JPS62126684A - Semiconductor laser - Google Patents

Semiconductor laser

Info

Publication number
JPS62126684A
JPS62126684A JP60266541A JP26654185A JPS62126684A JP S62126684 A JPS62126684 A JP S62126684A JP 60266541 A JP60266541 A JP 60266541A JP 26654185 A JP26654185 A JP 26654185A JP S62126684 A JPS62126684 A JP S62126684A
Authority
JP
Japan
Prior art keywords
light
modulation
electrodes
active layer
semiconductor laser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60266541A
Other languages
Japanese (ja)
Inventor
Yoshinori Takeuchi
喜則 武内
Naoki Takenaka
直樹 竹中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP60266541A priority Critical patent/JPS62126684A/en
Publication of JPS62126684A publication Critical patent/JPS62126684A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/028Coatings ; Treatment of the laser facets, e.g. etching, passivation layers or reflecting layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/105Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating by controlling the mutual position or the reflecting properties of the reflectors of the cavity, e.g. by controlling the cavity length

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Semiconductor Lasers (AREA)
  • Optical Communication System (AREA)

Abstract

PURPOSE:To obtain a high-quality, super-high-speed, optical modulating signal of 10GHz or more without wavelength fluctuation, by providing a pair of light modulating parts, which are constituted by materials or multilayer films, where one or both of light reflectivity or light absorbance are changed with the change in electric fields are current density, and electrodes, which are independent of current injecting electrodes, at both end surfaces of an active layer. CONSTITUTION:One or both of light reflectivity and light absorbance of materials or multilayer films 5a and 5b are changed with the change in electric field or current density. A pair of light modulating parts is formed by the films 5a and 5b and electrodes 7a and 7b, which are independent of current injecting electrodes 2a and 2b, are provided neighboring both end surfaces of an active layer 1 in the light propagating direction of a lightguide forming active layer 1. For example, on a substrate 3, a clad layer 4b, the active layer 1 and a clad layer 4a are formed. The current injecting electrodes 2a and 2b are provided on the upper and lower surfaces. On both end surfaces, the dielectric thin films 5a and 5b having a large electrooptical effects, transparent electrodes 6a and 6b, parts 8a and 8b having a large current density and the electrodes 7a and 7b are further provided. Thus a pair of the modulating parts is formed. A modulating signal is applied to one of the light modulating parts, and a signal, which is electrically inverted from said modulating signal, is applied to the other light modulating part. Thus modulation is performed.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、大容量光通信システムに供する超高速変調可
能な半導体レーザに関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a semiconductor laser capable of ultra-high-speed modulation and used in a large-capacity optical communication system.

従来の技術 半導体レーザ光出力の注入電流による変調、す2ペー、
゛ なわち直接電流変調は、半導体レーザの他に外部変調器
を必要とせず、容易に光強度変調信号を得られる事から
、光通信システムにおける変調方法の主流となっている
。この電流直接変調は、活性層内電流密度の変化に伴う
レーザ発振状態の変化を利用し、光変調信号を取り出し
ている、(米津宏雄「光通信素子工学」昭59.2.1
5  工学図書P163)。
Conventional technology Modulation of semiconductor laser optical output by injection current, page 2,
In other words, direct current modulation does not require an external modulator other than a semiconductor laser and can easily obtain an optical intensity modulation signal, so it has become the mainstream modulation method in optical communication systems. This direct current modulation uses changes in the laser oscillation state due to changes in the current density in the active layer to extract optical modulation signals (Hiroo Yonezu, "Optical Communication Device Engineering", February 1, 1982
5 Engineering Book P163).

発明が解決しようとする問題点 しかしレーザ直接電流変調はレーザ発振状態の変化を利
用している為、レーザ発振状態における光密度と電流密
度の結合に関係した変調限界が10GHz〜20 GH
zに存在している。また変調動作中半導体レーザは、発
振状態を常に不安定に揺動させており、これに起因する
数々の問題点が存在している。特に光密度と電流密度の
結合に関する固有振動、すなわち緩和振動周波数付近に
おいて、多縦モード化9発振波長のチャーピング、光強
度の緩和振動による変動等が顕著になる。レーザ構造の
工夫によって変調特性を改善し得たとしても、3ぺ−7 本質的には直接電流変調において、その問題点を、完全
に克服する事は不可能である。そこで、本発明は波長変
動が無く、質の高い10GHz 以上の光超高速変調信
号を容易に得る事のできる半導体レーザを提供するもの
である。
Problems to be Solved by the Invention However, since laser direct current modulation uses changes in the laser oscillation state, the modulation limit related to the combination of optical density and current density in the laser oscillation state is 10 GHz to 20 GHz.
exists in z. Further, during modulation operation, the semiconductor laser constantly oscillates its oscillation state in an unstable manner, and many problems arise due to this. Particularly, near the natural oscillation related to the coupling of optical density and current density, that is, the relaxation oscillation frequency, chirping of the multi-longitudinal mode 9 oscillation wavelength, fluctuations in light intensity due to relaxation oscillation, etc. become noticeable. Even if the modulation characteristics can be improved by devising the laser structure, it is impossible to completely overcome the problems in direct current modulation. SUMMARY OF THE INVENTION Therefore, the present invention provides a semiconductor laser that has no wavelength fluctuation and can easily obtain a high-quality optical ultrahigh-speed modulation signal of 10 GHz or more.

問題点を解決するだめの手段 本発明は前記問題点を解決する為、半導体レーザ活性層
両端面に一対の光変調部を設けたことを特徴とする。前
記光変調部は、電界もしくは電流密度の変化で、光反射
率と光吸収率の一方または両方の変化する物質または多
層膜と、半導体レーザ電流注入電極とは独立な電極とで
構成される。
Means for Solving the Problems In order to solve the above-mentioned problems, the present invention is characterized in that a pair of optical modulation sections are provided on both end faces of the semiconductor laser active layer. The light modulation section is composed of a material or a multilayer film whose light reflectance and/or light absorption change depending on changes in electric field or current density, and an electrode independent of the semiconductor laser current injection electrode.

前記半導体レーザは、一対の光変調部の一方に変調信号
を印加すると同時に、他方の光変調部に前記変調信号を
電気的に反転させた信号を印加する事によって変調され
る。
The semiconductor laser is modulated by applying a modulation signal to one of a pair of optical modulation units and simultaneously applying a signal that is an electrical inversion of the modulation signal to the other optical modulation unit.

作  用 前記の構成の半導体レーザの変調動作は次の様なもので
ある。1ず半導体レーザの活性層に閾値以上の電流を注
入し、レーザ発振させる。次に前記一対の変調部の一方
に変調信号を印加すると同時に、電気的に反転した変調
信号を他方の変調部に印加すれば、本発明にかかる半導
体レーザの両端面から出射するレーザ光は変調される。
Operation The modulation operation of the semiconductor laser having the above configuration is as follows. First, a current higher than a threshold value is injected into the active layer of a semiconductor laser to cause laser oscillation. Next, by applying a modulation signal to one of the pair of modulation sections and simultaneously applying an electrically inverted modulation signal to the other modulation section, the laser light emitted from both end faces of the semiconductor laser according to the present invention is modulated. be done.

しかしとの時、一対の変調部の光反射率または光吸収率
の変化は、互いに逆向きなので、前記両端面から出射し
た変調光信号は相補的な関係にある。従って、本発明に
かかる半導体レーザ内での光密度の変動はなく、安定な
発振状態の一1寸光変調が達成される。
However, in this case, the changes in the light reflectance or light absorption of the pair of modulation sections are in opposite directions, so that the modulated optical signals emitted from both end faces are in a complementary relationship. Therefore, there is no fluctuation in optical density within the semiconductor laser according to the present invention, and 11-dimensional optical modulation in a stable oscillation state is achieved.

実施例 以下、本発明の一実施例を添付図面にもとづいて説明す
る。第1図は、本発明の一実施例の半導体レーザの断面
図である。1は半導体レーザ活性層であり、2a、2b
は電流注入電極、3は基板、4a 、 4bはクラッド
層である。5a 、 6bは電気光学効果の大きい誘電
体薄膜で、6a、6bは透明電極となってbる。7a、
7bは電極で、電荷密度を大きくした部分sa、sbを
介して、誘電体薄膜5a、esbに接触している。58
〜8aと5b〜8bとが一対の変調部を形成している。
Embodiment Hereinafter, one embodiment of the present invention will be described based on the accompanying drawings. FIG. 1 is a sectional view of a semiconductor laser according to an embodiment of the present invention. 1 is a semiconductor laser active layer, 2a, 2b
3 is a current injection electrode, 3 is a substrate, and 4a and 4b are cladding layers. 5a and 6b are dielectric thin films with a large electro-optic effect, and 6a and 6b are transparent electrodes. 7a,
An electrode 7b is in contact with the dielectric thin films 5a and esb via portions sa and sb with increased charge density. 58
~8a and 5b~8b form a pair of modulation sections.

第2図は、本発明の一実施例の半導体レーザ光変調法の
概略図である。9は第1図に示した本発明にかかる半導
体レーザである。10 aは第1図5a〜8aで示した
変調部に印加される変調信号であり、10bは、10 
aが電気的に反転され5b〜8bの変調部に印加される
信号である。変調部の電極6 a −7a間捷たけ、e
b−7b間に印加された電界は、電気光学効果によって
58と5bの屈折率を変化させる。第2図Bのごとく電
界を印加しない状態では、半導体レーザ9の両端面の光
出力の強度は同じである。しかし、AあるいはCのごと
く一対の変調信号を印加すれば、一対の変調部の屈折率
が逆向きに変化し、半導体レーザの左右端面の一方の反
射率を大きく、他方を小さくする事ができる。従って、
左右端面での出射光11a、11bの光強度は相補的に
変化し、光変調が実現される。この時、半導体レーザ活
性層内光密度の大きな変動はなく、レーザが安定な発振
状態を保ったままなので超高速光変調が実現6ベーノ できる。
FIG. 2 is a schematic diagram of a semiconductor laser light modulation method according to an embodiment of the present invention. 9 is a semiconductor laser according to the present invention shown in FIG. 10a is a modulation signal applied to the modulation section shown in FIGS. 5a to 8a, and 10b is a
A is a signal that is electrically inverted and applied to the modulation sections 5b to 8b. Modulation part electrode 6a-7a interval, e
The electric field applied between b and 7b changes the refractive index of 58 and 5b due to the electro-optic effect. When no electric field is applied as shown in FIG. 2B, the intensity of the optical output from both end faces of the semiconductor laser 9 is the same. However, by applying a pair of modulation signals as shown in A or C, the refractive index of the pair of modulation sections changes in opposite directions, making it possible to increase the reflectance of one side of the left and right end faces of the semiconductor laser and decrease the reflectance of the other. . Therefore,
The light intensities of the emitted lights 11a and 11b at the left and right end faces change complementarily, and optical modulation is realized. At this time, there is no large fluctuation in the optical density within the semiconductor laser active layer, and the laser remains in a stable oscillation state, making it possible to realize ultrahigh-speed optical modulation.

発明の効果 以上のように、本発明によれば、半導体レーザの超高速
光変調が容易に実現され、大容量光通信システム等にお
いて極めて有用である。
Effects of the Invention As described above, according to the present invention, ultrahigh-speed optical modulation of a semiconductor laser can be easily realized, and it is extremely useful in large-capacity optical communication systems and the like.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例の半導体レーザの断面図、第
2図は同半導体レーザの動作説明図である。 1・・・・・・活性層、csa、5b・・・・・・電気
光学効果の大きい誘電体、6a、eb・・・・・・透明
電極、7a。 7b・・・・・・電極、5a〜8a、5b〜8b・・・
・・・一対の変調部、9・・・・・・半導体レーザ、1
0 a・・・・・・変調信号、1ob・・・・・・10
 aを電気的に反転させた変調信号、11a、11b・
・・・・・光出力。
FIG. 1 is a sectional view of a semiconductor laser according to an embodiment of the present invention, and FIG. 2 is an explanatory diagram of the operation of the semiconductor laser. 1... Active layer, csa, 5b... Dielectric material with large electro-optic effect, 6a, eb... Transparent electrode, 7a. 7b... Electrode, 5a to 8a, 5b to 8b...
...Pair of modulation sections, 9...Semiconductor laser, 1
0 a...Modulation signal, 1ob...10
Modulation signals 11a, 11b, which are electrically inverted a.
...Light output.

Claims (2)

【特許請求の範囲】[Claims] (1)電界もしくは電流密度の変化で、光反射率と光吸
収率の一方または両方の変化する物質または多層膜と、
電流注入電極とは独立な電極とで構成された光変調部を
、活性層を構成する光導波路の光伝搬方向に、前記活性
層両端面に隣接して一対有する半導体レーザ。
(1) A substance or multilayer film that changes one or both of light reflectance and light absorption with changes in electric field or current density;
A semiconductor laser having a pair of optical modulation sections each including an electrode independent of a current injection electrode, adjacent to both end surfaces of the active layer in the light propagation direction of an optical waveguide constituting the active layer.
(2)一対の光変調部の一方に変調信号を印加すると同
時に、他方の光変調部に前記変調信号を電気的に反転さ
せた信号を印加する事を特徴とする特許請求の範囲第1
項記載の半導体レーザ。
(2) A modulation signal is applied to one of the pair of optical modulation units, and at the same time, a signal obtained by electrically inverting the modulation signal is applied to the other optical modulation unit.
Semiconductor laser described in section.
JP60266541A 1985-11-27 1985-11-27 Semiconductor laser Pending JPS62126684A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60266541A JPS62126684A (en) 1985-11-27 1985-11-27 Semiconductor laser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60266541A JPS62126684A (en) 1985-11-27 1985-11-27 Semiconductor laser

Publications (1)

Publication Number Publication Date
JPS62126684A true JPS62126684A (en) 1987-06-08

Family

ID=17432290

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60266541A Pending JPS62126684A (en) 1985-11-27 1985-11-27 Semiconductor laser

Country Status (1)

Country Link
JP (1) JPS62126684A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11220205A (en) * 1998-01-30 1999-08-10 Sharp Corp Semiconductor laser element and manufacture thereof
US9272354B2 (en) 2010-04-28 2016-03-01 Hitachi Automotive Systems, Ltd. Cylinder device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11220205A (en) * 1998-01-30 1999-08-10 Sharp Corp Semiconductor laser element and manufacture thereof
US9272354B2 (en) 2010-04-28 2016-03-01 Hitachi Automotive Systems, Ltd. Cylinder device

Similar Documents

Publication Publication Date Title
JP5233983B2 (en) Optical phase modulation element and optical modulator using the same
TW446846B (en) Hybrid digital electro-optic switch
US20040008965A1 (en) Current tuned Mach-Zehnder optical attenuator
JP2003177368A (en) Semiconductor optical modulator, mach-zehnder type optical modulator and optical modulator integrated type semiconductor laser
CA1226930A (en) Method for modulating a carrier wave
JPH1184434A (en) Light control circuit and its operation method
JPS62126684A (en) Semiconductor laser
JPH05173099A (en) Optical control element
Chang et al. GHz bandwidth optical channel waveguide TIR switches and 4× 4 switching networks
JPH04172316A (en) Wave guide type light control device
JPH0353225A (en) Semiconductor optical modulator
KR102320441B1 (en) Optical intensity modulator and optical module using the same
JP2635986B2 (en) Optical waveguide switch
JP3139009B2 (en) Light switch
JPH04195115A (en) Optical control device
JP2706315B2 (en) Optical waveguide phase modulator
JP3719563B2 (en) Light modulator
JP2001201725A (en) Optical modulation method and optical modulator
JPS60177318A (en) Modulated light source
JP2713898B2 (en) Optical element
Tonchev et al. Optical multimode X-switch in Ti-diffused LiNbO3
JP2606552B2 (en) Light control device
JPH09105959A (en) Optical switch
JPS5993431A (en) Optical switch
KOMATSU et al. Gb/s-Range Semiconductor and Ti: LiNbO 3 Guided-Wave Optical Modulators.