to reduce the control amount of secondary excitation caused by changes in armature current.

その後、事故の除去により、定電流制御系のゲインをも
とに戻す。このようにすることにより。
After that, the gain of the constant current control system is restored to its original value by removing the fault. By doing this.

端子電圧の変動を抑制でき、その上、定常時のAFC(
自動周波数制御)、AQR(自動無効電力制御)等の運
転に関しては、高速に応動できる。
Fluctuations in terminal voltage can be suppressed, and in addition, AFC (
Automatic frequency control), AQR (automatic reactive power control), etc. can be quickly responded to.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、可変速発電システムにおいて、系統事
故時の端子電圧の変動を抑制できるため、運用上の効果
は極めて大きい。
According to the present invention, in a variable speed power generation system, fluctuations in terminal voltage at the time of a system fault can be suppressed, so the operational effects are extremely large.

更に、電力の変動分を補給又は消費するため、昼間は発
電、夜間は揚水として運転する揚水発電システムにおい
ては、系統より要求される種々の電力に対して、効率よ
く運転できるため、経済的効果は極めて大きい。
Furthermore, in pumped storage power generation systems that operate as power generators during the day and as pumped storage at night to replenish or consume fluctuations in power, they can be operated efficiently to meet the various power requirements of the grid, resulting in economical effects. is extremely large.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は可変速揚水発電システムの原理概要。 第2図は可変速揚水発電システムの制御概要、第3図は
本願の概要を示す図、第4図は出方と効率の関係を示す
図、第5図は従来の実施例、第6図は本願の実施例であ
る。 E8・・・励磁回路、G1・・・可変速発電システム、
L・・・送電線、S・・・系統、■・・・ガバナ弁、C
・・・制御指令部、T・・・操作端、1・・・固定子、
2・・・回転子、3・・・すべり検出部、4・・・電圧
発生部、58〜5c・・・固定子のa+b+c相巻線、
6a〜6c・・・回転子のa、b、Q相巻線、7・・・
回転数測定部、11・・・速度発電機、12・・・水車
部、13・・・弁開度、14・・・調速機の弁開度設定
器、15・・・指令値算出回路、16・・・2次巻線位
相角算出部、17・・・2次巻線励磁量設定部、18・
・・励磁量調整部、19・・・電流変成器、20・・・
電圧変成器、21・・・有効電力算出部、22 a 〜
22 c −2次励磁のal bT G相巻線。 P、・・・出力指令値、No ・・・速度指令値、N・
・・速度、23a〜23c・・・定電流制御部、24a
〜24c・・・電流変成器、25a〜25c・・・定電
流制御部のゲイン、26a〜26c・・・比較部、27
・・・電圧変茅 1 日 !V2 固 HPa 華3 固 f’2r。
Figure 1 shows an overview of the principle of a variable speed pumped storage power generation system. Figure 2 is a control overview of a variable speed pumped storage power generation system, Figure 3 is a diagram showing an overview of the present application, Figure 4 is a diagram showing the relationship between output and efficiency, Figure 5 is a conventional example, and Figure 6 is an example of the present application. E8...excitation circuit, G1...variable speed power generation system,
L...Power line, S...System, ■...Governor valve, C
...Control command unit, T...Operation end, 1...Stator,
2...Rotor, 3...Slip detection section, 4...Voltage generation section, 58-5c...A+B+C phase winding of stator,
6a to 6c...Rotor a, b, Q phase windings, 7...
Rotation speed measuring section, 11... Speed generator, 12... Water turbine section, 13... Valve opening degree, 14... Valve opening degree setter of speed governor, 15... Command value calculation circuit , 16... Secondary winding phase angle calculation section, 17... Secondary winding excitation amount setting section, 18.
...Excitation amount adjustment section, 19...Current transformer, 20...
Voltage transformer, 21... active power calculation unit, 22 a ~
22 c - secondary excitation al bT G phase winding. P, ... Output command value, No. ... Speed command value, N.
...Speed, 23a to 23c... Constant current control section, 24a
~24c...Current transformer, 25a~25c...Gain of constant current control section, 26a~26c...Comparison section, 27
...Voltage change 1 day! V2 Hard HPa Flower 3 Hard f'2r.

Claims (1)

【特許請求の範囲】 1、2次励磁付の誘導機を任意の回転数で運転する可変
速揚水発電システムにおいて、2次を励磁する制御系の
ゲインを上記システムの事故検出情報により制御するこ
とを特徴とする可変速揚水発電システムの励磁制御方式
。 2、請求の範囲第1項の発明において、2次を励磁する
制御系を定電流制御系とすることを特徴とする可変速揚
水発電システムの励磁制御方式。 3、請求の範囲第2項の発明において、事故検出情報を
不足電圧検出リレ又は過電流検出リレとし、前記リレの
動作時に定電流制御系ゲインを減少させることを特徴と
する可変速揚水発電システムの励磁制御方式。
[Claims] In a variable speed pumped storage power generation system in which an induction machine with primary and secondary excitation is operated at an arbitrary rotation speed, the gain of a control system for exciting the secondary is controlled based on accident detection information of the system. An excitation control method for a variable speed pumped storage power generation system featuring: 2. An excitation control method for a variable speed pumped storage power generation system according to the invention as claimed in claim 1, characterized in that the control system for exciting the secondary is a constant current control system. 3. In the invention set forth in claim 2, the variable speed pumped storage power generation system is characterized in that the accident detection information is an undervoltage detection relay or an overcurrent detection relay, and the constant current control system gain is reduced when the relay is operated. excitation control method.
JP60264867A 1985-11-27 1985-11-27 Excitation control system for variable speed pumping-up power plant Granted JPS62126899A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60264867A JPS62126899A (en) 1985-11-27 1985-11-27 Excitation control system for variable speed pumping-up power plant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60264867A JPS62126899A (en) 1985-11-27 1985-11-27 Excitation control system for variable speed pumping-up power plant

Publications (2)

Publication Number Publication Date
JPS62126899A true JPS62126899A (en) 1987-06-09
JPH0326039B2 JPH0326039B2 (en) 1991-04-09

Family

ID=17409319

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60264867A Granted JPS62126899A (en) 1985-11-27 1985-11-27 Excitation control system for variable speed pumping-up power plant

Country Status (1)

Country Link
JP (1) JPS62126899A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63213498A (en) * 1987-03-02 1988-09-06 Kansai Electric Power Co Inc:The Control system for variable speed transmission

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63213498A (en) * 1987-03-02 1988-09-06 Kansai Electric Power Co Inc:The Control system for variable speed transmission

Also Published As

Publication number Publication date
JPH0326039B2 (en) 1991-04-09

Similar Documents

Publication Publication Date Title
JPS62110499A (en) Operation control for variable speed pumping-up power generation system
JP3053612B2 (en) Pumped storage generator
JP2660126B2 (en) Frequency fluctuation suppression device
JP2538862B2 (en) Variable speed pumped storage power generation system controller
JPS62126899A (en) Excitation control system for variable speed pumping-up power plant
JPS6198197A (en) Operation control system
JP3495140B2 (en) Voltage control device for wound induction machine
JPH0326038B2 (en)
JP2891030B2 (en) Secondary excitation device for AC excitation synchronous machine
JPS62236393A (en) Operation control system for variable speed pumpingup generator plant
JPS63265594A (en) Operation control system for variable speed pumping-up power generating system
JPH0576277B2 (en)
JPS63218000A (en) Operation control system of variable speed pumped storage power generation system
JPS6299677A (en) Operation control system for variable speed pumping-up power generating system
JPH09285193A (en) Variable speed generator motor device
JPS63265595A (en) Controller for variable speed pumping-up power generating system
JPS6282000A (en) Excitation control system
JP2652033B2 (en) Operation control method of variable speed pumped storage power generation system
JPS63114599A (en) Variable speed power generator
JPH0634628B2 (en) Variable speed pumped storage system operation controller
JPS63137000A (en) Operation controlling method for variable speed pumping-up generator system
JP2644748B2 (en) Variable speed pumped storage power generation system
JPS61247298A (en) Operation controlling method for variable speed generator system
JPS61170299A (en) Operation controller of variable speed power generation system
JPH0576279B2 (en)