JPS62126224A - Supercharger - Google Patents

Supercharger

Info

Publication number
JPS62126224A
JPS62126224A JP60262441A JP26244185A JPS62126224A JP S62126224 A JPS62126224 A JP S62126224A JP 60262441 A JP60262441 A JP 60262441A JP 26244185 A JP26244185 A JP 26244185A JP S62126224 A JPS62126224 A JP S62126224A
Authority
JP
Japan
Prior art keywords
exhaust gas
turbine
actuator
gas passage
sectional area
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60262441A
Other languages
Japanese (ja)
Inventor
Yasunori Murakami
村上 保則
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Hitachi Automotive Systems Engineering Co Ltd
Original Assignee
Hitachi Automotive Engineering Co Ltd
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Automotive Engineering Co Ltd, Hitachi Ltd filed Critical Hitachi Automotive Engineering Co Ltd
Priority to JP60262441A priority Critical patent/JPS62126224A/en
Publication of JPS62126224A publication Critical patent/JPS62126224A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/02Gas passages between engine outlet and pump drive, e.g. reservoirs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/02Gas passages between engine outlet and pump drive, e.g. reservoirs
    • F02B37/025Multiple scrolls or multiple gas passages guiding the gas to the pump drive
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/12Control of the pumps
    • F02B37/22Control of the pumps by varying cross-section of exhaust passages or air passages, e.g. by throttling turbine inlets or outlets or by varying effective number of guide conduits
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Supercharger (AREA)

Abstract

PURPOSE:To improve the supercharging property and realize a high efficiency, by furnishing a variable vane added to a switch valve and a bypass valve to control a large flow route and a small flow route. CONSTITUTION:In a low engine operations, a switch valve 5 is closed and the exhaust gas flows through an exhaust gas passage 4c. A variable vane 10 has then a smaller area of nozzle section, and the speed of the exhaust gas flowing to turbine blades 7 is increased. As the engine rotation is increased gradually, the supercharging pressure increases to drive an actuator 9b to increase the nozzle area of the variable vane 10. As the engine rotation is further increased, an actuator 9 is driven by the supercharging pressure, the switch valve 5 is opened, and the exhaust gas flows into an exhaust gas passage 4b too. As the engine rotation is increased from a middle speed to a high speed, an actuator 9a is driven by the supercharging pressure, an exhaust gas bypass valve 15 is opened, and a part of the exhaust gas is released to the atmosphere.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明はエンジンの過給機に係り、特にエンジン回転数
の低速から中速にかけて効率を向上させるに好適な可変
容量式過給機に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to an engine supercharger, and particularly to a variable capacity supercharger suitable for improving efficiency from low to medium engine speeds.

〔発明の背景〕[Background of the invention]

従来の可変容量式過給機のタービンケースは、米国特許
第3270495号明細書に記載のように、排気ガス通
路が2分割され切換方式があり、エンジン低速から過給
圧が立上る特性が得られている。
As described in U.S. Pat. No. 3,270,495, the conventional turbine case of a variable displacement supercharger has an exhaust gas passage divided into two and has a switching system, which allows the supercharging pressure to rise from low engine speeds. It is being

しかし、本方式では、タービン翼車へ流入する排気ガス
流入角、流入速度が、ノズル幅と排気ガス量によって決
定されてしまい最適の過給圧特性と効率が得られるわけ
ではない。
However, in this method, the inflow angle and inflow speed of the exhaust gas flowing into the turbine wheel are determined by the nozzle width and the amount of exhaust gas, so it is not possible to obtain optimal boost pressure characteristics and efficiency.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、エンジン低速から中速にかけて最適な
過給圧特性と効率を有する可変容量式過給機を提供する
ことにある。
An object of the present invention is to provide a variable capacity supercharger that has optimal boost pressure characteristics and efficiency from low to medium engine speeds.

〔発明の概要〕[Summary of the invention]

過給機の仕事は、排気ガスのエネルギーによって得られ
るが、排気ガス通路及び、ノズル面積が固定されている
場合、その時の排気ガス量によってタービン翼車への排
気ガス流入角度、流入速度が決定されてしまう。そのた
め、排気ガスの量及び過給圧状態によっては、排気ガス
流入角度及び流入速度が仕事を行なうに最適な状態では
なくなり効率が悪化してしまう。本問題点を解決するた
め、排気ガス通路を大流量用と小流量用とに仕切壁によ
って2分割する可変容量式タービンケース゛、が考案さ
れてきた。しかし、エンジン低速時に更に最適過給圧を
得ようとする場合には、同様の問題点が出てきた。そこ
で、エンジン低速から最適過給圧及び高効率化を得るた
め、本発明では、排気ガス通路断面積小側のノズル部に
可変ベーンを設けた。可変ベーンは、可動することによ
ってノズル断面積と排気ガス流入角度を制御することが
できる。排気ガスの量、過給圧の状態によって可変ベー
ンを作動させ、その時の最適状態を作り出せる。
The work of the supercharger is obtained from the energy of the exhaust gas, but if the exhaust gas passage and nozzle area are fixed, the exhaust gas flow angle and flow speed into the turbine wheel are determined by the exhaust gas volume at that time. It will be done. Therefore, depending on the amount of exhaust gas and the state of supercharging pressure, the exhaust gas inflow angle and inflow speed may not be in the optimal state for performing work, resulting in deterioration of efficiency. In order to solve this problem, a variable capacity turbine case has been devised in which the exhaust gas passage is divided into two by a partition wall, one for large flow rate and one for small flow rate. However, similar problems arise when trying to obtain an even more optimal boost pressure at low engine speeds. Therefore, in order to obtain optimum boost pressure and high efficiency even at low engine speeds, in the present invention, a variable vane is provided in the nozzle portion on the side with a smaller cross-sectional area of the exhaust gas passage. By moving the variable vane, the nozzle cross-sectional area and exhaust gas inflow angle can be controlled. Variable vanes can be activated depending on the amount of exhaust gas and boost pressure to create the optimal conditions at that time.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の一実施例を図により説明する。 Hereinafter, one embodiment of the present invention will be described with reference to the drawings.

第1図は、従来の実施例であり、空気がコンプレッサ1
で圧縮されエンジン2へ供給される。排気ガスはエンジ
ン2より排出され、エキゾーストマニホールド3を経て
、タービンケース4へ連通される。タービンケース4は
仕切壁4aによって排気ガス通路大4b、排気ガス通路
/J%4Qに分割され、入口部に切換弁5が設けられて
いる。エンジン低速時の排気ガス量が少ない場合、切換
弁は密閉されており、排気ガスは、排気ガス通路小4c
に導かられ、ノズル部6からタービン翼車7を駆動して
マフラー8を経て大気へ放出される。エンジン高速時は
、過給圧が増加し排気ガス量が多くなるが、この場合、
過給圧の増加を検知するアクチュエータ9によって切換
弁5が開かれ、排気ガス流は排気ガス通路4bにも導か
れ、タービン翼車7を駆動した後、大気へ放出される。
FIG. 1 shows a conventional embodiment in which air is sent to the compressor 1.
is compressed and supplied to the engine 2. Exhaust gas is discharged from the engine 2, passes through an exhaust manifold 3, and is communicated to a turbine case 4. The turbine case 4 is divided by a partition wall 4a into a large exhaust gas passage 4b and an exhaust gas passage/J% 4Q, and a switching valve 5 is provided at the inlet. When the amount of exhaust gas is small at low engine speeds, the switching valve is sealed and the exhaust gas is
The air is guided through the nozzle section 6, drives the turbine wheel 7, and is emitted into the atmosphere through the muffler 8. When the engine is running at high speed, the boost pressure increases and the amount of exhaust gas increases, but in this case,
The switching valve 5 is opened by the actuator 9 which detects an increase in boost pressure, and the exhaust gas flow is also guided to the exhaust gas passage 4b, drives the turbine wheel 7, and then is discharged to the atmosphere.

また本図には示していないが、排気ガス通路大4bにバ
イパスバルブを設け、バイパス通路をタービンケース出
口部へ連通させて、排気ガスの一部をタービン翼車を駆
動させずに大気に放出するバイパス機構を有する実施例
もある。
Although not shown in this figure, a bypass valve is provided in the large exhaust gas passage 4b, and the bypass passage is communicated with the turbine case outlet to release a part of the exhaust gas to the atmosphere without driving the turbine wheel. Some embodiments include a bypass mechanism.

次に本発明による実施例を図2,3に示す。本実例では
従来の実施例に対し、タービンケース排気ガス通路小4
cのノズル部に可変ベーン10を設けている6可変ベー
ン10は軸11に接続され、リンク12、リング13に
接続される。リング13はリンク14によってアクチュ
エータ9bに接続される。アクチュエータ9bは、コン
プレッサ1と連通され、過給圧によって作動する。
Next, an embodiment according to the present invention is shown in FIGS. 2 and 3. In this example, compared to the conventional example, the turbine case exhaust gas passage small 4
The six variable vanes 10 provided in the nozzle portion c are connected to a shaft 11, and connected to a link 12 and a ring 13. Ring 13 is connected to actuator 9b by link 14. The actuator 9b is communicated with the compressor 1 and is operated by boost pressure.

第4図は、第3図のAA矢視図であり、可変ベーンは、
リンク機構によって図の如く断面積を断面積大14aと
断面積車4cと変え、又角度をαとβのように変化させ
る作動ができる。
FIG. 4 is a view taken along arrow AA in FIG. 3, and the variable vane is
The link mechanism allows the cross-sectional area to be changed to a large cross-sectional area 14a and a cross-sectional area wheel 4c as shown in the figure, and the angle can be changed to α and β.

以下、エンジン低速時の動作を説明する。予め設定され
た圧力値よりも過給圧が低い為、切換弁5を作動するア
クチュエータ9は働かず、切換弁5は密閉されており、
排気ガスは、排気ガス通路小4Cへ連通される。このと
き、同様に予め設定された圧力値によって作動して可変
ベーンを駆動するアクチュエータ9bにより可変ベーン
は、ノズル断面積小、角度小の状態となっている。ノズ
ル断面積が小さい為、エンジン低速時の排気ガスが少な
い状態でも、タービン翼車へ流入する速度が高められる
The operation at low engine speed will be explained below. Since the boost pressure is lower than the preset pressure value, the actuator 9 that operates the switching valve 5 does not work, and the switching valve 5 is sealed.
The exhaust gas is communicated to the small exhaust gas passage 4C. At this time, the variable vane is brought into a state with a small nozzle cross-sectional area and a small angle by the actuator 9b which similarly operates according to a preset pressure value to drive the variable vane. Because the nozzle cross-sectional area is small, the speed at which the exhaust gas flows into the turbine wheel is increased even when the engine speed is low and the exhaust gas is low.

エンジン回転が徐々に高くなっていく過程で、過給圧は
徐々に増加し、その圧力増加によってアクチュエータ9
bが更に作動して可変ベーンを駆動する。ノズル断面積
は徐々に大きくなり、排気、ガス量の増大による排気抵
抗損失を減少させなが″ら、その時の排気ガス量に最適
なノズル断面積を確保する。
As the engine speed gradually increases, the boost pressure gradually increases, and this increase in pressure causes the actuator 9 to
b is further actuated to drive the variable vane. The nozzle cross-sectional area gradually increases, reducing exhaust resistance loss due to an increase in the amount of exhaust gas and ensuring the optimal nozzle cross-sectional area for the amount of exhaust gas at that time.

更にエンジン回転数が高くなり、排気ガス量に対して、
排気ガス通路断面積車では断面積が小さすぎることによ
る排気損失が大きくなった場6合、その時の過給圧によ
ってアクチュエータ9が作動し、切換弁5が開かれ、排
気ガス通路大4bにも排気ガスが導かれ、排気損失を低
下させる。
Furthermore, the engine speed increases, and the amount of exhaust gas decreases.
If the cross-sectional area of the exhaust gas passage is too small in a vehicle and the exhaust loss becomes large, the actuator 9 is actuated by the boost pressure at that time, the switching valve 5 is opened, and the large exhaust gas passage 4b is also opened. Exhaust gases are channeled to reduce exhaust losses.

更にエンジン回転数が高くなり、中速から高速になった
場合、その時の過給圧によって、アクチュエータ9aが
作動し、排気バイパスバルブ15が開き、排気ガスの一
部を大気へ開放する。
When the engine speed further increases from medium speed to high speed, the actuator 9a is activated by the supercharging pressure at that time, the exhaust bypass valve 15 is opened, and a portion of the exhaust gas is released to the atmosphere.

本実施例によれば、特にエンジン低速時に、排気損失の
少ない効率の良い過給特性が得られ、エンジンの出力向
上の効果がある。
According to this embodiment, an efficient supercharging characteristic with little exhaust loss can be obtained, especially when the engine speed is low, and there is an effect of improving the engine output.

その他、可変ベーンを駆動するアクチュエータの代わり
にステッピングモーターを使用しても同様の効果がある
In addition, the same effect can be obtained by using a stepping motor instead of the actuator that drives the variable vane.

゛〔発明の効果〕 本発明によれば、エンジン低速から中速にかけて、排気
ガス通路ノズル部の断面積を変化させてタービン翼車へ
流入する排気ガスの流入速度と流入角度をその時のエン
ジン状態に最適に制御できるので、過給圧特性の向上と
高効率の可変容量式過給機を提供できる効果がある。
[Effects of the Invention] According to the present invention, the cross-sectional area of the exhaust gas passage nozzle portion is changed from low to medium engine speeds, and the inflow speed and inflow angle of the exhaust gas flowing into the turbine wheel are adjusted according to the engine state at that time. This has the effect of improving boost pressure characteristics and providing a highly efficient variable capacity supercharger.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、従来実施例の可変容量式過給機のシステム図
、第2図は1本発明の一実施例になる可変容量式過給機
のシステム図、第3図は可変容量式過給機のタービンケ
ースの拡大図、第4図は。 第3図のAA矢視図である。 1・・・コンプレッサ、4・・・タービンケース、5・
・・切換弁、7・・・タービン翼、9・・・アクチュエ
ータ。   、!ニーゝ代理人 弁理士 小川勝馬  
〜、/゛第 1 図 第 2図
Fig. 1 is a system diagram of a conventional variable capacity supercharger, Fig. 2 is a system diagram of a variable capacity supercharger according to an embodiment of the present invention, and Fig. 3 is a system diagram of a variable capacity supercharger according to an embodiment of the present invention. Figure 4 is an enlarged view of the feeder turbine case. FIG. 3 is a view taken along arrow AA in FIG. 3; 1... Compressor, 4... Turbine case, 5...
...Switching valve, 7...Turbine blade, 9...Actuator. ,! Nii Agent Patent Attorney Katsuma Ogawa
〜、/゛Figure 1 Figure 2

Claims (1)

【特許請求の範囲】[Claims] 1、排気ガスによって駆動されるタービン翼車と、該タ
ービン翼車と同一軸上にあるコンプレッサ翼車と、ター
ビン翼車とコンプレッサ翼車の間にある軸受箱と、コン
プレッサ翼車を包み且つ軸受箱に接続されたコンプレッ
サケースと、該軸受箱に接続され且つタービン翼車を包
み、エンジンのエキゾーストマニホールドに接続された
タービンケースを有し、該タービンケース内排気ガス通
路を仕切壁で通路断面積を大と小の2つに分割し、且つ
、タービンケース排気ガス通路断面積大側の入口部付近
に開閉弁を有し、且つ、排気ガス通路断面積大側に、排
気ガスの一部をタービンケース出口部へ連通するバイパ
ス通路とバイパスバルブを有する過給機において、ター
ビンケース排気ガス通路断面積小側のノズル部に可動ベ
ーンを設けたことを特徴とする過給機。
1. A turbine wheel driven by exhaust gas, a compressor wheel located on the same axis as the turbine wheel, a bearing box located between the turbine wheel and the compressor wheel, and a bearing that encloses the compressor wheel. It has a compressor case connected to the box, and a turbine case connected to the bearing box, surrounding the turbine impeller, and connected to the exhaust manifold of the engine. is divided into two parts, large and small, and has an on-off valve near the inlet on the side with a large cross-sectional area of the exhaust gas passage of the turbine case, and also has a part of the exhaust gas on the side with a large cross-sectional area of the exhaust gas passage. 1. A supercharger having a bypass passage communicating with a turbine case outlet and a bypass valve, characterized in that a movable vane is provided in a nozzle portion on the side with a smaller cross-sectional area of the turbine case exhaust gas passage.
JP60262441A 1985-11-25 1985-11-25 Supercharger Pending JPS62126224A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60262441A JPS62126224A (en) 1985-11-25 1985-11-25 Supercharger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60262441A JPS62126224A (en) 1985-11-25 1985-11-25 Supercharger

Publications (1)

Publication Number Publication Date
JPS62126224A true JPS62126224A (en) 1987-06-08

Family

ID=17375830

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60262441A Pending JPS62126224A (en) 1985-11-25 1985-11-25 Supercharger

Country Status (1)

Country Link
JP (1) JPS62126224A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01227803A (en) * 1988-03-08 1989-09-12 Honda Motor Co Ltd Variable capacity turbine
US20110296835A1 (en) * 2009-02-27 2011-12-08 Mitsubishi Heavy Industries, Ltd. Variable capacity exhaust gas turbocharger
JP2012057546A (en) * 2010-09-09 2012-03-22 Denso Corp Exhaust control device for internal combustion engine
US8695338B2 (en) 2010-09-09 2014-04-15 Denso Corporation Exhaust gas control apparatus for engine

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01227803A (en) * 1988-03-08 1989-09-12 Honda Motor Co Ltd Variable capacity turbine
DE3907504A1 (en) * 1988-03-08 1989-09-21 Honda Motor Co Ltd Turbine with a double spiral structure
US5092126A (en) * 1988-03-08 1992-03-03 Honda Giken Kogyo Kabushiki Kaisha Twin scroll turbine
US20110296835A1 (en) * 2009-02-27 2011-12-08 Mitsubishi Heavy Industries, Ltd. Variable capacity exhaust gas turbocharger
US9151218B2 (en) * 2009-02-27 2015-10-06 Mitsubishi Heavy Industries, Ltd. Variable capacity exhaust gas turbocharger
JP2012057546A (en) * 2010-09-09 2012-03-22 Denso Corp Exhaust control device for internal combustion engine
US8695338B2 (en) 2010-09-09 2014-04-15 Denso Corporation Exhaust gas control apparatus for engine

Similar Documents

Publication Publication Date Title
EP0212834B1 (en) Variable inlet for a radial turbine
JPS6254969B2 (en)
KR19990036017A (en) Motor Assist Variable Geometry Turbocharger System
SE519321C2 (en) Ways to operate an internal combustion engine and internal combustion engine
KR970044624A (en) Variable cycle gas turbine engine
JPS58138222A (en) Supercharger of exhaust turbine
KR900018519A (en) Engine intake
US4718235A (en) Turbo compound internal combustion engine
JPS63117124A (en) Engine with twin scroll turbo-charger
CN102536354A (en) Variable passage volute device
JPS62126224A (en) Supercharger
JPS63302134A (en) Exhaust gas turbine supercharger
CN202391495U (en) Volute device of variable flow channel
US3940926A (en) Jet propulsion engines
CN102562185B (en) Two-channel variable-section volute device with flow-guiding blades
JPH08240156A (en) Exhaust gas recirculation device for engine with supercharger
CN202391494U (en) Double-channel variable-section volute device with guide vane
JPS62131923A (en) Engine with exhaust turbo-supercharger
US11519339B2 (en) System and methods for controlling surge margin in the compressor section of a gas turbine engine
GB2178111A (en) Inlet flow control for radial flow turbine
JPS63183225A (en) Method of operating diesel engine with power turbine
JPS60212623A (en) Exhaust turbo-supercharger
CN214533201U (en) Double-turbocharger of variable valve mechanism
JPS6019918A (en) Exhaust turbine in turbo-supercharger
JP4441349B2 (en) Turbocharger and turbine