JPS621265A - Semiconductor memory device and manufacture thereof - Google Patents

Semiconductor memory device and manufacture thereof

Info

Publication number
JPS621265A
JPS621265A JP60139571A JP13957185A JPS621265A JP S621265 A JPS621265 A JP S621265A JP 60139571 A JP60139571 A JP 60139571A JP 13957185 A JP13957185 A JP 13957185A JP S621265 A JPS621265 A JP S621265A
Authority
JP
Japan
Prior art keywords
type
region
layer
semiconductor substrate
concentration impurity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60139571A
Other languages
Japanese (ja)
Inventor
Satoshi Saigo
西郷 聡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP60139571A priority Critical patent/JPS621265A/en
Publication of JPS621265A publication Critical patent/JPS621265A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B10/00Static random access memory [SRAM] devices
    • H10B10/10SRAM devices comprising bipolar components

Abstract

PURPOSE:To increase the speed of the access time by forming a low- concentration impurity region having the same conduction type as a high- concentration semiconductor substrate onto one conduction type high- concentration semiconductor substrate and shaping a collector region, a base region and an emitter region onto the low-concentration impurity layer in succession. CONSTITUTION:A P-type low-concentration impurity layer 12 is formed to the whole surface or selected surface of a P-type high-concentration impurity semiconductor substrate 11 and N-type buried layers 13 and P-type buried layers 14 are shaped selectively onto the low-concentration impurity layer 12, an N-type epitaxial layer 15 is grown, and a collector region is shaped. Oxide films 16 are formed selectively to the epitaxial layer 15 to electrically isolate unit memory cells, P-type base regions 17 are shaped into several element region, and N-type emitter regions 18 are formed. These emitter regions 18 are connected in a row by a digit line D consisting of an aluminum wire through inter-layer insulating films 19. Accordingly, the thyristor effect of parasitic transistors generated among the memory cells is prevented while junction capacitance is reduce, thus increasing the speed of the access time.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は半導体記憶装置に関し、特に情報の確実な書き
込みを行い得るプログラム可能な読み出し専用の記憶装
置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a semiconductor memory device, and more particularly to a programmable read-only memory device in which information can be reliably written.

〔従来の技術〕[Conventional technology]

プログラム可能な破壊読み出し専用の記憶装置(Pro
gramable Read 0nly Memory
 :以下FROMと称する)は、単位記憶素子の構造の
違いから2種類に分類される。1つはヒユーズとこれに
接続された1つのPN接合を単位記憶素子としてヒユー
ズを溶断することにより情報を書き込むFROMであり
、他は互いに逆方向に接続されたPN接合の一方を破壊
することにより情報を書き込む接合破壊型FROMであ
る。
Programmable destructive read-only storage (Pro
gramable Read 0nly Memory
(hereinafter referred to as FROM) are classified into two types depending on the structure of the unit memory element. One type is FROM, which uses a fuse and one PN junction connected to it as a unit memory element, and writes information by blowing the fuse.The other type uses a fuse and one PN junction connected to it as a unit memory element, and writes information by blowing the fuse. This is a junction destruction type FROM in which information is written.

第2図は、上記接合破壊型FROMの単位記憶素子の断
面構造を示しており、例えばP型半導体基板21上に高
濃度N型埋込層23および高濃度P型埋込層24を選択
的に形成し、更に前記基板21上にN型エピタキシャル
層25を成長させ、コレクタ領域を形成する。また、こ
のエピタキシャル層25に酸化膜26を選択形成して単
位記憶素子間を電気的に分離するとともに、エピタキシ
ャル層25の領域内にP型ベース領域27を形成し、更
にその上にN型エミッタ領域28を形成して単位記憶素
子Ql とQ!を構成している。そして、単位記憶素子
の各エミッタ領域28はアルミニウム電極により一列(
図の面に沿う方向)に配線してデジット線りを構成し、
また前記N型埋込層23を図面に垂直方向に一列に接続
してワード線W、、W、を構成している。
FIG. 2 shows a cross-sectional structure of a unit memory element of the junction breakdown type FROM. For example, a high concentration N-type buried layer 23 and a high concentration P-type buried layer 24 are selectively formed on a P-type semiconductor substrate 21. Further, an N-type epitaxial layer 25 is grown on the substrate 21 to form a collector region. Further, an oxide film 26 is selectively formed on this epitaxial layer 25 to electrically isolate unit memory elements, a P-type base region 27 is formed in the region of the epitaxial layer 25, and an N-type emitter is further formed on the P-type base region 27. A region 28 is formed to form unit storage elements Ql and Q! It consists of Each emitter region 28 of the unit memory element is arranged in a row (
Configure the digit wire by wiring in the direction along the plane shown in the figure.
Further, the N-type buried layers 23 are connected in a line perpendicular to the drawing to form word lines W, , W,.

この単位記憶素子構造では、前記デジット線とワード線
により選択された記憶素子に書き込み電流を流すと、選
択された記憶素子ではエミッタ・ベース間のPN接合が
破壊され、この記憶素子に情報が書き込まれる。例えば
、第3図の等価回路において、単位記憶素子Q、に情報
を書き込むものとすると、デジット線りとワード’aw
z間に書き込み電流!。を通流すれば、電流は通路Aを
通って流れ、未書き込み単位記憶素子Q8のエミッタを
破壊してここに情報が書き込まれる。
In this unit memory element structure, when a write current is applied to a memory element selected by the digit line and word line, the PN junction between the emitter and the base of the selected memory element is destroyed, and information is written into this memory element. It will be done. For example, in the equivalent circuit of FIG. 3, if information is to be written to the unit storage element Q, the digit line and the word
Write current between z! . When the current is passed, the current flows through the path A, destroys the emitter of the unwritten unit storage element Q8, and information is written there.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら、この記憶装置では、この未書き込み単位
記憶素子Q2の隣のワード線W1に、書き込み済単位記
憶素子Q、が存在していると、書き込み電流1wの一部
が通路Bを流れ、書き込みたい情報を未書ぎ込み単位記
憶素子Q2に正常に書き込むことができず、書き込み不
良が発生することがある。
However, in this storage device, if a written unit storage element Q exists on the word line W1 next to this unwritten unit storage element Q2, a part of the write current 1w flows through the path B, Information may not be normally written to the unwritten unit storage element Q2, and a writing failure may occur.

これは、この未書き込み単位記憶素子Q2のベース領域
とN型埋込層、更にP型半導体基板とで構成される寄生
PNP I−ランジスタQ3が、未書き込み単位記憶素
子Q2に書き込み電流I。を流し始めたときに動作し、
このためP型半導体基板へキャリアが蓄積され、半導体
基板の抵抗骨Rが高いため点Xにおける半導体基板電位
が浮き上り、未書き込み単位記憶素子Q2のN型埋込層
と、P型半導体基板および書き込み済単位記憶素子Q。
This is because the parasitic PNP I-transistor Q3, which is composed of the base region of the unwritten unit storage element Q2, the N-type buried layer, and the P-type semiconductor substrate, supplies a write current I to the unwritten unit storage element Q2. It works when I start flowing,
Therefore, carriers are accumulated in the P-type semiconductor substrate, and since the resistance bone R of the semiconductor substrate is high, the semiconductor substrate potential at point X rises, and the N-type buried layer of the unwritten unit memory element Q2 and the P-type semiconductor substrate and Written unit memory element Q.

のN型埋込層とで寄生NPN トランジスタQ4が動作
され、所謂寄生サイリスタ効果が発生するためである。
This is because the parasitic NPN transistor Q4 is operated with the N-type buried layer, and a so-called parasitic thyristor effect occurs.

これにより、書き込み電流の一部が書き込み済単位記憶
素子Q、を通って電流通路Bを流ることになり、したが
って情報を書き込むべき未書き込み単位記憶素子Q2に
情報が書き込まれなかったり、或いは書き込み不足によ
る不良が発生することになり、FROMの書き込み歩留
および信頼性の低下を招いている。
As a result, part of the write current flows through the current path B through the written unit memory element Q, and therefore, information may not be written to the unwritten unit memory element Q2 to which information should be written, or information may not be written to the unwritten unit memory element Q2. Failures occur due to the shortage, leading to a decline in FROM write yield and reliability.

このような不具合を防止するためには、半導体基板、即
ち第2図ではP型半導体基板21の不純物濃度を高めて
その比抵抗を下げ、抵抗骨Rを小さくすることが考えら
れる。つまり、抵抗骨Rの減少により寄生PNP )ラ
ンジスタQ、が半導体基板へ注入蓄積するキャリアによ
る点Xでの半導体基板電位の浮き上りを防ぎ、これによ
り寄生NPN)ランジスタQ4を動作できなくして、寄
生サイリスタ効果を防止させる方法である。しかしなが
ら、半導体基板の不純物濃度を高めると、高濃度のN型
埋込層との間の接合容量が増大し、アクセスタイムの低
下という問題が生じることになる。
In order to prevent such problems, it is conceivable to increase the impurity concentration of the semiconductor substrate, that is, the P-type semiconductor substrate 21 in FIG. 2, to lower its specific resistance and to reduce the resistance bone R. In other words, due to the decrease in the resistance bone R, the parasitic PNP transistor Q prevents the semiconductor substrate potential from rising at point X due to the carriers injected and accumulated into the semiconductor substrate. This is a method to prevent the thyristor effect. However, increasing the impurity concentration of the semiconductor substrate increases the junction capacitance with the highly doped N-type buried layer, resulting in a problem of reduced access time.

また、他の対策として、P型半導体基板上に低濃度のP
型エピタキシャル層を堆積し、このエピタキシャル層上
にN型埋込層を形成する方法も考えられる0例えば、第
4図はその濃度プロファイルであって、横軸に深さを、
縦軸に不純物濃度を示し、χ41はN型埋込層領域、χ
4.はP型エピタキシャル層領域、χ4.はP型半導体
基板領域である。この構成にすれば、埋込層とエピタキ
シャル層との接合容量を小さくでき、かつ抵抗骨を低減
して半導体基板電位の浮き上りを防止することもできる
。しかしながら、P型半導体基板上に低濃度のP型エピ
タキシャル層を形成する構造は製造が難しくしかも高価
であり、−Mに採用することは困難である。
In addition, as another countermeasure, a low concentration of P is applied on a P-type semiconductor substrate.
A method of depositing a type epitaxial layer and forming an N type buried layer on this epitaxial layer is also considered. For example, FIG. 4 shows the concentration profile, and the horizontal axis represents the depth.
The vertical axis shows the impurity concentration, χ41 is the N-type buried layer region, χ
4. is a P-type epitaxial layer region, χ4. is a P-type semiconductor substrate region. With this configuration, it is possible to reduce the junction capacitance between the buried layer and the epitaxial layer, reduce the resistance bone, and prevent the semiconductor substrate potential from rising. However, a structure in which a low-concentration P-type epitaxial layer is formed on a P-type semiconductor substrate is difficult to manufacture and expensive, and it is difficult to apply it to -M.

〔問題点を解決するための手段〕 本発明の半導体記憶装置は、寄生サイリスタ効果を防止
するとともに接合容量の増加を抑制し、情報書き込みの
信顧性の向上およびアクセスタイムの高速化等を図るた
めに、一の導電型の高濃度半導体基板上に同一導電型の
低濃度不純物層を形成し、この低濃度不純物層上にコレ
クタ領域、ベース領域およびエミッタ領域を順次形成す
るようにした構造および製造方法である。
[Means for Solving the Problems] The semiconductor memory device of the present invention prevents the parasitic thyristor effect and suppresses the increase in junction capacitance, thereby improving reliability of information writing and speeding up access time. For this purpose, a low concentration impurity layer of the same conductivity type is formed on a high concentration semiconductor substrate of one conductivity type, and a collector region, a base region and an emitter region are sequentially formed on this low concentration impurity layer. This is the manufacturing method.

〔実施例〕〔Example〕

次に、本発明を図面を参照して説明する。 Next, the present invention will be explained with reference to the drawings.

第1図は、本発明の一実施例を説明するFROMの単位
記憶素子の断面図であり、以下その製造工程に従って説
明する。
FIG. 1 is a sectional view of a unit memory element of a FROM to explain one embodiment of the present invention, and the manufacturing process thereof will be explained below.

例えば、P型の高濃度不純物半導体基板11の全面或い
は選択された面にイオン注入法等によりN型不純物を導
入してP型の低濃度不純物層12を形成する。そして、
この低濃度不純物層12の上にN型埋込層13及びP型
埋込層14を選択的に形成し、更にこの上にN型エピタ
キシャル層15を成長させ、コレクタ領域を形成する。
For example, N-type impurities are introduced into the entire surface or a selected surface of the P-type high-concentration impurity semiconductor substrate 11 by ion implantation or the like to form the P-type low-concentration impurity layer 12 . and,
An N-type buried layer 13 and a P-type buried layer 14 are selectively formed on this low concentration impurity layer 12, and an N-type epitaxial layer 15 is further grown thereon to form a collector region.

次いで、このエピタキシャル層15に酸化膜16を選択
的に形成して単位記憶素子を電気的に分離する。そして
、各素子領域内にP型ベース領域17を形成し、更にそ
の上にN型エミッタ領域18を形成する。これらエミッ
タ領域18は層間絶縁膜19を介してアルミニウム線か
らなるデジット線りによって一列に接続されることはい
うまでもない。
Next, an oxide film 16 is selectively formed on this epitaxial layer 15 to electrically isolate the unit memory elements. Then, a P-type base region 17 is formed in each element region, and an N-type emitter region 18 is further formed thereon. Needless to say, these emitter regions 18 are connected in a line through an interlayer insulating film 19 by digit lines made of aluminum wires.

前記P型高濃度不純物半導体基板11、P型低濃度不純
物層12およびN型埋込層13の濃度プロファイルを第
5図に示す0図において、χ、1はN型埋込層13領域
、χ、2はP型低濃度不純物層12fil域、χ3.は
半導体基板11fii域である。これから判るように、
N型埋込層13がP型低濃度不純物層12に接する点の
濃度は、第4図に示したP型エピタキシャル層における
N型埋込層の接合点の濃度と略同じである。
In FIG. 5, which shows the concentration profiles of the P-type high-concentration impurity semiconductor substrate 11, the P-type low-concentration impurity layer 12, and the N-type buried layer 13, χ and 1 are the N-type buried layer 13 region, χ , 2 is a P-type low concentration impurity layer 12fil region, χ3. is the semiconductor substrate 11fii area. As you will see,
The concentration at the point where the N-type buried layer 13 contacts the P-type low concentration impurity layer 12 is approximately the same as the concentration at the junction point of the N-type buried layer in the P-type epitaxial layer shown in FIG.

以上の構成によれば、第3図に示したような寄生PNP
 )ランジスタQ、が生じてキャリアの注入蓄積が行わ
れようとしても、P型低濃度ネ純物層12の下側に比抵
抗の小さいP型高濃度半導体基板11が存在しているた
め、半導体基板の抵抗骨Rが低減し、キャリアの注入蓄
積によっても点Xにおける電位の浮き上りが生じること
はない。
According to the above configuration, the parasitic PNP as shown in FIG.
) Even if transistor Q is generated and carriers are to be injected and accumulated, the semiconductor The resistance bone R of the substrate is reduced, and the potential rise at point X does not occur even when carriers are injected and accumulated.

したがって、寄生NPN)ランジスタQ4が動作するこ
とはなく、未書き込み単位記憶素子Q2の隣りのワード
線に書き込み済単位記号素子Q、が存在しても、正常な
情報の書き込みを行うことができる。
Therefore, the parasitic NPN) transistor Q4 does not operate, and even if the written unit symbol element Q exists on the word line adjacent to the unwritten unit storage element Q2, normal information can be written.

因みに、従来の不純物濃度がIQ”cm−’のP型半導
体基板の場合に抵抗骨Rが500Ωであるのに比べ、こ
の例では5XlO”cm−’の高濃度半導体基板11を
使用することにより、抵抗骨Rを50Ω以下に抑制でき
る。
Incidentally, compared to the resistance R of 500Ω in the case of a conventional P-type semiconductor substrate with an impurity concentration of IQ"cm-', in this example, by using a high-concentration semiconductor substrate 11 with an impurity concentration of 5X1O"cm-', , the resistance bone R can be suppressed to 50Ω or less.

一方、本発明では低濃度不純物層12上にN型埋込み層
13を形成しているため、両者間の接合容量を格段に低
減でき、アクセスタイムの高速化を達成できる。即ち、
不純物濃度が5X10”cm−3のP型半導体基板上に
N型埋込層を直接形成した場合の接合容量は309Fと
なるが、この例ではP型低濃度不純物層12の濃度をI
QISam−’とすると、接合容量をtoppに低減で
き、アクセスタイムを前者の25μmに対して15μm
と高速化できる。
On the other hand, in the present invention, since the N-type buried layer 13 is formed on the low concentration impurity layer 12, the junction capacitance between the two can be significantly reduced, and access time can be increased. That is,
When an N-type buried layer is directly formed on a P-type semiconductor substrate with an impurity concentration of 5X10"cm-3, the junction capacitance is 309F, but in this example, the concentration of the P-type low concentration impurity layer 12 is I
If QISam-' is used, the junction capacitance can be reduced to topp, and the access time can be reduced to 15 μm compared to the former's 25 μm.
It can be speeded up.

したがって、抵抗骨Rの低減や接合容量の低減において
、P型エピタキシャル層を用いた構造のものに比較して
優るとも劣らない効果を得ることができ°、しかも簡単
にかつ安価に製造できる。
Therefore, in terms of reducing the resistance bone R and reducing the junction capacitance, it is possible to obtain an effect that is comparable to that of a structure using a P-type epitaxial layer, and it can be manufactured easily and inexpensively.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明によれば高濃度の半導体基
板上に低濃度の不純物層を形成し、この上にコレクタ、
ベース、エミッタの各領域を形成しているので、記憶素
子間に生じる寄生トランジスタのサイリスタ効果を防止
できるとともに、接合容量の低減を図ってアクセスタイ
ムの高速化を達成でき、書き込み歩留が良好で信頼性の
高い高速の半導体記憶装置を安価に得ることができる。
As explained above, according to the present invention, a low concentration impurity layer is formed on a high concentration semiconductor substrate, and a collector layer is formed on this layer.
Since the base and emitter regions are formed, it is possible to prevent the thyristor effect of the parasitic transistor that occurs between the storage elements, reduce the junction capacitance, achieve faster access time, and improve the write yield. A highly reliable, high-speed semiconductor memory device can be obtained at low cost.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の半導体記憶装置の断面図、第2図は従
来構造の断面図、第3図は寄生サイリスク効果を説明す
るための等価回路図、第4図はエピタキシャル層を利用
した構造の濃度プロファイル図、第5図は本発明の濃度
プロファイル図である。 11・・・P型高濃度半導体基板、12・・・P型低濃
度不純物層、13.23−・・N型埋込層、14.24
・・・P型埋込層、15.25・・・N型エピタキシャ
ル層(コレクタ領域)、16.26・・・酸化膜、17
.27・・・P型ベース領域、18.28・・・N型エ
ミフタ領域、21・・・P型半導体基板、D・・・デジ
7)線、W、、Wt・・・ワード線、Ql・・・書き込
み済単位記憶素子、Q2・・・未書き込み単位記憶素子
、Q3・・・寄生PNP )ランジスタ、Q4・・・寄
生NPNトランジスタ、I、・・・書き込み電流、R・
・・半導体基板の抵抗骨。 第1図 i3:N9埋bl’v     1B−Nセエミ、74
喫1−14−Pダエノもル 第2図 第4図 第5図
FIG. 1 is a cross-sectional view of the semiconductor memory device of the present invention, FIG. 2 is a cross-sectional view of a conventional structure, FIG. 3 is an equivalent circuit diagram for explaining the parasitic silicon risk effect, and FIG. 4 is a structure using an epitaxial layer. FIG. 5 is a concentration profile diagram of the present invention. 11...P-type high concentration semiconductor substrate, 12...P-type low concentration impurity layer, 13.23-...N-type buried layer, 14.24
...P type buried layer, 15.25...N type epitaxial layer (collector region), 16.26...Oxide film, 17
.. 27...P-type base region, 18.28...N-type emitter region, 21...P-type semiconductor substrate, D...digital 7) line, W,, Wt...word line, Ql. ...written unit memory element, Q2... unwritten unit memory element, Q3... parasitic PNP) transistor, Q4... parasitic NPN transistor, I,... write current, R.
...Resistance bones of semiconductor substrates. Figure 1 i3: N9 buried bl'v 1B-N Semi, 74
1-14-P Daenomoru Figure 2 Figure 4 Figure 5

Claims (1)

【特許請求の範囲】 1、一の導電型の高濃度半導体基板上に同一導電型の低
濃度不純物層を形成し、この低濃度不純物層上に逆の導
電型埋込み層を有するコレクタ領域を形成し、その上に
順次ベース領域およびエミッタ領域を形成して単位記憶
素子を構成したことを特徴とする半導体記憶装置。 2、一の導電型高濃度半導体基板に逆導電型不純物を導
入してこの半導体基板上に同一導電型の低濃度不純物層
を形成する工程と、この低濃度不純物層上に逆導電型埋
込層を形成しかつこの上に逆導電型エピタキシャル層を
堆積してコレクタ領域を形成する工程と、前記エピタキ
シャル層上に一の導電型のベース領域を形成する工程と
、このベース領域上に逆の導電型のエミッタ領域を形成
する工程とを含むことを特徴とする半導体記憶装置の製
造方法。
[Claims] 1. A low concentration impurity layer of the same conductivity type is formed on a high concentration semiconductor substrate of one conductivity type, and a collector region having a buried layer of the opposite conductivity type is formed on this low concentration impurity layer. A semiconductor memory device comprising: a base region and an emitter region formed thereon in order to constitute a unit memory element. 2. A step of introducing an opposite conductivity type impurity into a high concentration semiconductor substrate of one conductivity type to form a low concentration impurity layer of the same conductivity type on this semiconductor substrate, and embedding the opposite conductivity type on this low concentration impurity layer. forming a collector region by depositing an epitaxial layer of opposite conductivity type on the epitaxial layer; forming a base region of one conductivity type on the epitaxial layer; and depositing an epitaxial layer of opposite conductivity type on the epitaxial layer; 1. A method of manufacturing a semiconductor memory device, comprising the step of forming a conductive type emitter region.
JP60139571A 1985-06-26 1985-06-26 Semiconductor memory device and manufacture thereof Pending JPS621265A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60139571A JPS621265A (en) 1985-06-26 1985-06-26 Semiconductor memory device and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60139571A JPS621265A (en) 1985-06-26 1985-06-26 Semiconductor memory device and manufacture thereof

Publications (1)

Publication Number Publication Date
JPS621265A true JPS621265A (en) 1987-01-07

Family

ID=15248367

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60139571A Pending JPS621265A (en) 1985-06-26 1985-06-26 Semiconductor memory device and manufacture thereof

Country Status (1)

Country Link
JP (1) JPS621265A (en)

Similar Documents

Publication Publication Date Title
US4424578A (en) Bipolar prom
KR940002772B1 (en) Semiconductor integrated circuit and its manufacturing method
KR920010846B1 (en) Semiconductor device and method of manufacturing the same
KR850007719A (en) Semiconductor memory device with capacitor built-in memory cell and manufacturing method thereof
US4701777A (en) Gate array type semiconductor integrated circuit device
CN1223005C (en) Buried metal contact structure and manufacture of semiconductor FET device
US4399450A (en) ROM With poly-Si to mono-Si diodes
KR860000159B1 (en) Semi-conductor memory
US20060255385A1 (en) Memory device of the one-time-programmable type, and programming method for same
JP4449428B2 (en) Semiconductor device manufacturing method and semiconductor device testing method
JPS621265A (en) Semiconductor memory device and manufacture thereof
KR20070097358A (en) Memory and manufacturing method thereof
JP2508826B2 (en) Semiconductor device
KR910001186B1 (en) High density high speed read only semiconductor memory device
JPS62210667A (en) Semiconductor memory device
EP0318317B1 (en) Semiconductor memory having a small write current
KR20000035312A (en) Semiconductor integrated circuit device
JPH0644608B2 (en) Semiconductor integrated circuit device
US7629669B2 (en) Semiconductor apparatus
JP3168651B2 (en) Semiconductor storage device
US6218694B1 (en) Semiconductor memory device and method for manufacturing same
JPH0456465B2 (en)
JPS6359262B2 (en)
JPS63127569A (en) Semiconductor memory device
JPH02283070A (en) Semiconductor integrated circuit device using input protecting circuit