JPS6212612A - Production of clay derivative having porous structure - Google Patents

Production of clay derivative having porous structure

Info

Publication number
JPS6212612A
JPS6212612A JP15288385A JP15288385A JPS6212612A JP S6212612 A JPS6212612 A JP S6212612A JP 15288385 A JP15288385 A JP 15288385A JP 15288385 A JP15288385 A JP 15288385A JP S6212612 A JPS6212612 A JP S6212612A
Authority
JP
Japan
Prior art keywords
silica
porous structure
acid
hydrosol
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15288385A
Other languages
Japanese (ja)
Inventor
Shoji Yamanaka
昭司 山中
Makoto Hattori
信 服部
Mitsunori Nishida
光徳 西田
Fumio Okumura
奥村 文男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Chemical Industries Co Ltd
Original Assignee
Fuji Chemical Industries Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Chemical Industries Co Ltd filed Critical Fuji Chemical Industries Co Ltd
Priority to JP15288385A priority Critical patent/JPS6212612A/en
Publication of JPS6212612A publication Critical patent/JPS6212612A/en
Pending legal-status Critical Current

Links

Landscapes

  • Silicates, Zeolites, And Molecular Sieves (AREA)

Abstract

PURPOSE:To produce a clay derivative having high water resistance, improved film forming property and stabilized porous structure, by previously reacting silica sol with one or more of a water-soluble multivalent metal salt and titanium oxide hydrosol and reacting the resultant product with smectite. CONSTITUTION:Silica is converted into polysilicic acid, silica hydrosol and organic silica sol obtained by hydrolyzing a compound expressed by the formula (R is 1-5C straight-chain or branched chain alkyl group). One or more of water- soluble multivalent metal salts and titanium oxide hydrosol are previously reacted with the silica sol to give a product, which is then reacted with smectite to produce the aimed clay derivative having a porous structure.

Description

【発明の詳細な説明】 [産業−にの利用分野] 本発明は多孔質構造を有する粘土誘導体の製造法に関す
るものであり、更に詳しくは、安定で大きい比表面桔と
層間距離(X線回折測定より求められる距離で、粘土ケ
イ酸塩層の厚さ約9.6Aと層間空隙距離を合わせたも
の)を有する粘土鉱物とシリカ・酪化多価金属類微粒子
との複合体を製造する方法に関する。目的とするところ
は、安定で調整可能な細孔径を有する多孔質構造をもつ
吸看剤、触媒、触媒担体、製膜素材、カプセル化剤およ
び断熱剤等として有用な新規、無機粉体を提供するとこ
ろにある。
Detailed Description of the Invention [Field of Industrial Application] The present invention relates to a method for producing a clay derivative having a porous structure, and more specifically, it relates to a method for producing a clay derivative having a porous structure. A method for producing a composite of a clay mineral and silica/butyric polyvalent metal fine particles having a distance determined by measurement, which is the sum of the thickness of the clay silicate layer (approximately 9.6A and the interlayer void distance) Regarding. The aim is to provide a new inorganic powder that has a porous structure with a stable and adjustable pore size and is useful as a sorbent, a catalyst, a catalyst carrier, a membrane forming material, an encapsulating agent, a heat insulating agent, etc. It's there.

[従来技術] モンモリロナイト、バイデライトに代表されるスメクタ
イトは粘土を構成する鉱物の一群であって1層状構造を
有し、その居間にはナトリウム、カリウム、カルシウム
、マグネシウム等の交換性の陽イオンが存在するため、
種々の有機又は無機のイオンや極性分子が層間に導入さ
れることがよく知られている0通常、スメクタイトの居
間には大気中の水分子が吸着されており、居間には3.
0〜5.8層程度のすきま(層間空隙)が存在するが、
このような水分子吸着による居間空隙は、加熱のみなら
ず、真空脱気操作だけでも容易に水分が脱着するため、
安定には存在しえない。
[Prior art] Smectite, represented by montmorillonite and beidellite, is a group of minerals that make up clay and has a single layered structure, in which exchangeable cations such as sodium, potassium, calcium, and magnesium are present. In order to
It is well known that various organic or inorganic ions and polar molecules are introduced between the layers. Normally, water molecules in the atmosphere are adsorbed to smectite, and 3.
There is a gap (interlayer void) of about 0 to 5.8 layers,
In the living space due to adsorption of water molecules, moisture is easily desorbed not only by heating but also by vacuum degassing operation.
It cannot exist in stability.

一方1層間にかさ高い多核金属イオンを柱として挿入し
て居間を支え、安定な多孔体をえる試みがなされている
。即ち、この方法は水可溶性多核金属イオン、あるいは
金属イオンをアルカリで加水分解して生じる多核水酸化
金属イオンをスメクタイトの居間に導入したのち、加熱
分解して層間に酸化物の柱を構築する方法であって、ア
ルミニウム(C:lay旧net、、 12.229〜
23[1(+977)、) 、クロム(Amer、 M
iner、、 64゜830〜835(+979)、)
 、 ジル=+=ウム(GIaysCla7 Mine
r、、 27.119〜124(1979)、) 、鉄
〔特開昭58−55.332 )などの多核金属イオン
を使用して層間空隙5〜8A、比表面M 200〜40
0謬2/gの多孔体をえる方法が知られている。
On the other hand, attempts have been made to insert bulky polynuclear metal ions as pillars between one layer to support the living room and create a stable porous body. That is, in this method, water-soluble polynuclear metal ions or polynuclear hydroxide metal ions produced by hydrolyzing metal ions with alkali are introduced into the living room of smectite, and then thermally decomposed to build oxide pillars between the layers. Aluminum (C:lay old net, 12.229~
23 [1 (+977), ), Chromium (Amer, M
iner,, 64°830~835(+979),)
, GIaysCla7 Mine
r,, 27.119-124 (1979),), using polynuclear metal ions such as iron [JP-A-58-55.332], the interlayer void is 5-8 A, the specific surface M is 200-40.
A method for obtaining a porous material with a porous material of 0.002/g is known.

[発明が解決しようとする間8] しかしながら、これらの多孔体は実際には吸着剤、触奴
、触媒担体、カプセル化剤および断熱剤等として用いる
場合には、その層間隙隙が5〜8Aと小さすぎ、有効径
の大きい分子への応用には不充分であった。また、従来
法には使用する金属種に制約があり、例えば、シリカや
高い屈折率を有するため顔料として賞出されている酸化
チタンを居間に導入させることはできなかった0本発明
はここに述べたこれらの問題を一挙に解決しようとする
ものである。
[While the invention is to be solved 8] However, when these porous bodies are actually used as adsorbents, catalyst carriers, encapsulating agents, heat insulating agents, etc., the interlayer gap is 5 to 8 A. It was too small and insufficient for application to molecules with large effective diameters. In addition, the conventional method has restrictions on the types of metals that can be used, and for example, it has not been possible to introduce silica or titanium oxide, which is prized as a pigment due to its high refractive index, into living rooms. This is an attempt to solve these problems all at once.

[問題点を解決するための手段] かかる情況において、本発明者らは耐熱安定性が高く、
大きい居間距離と広い比表面積を有する粘土誘導体をえ
るために居間に導入すべき支柱としては、500℃以上
でも安定で、且つ。
[Means for solving the problem] Under such circumstances, the present inventors have developed a method that has high heat resistance stability and
A support that should be introduced into a living room in order to obtain a clay derivative with a large living distance and a wide specific surface area is stable even at temperatures above 500°C.

様々な重合形態を持ち、大きな重合度即ち高分子量を有
する酸化物かえられるシリカが適当と考えた。しかしな
がら種々の水酸化物、酸化物について1表面電位を持た
ないpH即ちゼロ電荷点を比較すると、 Al(OH)
35.1.  Zr0z 10.5゜Ti02B、7.
Si(h 1.8であり、従って、シリカはput、s
以上では負に荷電する結果1本来負に荷電している粘土
層間へは静電気的な反撥のため導入されない、そこで、
シリカ表面に正電荷を保持させるべく1種々検討した結
果、シリコンアルコキシドSi(OR)n  (Rは炭
素数 1〜5の直鎖または分枝鎖状のアルキル基を示す
〕を加水分解してえられるポリケイ酸(市販のシリカヒ
ドロゾルや有機シリカゾルと区別するため、便宜上シリ
コンアルコキシドの加水分解によってえられるケイ酸の
重合体をポリケイ酸と称する)、シリカヒドロゾルある
いは有機シリカゾルなどのシリカゾル類に3価または4
価の水可溶性金属塩およびTi(OR)s (Rは既に
述べた通り〕またはこれを加水分解し、次いで酸で解膠
することによってえられた酸化チタンヒドロゾルから成
る群より選ばれた1種またはそれ以上を作用させてえら
れるシリカ・酸化多価金属ヒドロシルを用いることによ
り、従来より大きい居間距離と広い比表面積を有する多
孔質構造の粘土誘導体かえられ、更にえられた粘土誘導
体は耐水性、耐熱性が高く、且つ、優れた製膜性能を有
することを見出し、本発明を完成させた。
It was considered that silica which has various polymerization forms and can be converted into an oxide having a large degree of polymerization, that is, a high molecular weight, is suitable. However, when comparing the pH of various hydroxides and oxides that do not have a surface potential of 1, that is, the zero charge point, Al(OH)
35.1. Zr0z 10.5°Ti02B, 7.
Si (h 1.8, therefore silica is put, s
In the above, as a result of being negatively charged, 1 it is not introduced between the clay layers, which are originally negatively charged, due to electrostatic repulsion, so,
As a result of various studies to maintain positive charge on the silica surface, we found that silicon alkoxide Si(OR)n (R represents a linear or branched alkyl group having 1 to 5 carbon atoms) was hydrolyzed. (To distinguish from commercially available silica hydrosols and organic silica sols, the polymer of silicic acid obtained by hydrolysis of silicon alkoxide is referred to as polysilicic acid for convenience), silica sols such as silica hydrosols and organic silica sols. value or 4
1 selected from the group consisting of a water-soluble metal salt of 1 and 1 selected from the group consisting of Ti(OR)s (where R is as previously described) or a titanium oxide hydrosol obtained by hydrolyzing the same and then peptizing it with an acid. By using silica and oxidized polyvalent metal hydrosil which can be obtained by reacting seeds or more, a clay derivative with a porous structure having a larger separation distance and a wider specific surface area than before can be changed, and the obtained clay derivative is also water resistant. The present invention was completed based on the discovery that the film has high properties, high heat resistance, and excellent film forming performance.

即ち1本発明はシリカゾル類に3価または4価の水可溶
性金属塩および酸化チタンヒドロゾルから成る群より選
ばれた1種またはそれ以上を作用させてシリカ・酸化多
価金属ヒドロシルを生成させ、これをスメクタイトと反
応させて多孔質構造を有する粘土誘導体を製造する方法
である。
That is, one aspect of the present invention is to react silica sols with one or more selected from the group consisting of trivalent or tetravalent water-soluble metal salts and titanium oxide hydrosol to produce silica/polyvalent metal hydrosil oxide, This is a method of producing a clay derivative having a porous structure by reacting this with smectite.

本発明に用いられる粘土鉱物は、モンモリロナイトなど
の水に膨潤性のスメクタイトが適しているが、天然の粘
土鉱物に限らず、合成のものでもよい、また、水に膨潤
性であり、イオン交換能を有する各種の人工フッ素層状
ケイ酸塩なども利用できる。これら天然および合成の粘
土鉱物は、約8.8Aの厚さを有する二次元ケイ酸塩が
互いに積み重なることにより、その結晶構造が4I成さ
れているが、結晶子の形状は結合の二次元性を反映して
板状であり、結晶粒子同志が重なる粒界にも結晶内部の
居間に類似の二次元間隙が形成される。なお本発明でい
うr層間」とは、結晶子内部のケイ酸塩居間だけでなく
、このような結晶子の間の粒界も含めた概念である。
The clay mineral used in the present invention is preferably water-swellable smectite such as montmorillonite, but it is not limited to natural clay minerals, and synthetic clay minerals may also be used. Various artificial fluorine layered silicates having the following properties can also be used. These natural and synthetic clay minerals have a 4I crystal structure formed by stacking two-dimensional silicates with a thickness of approximately 8.8A, but the shape of the crystallites is due to the two-dimensionality of the bonds. Reflecting this, it is plate-shaped, and a two-dimensional gap similar to a living room inside the crystal is formed at the grain boundaries where crystal grains overlap. Note that the term "interlayer" as used in the present invention includes not only silicate living spaces inside crystallites but also grain boundaries between such crystallites.

また本発明においてスメクタイトの居間に挿入されるべ
きシリカ・酸化多価金属ヒドロシルは、Si(OR)s
  (Rは既に述べた通り)を加水分解することによっ
てえられるポリケイ酸、シリカヒドロゾルおよび有機シ
リカゾルから成る群より選ばれるシリカゾル類に、チタ
ニウム、ジルコニウム、アルミニウムおよび鉄の水可溶
性の塩、およびTi(OR)4〔Rは既に述べた通り〕
またはこれを加水分解し、次いで酸で解膠することによ
ってえられる酸化チタンヒドロゾルから成る群より選ば
れた1種またはそれ以上を作用させてえられる。 Si
(OR)a としては安価で入手可能なRがエチル基で
あるシリコンテトラエトキシドが好ましい。
In addition, in the present invention, the silica/polyvalent metal oxide hydrosyl to be inserted into the smectite living room is Si(OR)s
Silica sols selected from the group consisting of polysilicic acid, silica hydrosol, and organic silica sol obtained by hydrolyzing (R is as described above), water-soluble salts of titanium, zirconium, aluminum, and iron, and Ti (OR) 4 [R is as already mentioned]
Alternatively, it can be obtained by the action of one or more selected from the group consisting of titanium oxide hydrosols obtained by hydrolyzing this and then peptizing it with an acid. Si
(OR)a is preferably silicon tetraethoxide in which R is an ethyl group, which is available at low cost.

シリコンテトラエトキシドの加水分解は、これに溶媒で
あるエタノール、分解剤である水および触媒である酸か
ら成る混合液を加えて、室温ないし80℃まで加熱して
実施される。加水分解の条件は、調製すべきポリケイ酸
の重合形態や重合度即ち分子量によって任意に選択され
る(窯業−会誌、挫、242〜247(11384) 
) 、即ち同報文は、H2O/ Si(OC2Hs)s
り以下では鎖状ポリマーを生成し、 H2O/ Si(
OC2Hs)s〜5では重合初期に鎖状ポリマーが生成
するが、後期では三次元網目ポリマーを生成する。また
、H20/ Si(OC2Hs)s =20では初期か
ら三次元網目ポリマーを生成すると報じている0本発明
におけるシリコンテトラエトキシドの加水分解重合は、
上記のH20/ S i (OC2Hs )a =2〜
20の範囲外の条件にても実施可能であるが、急速な粘
度上昇とゲル化を生じないで、実施しやすい適度の重合
時間でおこないうるH2O/ Si(OC2Hs)4=
2〜20が望ましく、また、同様の理由でSi(OC2
Hs)4の濃度は30〜70%が好ましい、また、触媒
である酸としては安価な塩酸、硝酸および硫酸の鉱酸が
用いられる。
Hydrolysis of silicon tetraethoxide is carried out by adding a mixture of ethanol as a solvent, water as a decomposition agent, and acid as a catalyst and heating the mixture from room temperature to 80°C. Hydrolysis conditions are arbitrarily selected depending on the polymerization form and degree of polymerization, i.e., molecular weight, of the polysilicic acid to be prepared (Ceramics Journal, Iku, 242-247 (11384)
), that is, the broadcast text is H2O/Si(OC2Hs)s
Below, a chain polymer is generated and H2O/Si(
In OC2Hs)s~5, a chain polymer is produced in the early stage of polymerization, but a three-dimensional network polymer is produced in the latter stage. Furthermore, it has been reported that when H20/Si(OC2Hs)s = 20, a three-dimensional network polymer is formed from the initial stage.The hydrolytic polymerization of silicon tetraethoxide in the present invention is
The above H20/S i (OC2Hs)a = 2 ~
Although it is possible to conduct the polymerization under conditions outside the range of 20, H2O/Si(OC2Hs)4= can be carried out without causing rapid viscosity increase and gelation, and in a convenient and appropriate polymerization time.
2 to 20 is desirable, and for the same reason, Si(OC2
The concentration of Hs)4 is preferably 30 to 70%, and as the catalyst acid, inexpensive mineral acids such as hydrochloric acid, nitric acid, and sulfuric acid are used.

次に、シリカ源としては、上記のようにシリコンテトラ
エトキシドを加水分解してえられるポリケイ酸ばかりで
なく、水を分散媒としたコロイド粒子径1〜100sJ
Lの市販のシリカヒドロゾルや、メタノール、エタノー
ルまたはイソプロピルアルコールなどの有機溶媒を分散
媒とした有機シリカゾルを用いることが可teである。
Next, as a silica source, we can use not only polysilicic acid obtained by hydrolyzing silicon tetraethoxide as described above, but also colloidal particles with a diameter of 1 to 100 sJ using water as a dispersion medium.
It is possible to use a commercially available silica hydrosol of L or an organic silica sol using an organic solvent such as methanol, ethanol or isopropyl alcohol as a dispersion medium.

更に、当然のことながらポリケイ酸、シリカヒドロゾル
および有機シリカゾルの内の数種を併用しても本発明の
目的は達成される。
Furthermore, it goes without saying that the object of the present invention can also be achieved by using several types of polysilicic acid, silica hydrosol and organic silica sol in combination.

チタン源としてはチタニウムテトライソプロポキシドま
たはこれを加水分解した後、酸を用いて解膠してえられ
る酸化チタンヒドロゾルの他に、四塩化チタン、オキシ
硫酸チタンなどの安価で入手可能な水可溶性チタニウム
塩も利用できる。更に、当然のことながら、上記チタン
源の内の数種を併用しても差支えない。
In addition to titanium tetraisopropoxide or titanium oxide hydrosol obtained by hydrolyzing it and peptizing it with acid, titanium sources include titanium tetrachloride, titanium oxysulfate, and other inexpensive water sources. Soluble titanium salts are also available. Furthermore, it goes without saying that several of the above titanium sources may be used in combination.

酸化チタンヒドロゾルの調製はチタニウムアルコキシド
Ti(OR)4〔Rは既に述べた通り〕、一般には安価
で入手容易なRがイソプロピル基のインプロポキシドを
用いるが、これをチタニウムに対し、2〜4倍モルの酸
溶液中に添加することにより生成した白色沈殿が徐々に
酸に溶解して、透明な溶液をえることによってなされる
。上記のように酸溶液中にチタニウムアルコキシドを加
え、加水分解と解膠反応を同時に進行させる方法に加え
て、チタニウムアルコキシドを予め加水分解した後に所
定量の酸を加えて解膠する方法も採用される。更に、解
膠に必要とされる酸を予め含んだポリケイ酸溶液の中へ
チタニウムアルコキシドを投入した場合も、所望の酸化
チタンヒドロゾルかえられる。
Titanium oxide hydrosol is prepared by using titanium alkoxide Ti(OR)4 [R is as mentioned above], generally cheap and easily available impropoxide in which R is an isopropyl group. A white precipitate formed by adding it to a 4-fold molar acid solution is gradually dissolved in the acid to obtain a clear solution. In addition to the method described above in which titanium alkoxide is added to an acid solution and the hydrolysis and peptization reactions proceed simultaneously, a method is also adopted in which titanium alkoxide is hydrolyzed in advance and then a predetermined amount of acid is added to peptize the titanium alkoxide. Ru. Furthermore, the desired titanium oxide hydrosol can also be obtained by introducing titanium alkoxide into a polysilicic acid solution that previously contains the acid required for peptization.

解膠に使用する酸は有機酸であっても無機酸であっても
良いが、塩酸、硝酸および硫酸などの鉱酸が好ましく、
その時の反応温度は室温でも充分である。ジルコニウム
の水可溶性塩としてはオキシ塩化ジルコニウム、四塩化
ジルコニウム及びオキシ硝酸ジルコニウムなどが挙げら
れるが、安価で入手しやすく、取扱い容易なオキシ塩化
ジルコニウムが好ましい、アルミニウムおよび鉄の塩と
しては塩酸、硫酸および硝酸の鉱酸の塩に加えて、鉄用
ばん、アルミ明ばん等の複塩、ポリ塩化アルミニウムや
三核酢酸鉄イオンなどの錯イオン溶液なども用いられる
The acid used for peptization may be an organic acid or an inorganic acid, but mineral acids such as hydrochloric acid, nitric acid and sulfuric acid are preferred;
Room temperature is sufficient for the reaction temperature at that time. Examples of water-soluble salts of zirconium include zirconium oxychloride, zirconium tetrachloride, and zirconium oxynitrate, but zirconium oxychloride is preferred because it is inexpensive, easily available, and easy to handle. Examples of salts of aluminum and iron include hydrochloric acid, sulfuric acid, and zirconium oxychloride. In addition to mineral acid salts such as nitric acid, double salts such as iron oxide and aluminum alum, and complex ion solutions such as polyaluminum chloride and trinuclear iron acetate ions are also used.

シリカ・酸化多価金属ヒドロシルはシリコンアルコキシ
ドを加水分解してえたポリケイ酸、重版のシリカヒドロ
ゾルおよび有機シリカゾルから選ばれたシリカ源に、チ
タニウム、ジルコニウム、アルミニウム及び鉄の水可溶
性塩および酸化チタンヒドロゾルから成る群より選ばれ
た1種またはそれ以上を作用させてえられる。
Silica/polyvalent metal hydrosil oxide is a silica source selected from polysilicic acid obtained by hydrolyzing silicon alkoxide, reprinted silica hydrosol, and organic silica sol, water-soluble salts of titanium, zirconium, aluminum, and iron, and titanium oxide hydrosilica. It can be obtained by the action of one or more selected from the group consisting of sols.

この際の反応温度は室温ないし80℃が望ましい。The reaction temperature at this time is preferably room temperature to 80°C.

また多価金属に対するSiの仕込モル比は0.5〜40
の範囲で良いが、#熱性と製膜性能などを考慮するとき
、1〜20が好ましい。
The molar ratio of Si to polyvalent metal is 0.5 to 40.
The number may be within the range of 1 to 20, but #1 to 20 is preferable when considering thermal properties and film forming performance.

本発明の多孔質構造を有する粘土誘導体は、例えば、ス
メクタイトの水懸濁液に攪拌下上記シリカ・酸化多価金
属ヒドロシルを加え、必要に応じて加熱し反応を促進さ
せた後、常法により洗浄、脱水して生成物を取り出し、
乾燥することにより製造される。この際スメクタイトの
懸濁液の濃度は0.1〜5w/マ%(以下単に%で示す
)が好ましく、また、シリカ・酸化多価金属ヒドロシル
の添加量は、スメクタイトの陽イオン交換容量(以下C
ECと略称する)に対して(Si+Ti)として5〜4
0倍量が望ましい、製造時の温度は室温ないし60℃が
好ましい。
The clay derivative having a porous structure of the present invention can be produced, for example, by adding the above-mentioned silica/polyvalent metal hydrosyl oxide to an aqueous suspension of smectite under stirring, heating if necessary to accelerate the reaction, and then using a conventional method. Wash and dehydrate to remove the product.
Manufactured by drying. At this time, the concentration of the smectite suspension is preferably 0.1 to 5 w/ma% (hereinafter simply expressed as %), and the amount of silica/polyvalent metal hydrosyl oxide added is determined by the cation exchange capacity of the smectite (hereinafter simply expressed as %). C
5 to 4 as (Si+Ti) for (abbreviated as EC)
The amount is preferably 0 times, and the temperature during production is preferably room temperature to 60°C.

本発明の方法によれば、シリコンテトラエトキシドの加
水分解によってえられるポリケイ酸の重合度やシリカ1
1酸化多価金属ヒドロシル中のSiに対する多価金属の
比率を変えることによって居間距離や比表面積を制御す
ることができた。粘土のCECに対し、シリコン及び多
価金属をそれぞれlO〜30および 1〜3倍量使用し
た場合に、最も大きな層間空隙を持った粘土複合体かえ
られた。即ち、居間距離25〜45^、比表面!113
00〜400m2/Hの多孔体が製造できた。
According to the method of the present invention, the degree of polymerization of polysilicic acid obtained by hydrolysis of silicon tetraethoxide and silica 1
By changing the ratio of polyvalent metal to Si in polyvalent metal hydrosyl monoxide, the living distance and specific surface area could be controlled. Clay composites with the largest interlayer voids were obtained when silicon and polyvalent metal were used in amounts of 10~30 and 1~3 times the CEC of clay, respectively. That is, the distance between the living room is 25~45^, the specific surface! 113
A porous body of 00 to 400 m2/H was able to be produced.

[発明の効果] この様にしてえられる本発明の多孔質構造を有する粘土
誘導体は、大きな居間距離を有すると共に、当該距離の
大きさを調整できるので、希望する大きさの被吸着物を
その間隙に担持させることができて、また極めて安定で
あり、■つ耐水性、耐熱性が高く優れた製膜性を有して
いるので、吸着剤、触媒、触媒担体、顔料、カプセル化
剤、製膜素材、コーチング剤及び断熱剤等として各種用
途に広く使用することができる。
[Effects of the Invention] The clay derivative having a porous structure of the present invention obtained in this way has a large distance, and the size of the distance can be adjusted, so that an object of a desired size can be attached to it. It can be supported in gaps, is extremely stable, and has high water resistance, heat resistance, and excellent film forming properties, so it can be used as an adsorbent, catalyst, catalyst carrier, pigment, encapsulant, It can be widely used in various applications such as film forming materials, coating agents, and heat insulating agents.

[実施例] 以ドに実施例を示し、本発明を更に詳しく説明する。[Example] EXAMPLES The present invention will be explained in more detail with reference to Examples below.

実施例1 x タ/ −JLz3ml 、!: 2)1に111%
72.5ml (1)G合液ヲシリコンテトラエトキシ
ド10.4 、に加え、室温で2時間攪拌してポリケイ
酸の溶液をえた。別に、チタニウムテトライソプロポキ
シド 1.48をIN塩酸201の中に加え、生じた白
色沈殿が溶解するまで30分攪拌し透明なゾルをえた。
Example 1 x ta/-JLz3ml,! : 2) 111% to 1
72.5 ml of (1) G mixture was added to 10.4 ml of silicon tetraethoxide and stirred at room temperature for 2 hours to obtain a polysilicic acid solution. Separately, 1.48 g of titanium tetraisopropoxide was added to 20 l of IN hydrochloric acid, and the mixture was stirred for 30 minutes until the white precipitate was dissolved to obtain a transparent sol.

このゾルを先に調製したポリケイ酸の溶液に加えて、室
温で10分間攪拌し、透明なシリカ・酸化チタンヒドロ
ゾルをえた。このゾルを、山形県産モンモリロナイト(
クニミネ工業製、商品名「クニビアF」カチオン交換容
fi  100ミリ当Ia/100g) 5.0gを6
001の水に分散させた掖に攪拌しながら10分間かけ
て注入し、更に50℃で 1時間攪拌を続けた。主成分
を遠心分離し、水洗したのち、乾燥して灰白色粉末7.
9gをえた。えられた粉末はSiO2として67.5%
、T i07として4.8%を含有していた。
This sol was added to the previously prepared polysilicic acid solution and stirred at room temperature for 10 minutes to obtain a transparent silica/titanium oxide hydrosol. This sol was mixed with montmorillonite from Yamagata Prefecture (
Manufactured by Kunimine Industries, product name "Kunivia F" cation exchange capacity fi 100ml Ia/100g) 5.0g to 6
001 was dispersed in water over 10 minutes while stirring, and stirring was continued for 1 hour at 50°C. The main component is centrifuged, washed with water, and dried to a grayish white powder7.
I gained 9g. The obtained powder is 67.5% as SiO2.
, 4.8% as Ti07.

実施例2 実施例1と同様にしてポリケイ酸の溶液をえた。この溶
液に4N塩酸で希釈した25w/w%四塩化チタン水溶
液1.8gを加えて、室温で10分間攪拌し、透明なシ
リカ舎酸化チタンヒドロゾルをえた。このゾルを用いて
、以下実施例1と同様にして行い、灰白色粉末をえた。
Example 2 A polysilicic acid solution was obtained in the same manner as in Example 1. To this solution was added 1.8 g of a 25 w/w % titanium tetrachloride aqueous solution diluted with 4N hydrochloric acid and stirred at room temperature for 10 minutes to obtain a transparent silica titanium oxide hydrosol. Using this sol, the same procedure as in Example 1 was carried out to obtain an off-white powder.

実施例3 実施例2において、攪拌時間を15時間としてポリケイ
酸の溶液をえた。更にこの溶液に四塩化チタン溶液のか
わりに20w/w%オキシ硫酸チタン溶液4゜Ogを加
えて、以下実施例2と同様にして行い、灰白色粉末をえ
た。
Example 3 In Example 2, a solution of polysilicic acid was obtained by changing the stirring time to 15 hours. Furthermore, 4° Og of a 20 w/w % titanium oxysulfate solution was added to this solution instead of the titanium tetrachloride solution, and the same procedure as in Example 2 was repeated to obtain an off-white powder.

実施例4゛ 実施例1において、エタノール31と2N塩酸7.51
の混合液とシリコンテトラエトキシド31.2gを用い
てポリケイ酸の溶液をえた。別に、チタニウムインプロ
ポキシド4.2gをIN塩1%j 80ffi1の中に
加え、生じた白色沈殿が溶解するまで30分間攪拌し、
透明なゾルをえた。このゾルを用い、以下実施例1と同
様にして行い、白色粉末を得た。
Example 4 In Example 1, ethanol 31 and 2N hydrochloric acid 7.51
A solution of polysilicic acid was obtained using the mixed solution and 31.2 g of silicon tetraethoxide. Separately, 4.2 g of titanium impropoxide was added to IN salt 1% j 80ffi1 and stirred for 30 minutes until the white precipitate formed was dissolved.
I got a transparent sol. Using this sol, the same procedure as in Example 1 was carried out to obtain a white powder.

実施例5 実施例2において、エタノール2.01と2N塩酸1.
51の混合液とシリコンテトラエトキシド6.2gを用
いてポリケイ酸の溶液をえた。この溶液に25w/w%
四塩化チタン溶液15.2gを加えて、以下実施例2と
同様にして行い、白色粉末をえた。
Example 5 In Example 2, 2.01% of ethanol and 1.01% of 2N hydrochloric acid were used.
A solution of polysilicic acid was obtained using a mixed solution of No. 51 and 6.2 g of silicon tetraethoxide. 25 w/w% in this solution
15.2 g of titanium tetrachloride solution was added and the same procedure as in Example 2 was carried out to obtain a white powder.

実施例6 実施例1において、エタノール181.水0.81およ
び0.5N塩酸1.01の混合液をシリコンテトラエト
キシド10.・4gに加え、80℃4時間攪拌してポリ
ケイ酸の溶液をえた。以下実施例1と同様にして行い、
灰白色粉末をえた。
Example 6 In Example 1, ethanol 181. A mixture of 0.81 parts of water and 1.0 parts of 0.5N hydrochloric acid was mixed with 10 parts of silicon tetraethoxide. - Added to 4g and stirred at 80°C for 4 hours to obtain a solution of polysilicic acid. The following was carried out in the same manner as in Example 1,
A grayish white powder was obtained.

実施例7 エタノール31、水3.51および0.5N塩酸 11
の混合液をシリコンテトラエトキシド10.4gの中へ
加え、80℃で90分間攪拌して、ポリケイ酸の溶液を
えた。この溶液に25w/w%四塩化チタン溶液3.8
gを加えて、以下実施例2と同様にして行い、灰白色粉
末をえた。
Example 7 Ethanol 31, water 3.51 and 0.5N hydrochloric acid 11
The mixed solution was added to 10.4 g of silicone tetraethoxide and stirred at 80° C. for 90 minutes to obtain a solution of polysilicic acid. Add 3.8% of 25w/w% titanium tetrachloride solution to this solution.
The procedure was repeated in the same manner as in Example 2, and a grayish-white powder was obtained.

実施例8 シリカヒドロゾル(触媒化成工業製、商品名S−208
,SiOz含1119.4w/w%) 15.5gに2
5w/w%四塩化チタン溶液7.8gを加えて60℃で
20分間加熱して、シリカΦ酸化チタンヒドロゾルの溶
液をえた。このゾルの溶液をモンモリロナイト5gを6
001の水に分散させた溶液に加え、60℃で2時間加
熱し、以下実施例1と同様にして行い、白色粉末をえた
Example 8 Silica hydrosol (manufactured by Catalysts & Chemicals Industry Co., Ltd., trade name S-208
, SiOz content 1119.4w/w%) 2 to 15.5g
7.8 g of 5 w/w % titanium tetrachloride solution was added and heated at 60° C. for 20 minutes to obtain a solution of silica Φ titanium oxide hydrosol. Add 5g of montmorillonite to 6g of this sol solution.
The mixture was added to a solution of No. 001 dispersed in water, heated at 60° C. for 2 hours, and the same procedure as in Example 1 was carried out to obtain a white powder.

実施例9 実施例8のシリカヒドロゾルの代りに有機シリカゾル(
触媒化成工業製、商品名03CAL−1232、Si0
2含i31.4w/w%) 9.8gを用い、以下実施
例8と同様にして行い、白色粉末をえた。
Example 9 Organic silica sol (
Manufactured by Catalyst Chemical Industry, product name 03CAL-1232, Si0
2 (31.4 w/w%) was used and the same procedure as in Example 8 was carried out to obtain a white powder.

実施例10 実施例1において、エタノール1.51と2N塩191
.5mlの混合液とシリコンテトラエトキシド5.2g
を用いてポリケイ酸の溶液をえた。この溶液に実施例8
で用いたシリカヒドロゾル7.7gと25w/w%四塩
化チタン溶液7.6gを加えて、室温で10分間攪拌し
てえたシリカ・酸化チタンヒドロゾルを、モンモリロナ
イト5gを801の水に分散させた液に加え、80℃で
5時間加熱し、以下実施例1と同様にして行い、白色粉
末をえた。
Example 10 In Example 1, 1.51 ethanol and 191 2N salt
.. 5ml of mixed solution and 5.2g of silicone tetraethoxide
A solution of polysilicic acid was obtained using Example 8
Add 7.7 g of the silica hydrosol used in and 7.6 g of 25 w/w % titanium tetrachloride solution and stir at room temperature for 10 minutes to obtain a silica/titanium oxide hydrosol. Disperse 5 g of montmorillonite in 801 water. The mixture was heated at 80° C. for 5 hours, and the same procedure as in Example 1 was carried out to obtain a white powder.

実施例11 実施例1において、チタンテトライソプロポキシドと1
′L!酸より調製した酸化チタンヒドロゾルの代りにオ
キシ塩化ジルコニウム溶液(Zr(:14として20%
含有) 5.1gを用い、実施例1と同様にして行い、
灰白色粉末をえた。
Example 11 In Example 1, titanium tetraisopropoxide and 1
'L! Zirconium oxychloride solution (Zr(:20% as 14) was used instead of titanium oxide hydrosol prepared from acid.
Containing) 5.1g was used in the same manner as in Example 1,
A grayish white powder was obtained.

実施例12 実施例8において、25w/w%四塩化チタン溶液?、
8.の代りに実施例11のオキシ塩化ジルコニウム溶液
10.2gを用い、実施例8と同様にして行い、灰白色
粉末をえた。
Example 12 In Example 8, 25 w/w% titanium tetrachloride solution? ,
8. The procedure was repeated in the same manner as in Example 8 except that 10.2 g of the zirconium oxychloride solution of Example 11 was used instead of 10.2 g of the zirconium oxychloride solution of Example 11, to obtain an off-white powder.

実施例13 実施例1において、酸化チタンヒドロゾルの代りに2Q
w/w%塩化第二鉄溶液4.1gを用い、以子実流側1
と同様にして行い、褐色粉末をえた。
Example 13 In Example 1, 2Q instead of titanium oxide hydrosol
Using 4.1 g of w/w% ferric chloride solution, the actual flow side 1
A brown powder was obtained in the same manner as above.

実施例14 実施例2において、25w/v%四塩化チタン1.9g
の代りに20w/w%塩化アルミニウム溶液3.3gと
25w/w%四塩化チタン溶液3.8gを用い、以下実
施例2と同様にして行い、白色粉末をえた。
Example 14 In Example 2, 1.9 g of 25 w/v% titanium tetrachloride
The procedure was repeated in the same manner as in Example 2 except that 3.3 g of a 20 w/w % aluminum chloride solution and 3.8 g of a 25 w/w % titanium tetrachloride solution were used instead, to obtain a white powder.

参考例1 実施例1と同様にしてポリケイ酸の溶液をえた。この溶
液をモンモリロナイトと反応させ、以下実施例1と同様
にして行い、灰色粉末をえた。
Reference Example 1 A polysilicic acid solution was obtained in the same manner as in Example 1. This solution was reacted with montmorillonite in the same manner as in Example 1 to obtain a gray powder.

参考例2 実施例2において、酸化チタンヒドロゾルのみをモンモ
リロナイトと反応させ、以下実施例1と同様にして行い
、灰白色粉末をえた。
Reference Example 2 In Example 2, only titanium oxide hydrosol was reacted with montmorillonite, and the same procedure as in Example 1 was carried out to obtain an off-white powder.

参考例3 実施例2において、ポリケイ酸を用いないで四塩化チタ
ンのみをモンモリロナイトに反応させ、以ド実施例2と
同様にして行い、灰白色粉末をえた。
Reference Example 3 In Example 2, only titanium tetrachloride was reacted with montmorillonite without using polysilicic acid, and the same procedure as in Example 2 was repeated to obtain an off-white powder.

表1−1および表1−2に本発明の実施例の一覧を示す
と共に、実施例、参考例でえられた製品について、X線
粉末回折法による居間距離と窒素ガス吸着法による比表
面積を測定し、その結果を示した0本発明の多孔質粘土
誘導体はいずれも大きな居間距離と比表面積を有してお
り、一方、シリカまたは酸化チタンのいずれかの成分を
欠く参考例の場合は、それらの値が極めて小さかった。
Tables 1-1 and 1-2 show a list of Examples of the present invention, and the living distance measured by X-ray powder diffraction and the specific surface area measured by nitrogen gas adsorption method for the products obtained in the Examples and Reference Examples. The porous clay derivatives of the present invention, which were measured and the results were shown, all have large living distances and specific surface areas, while in the case of reference examples lacking either silica or titanium oxide components, Those values were extremely small.

(以下余白) 試験例1 実施例1および7で製造した試料の耐熱安定性を調べる
ため、試料を空気中で200〜800℃の温度で4時間
処理した後、室温まで冷却して層間距離と比表面積の変
化を調べた。その結果を表2に示した。
(Leaving space below) Test Example 1 In order to investigate the heat resistance stability of the samples produced in Examples 1 and 7, the samples were treated in air at a temperature of 200 to 800°C for 4 hours, and then cooled to room temperature to determine the interlayer distance. Changes in specific surface area were investigated. The results are shown in Table 2.

(以下余白) 表2 (以下余白) 表2から明らかなように、本発明の多孔体粘土誘導体は
耐熱安定性に優れ、600°Cまで加熱しても居間距離
の収縮や比表面積の低下がわずかであった。
(Hereinafter in the margin) Table 2 (Hereinafter in the margin) As is clear from Table 2, the porous clay derivative of the present invention has excellent heat resistance stability, and even when heated to 600°C, there is no shrinkage in the living distance or a decrease in the specific surface area. It was very little.

Claims (1)

【特許請求の範囲】 1、シリカゾル類に水可溶性の多価金属塩および酸化チ
タンヒドロゾルから成る群より選ばれた一種またはそれ
以上を予め作用させてえられる生成物をスメクタイトと
反応させることを特徴とする多孔質構造を有する粘土誘
導体の製造法。 2、シリカゾル類がSi(OR)_4〔Rは炭素数1〜
5の直鎖または分枝鎖状のアルキル基を示す〕を加水分
解してえられるポリケイ酸、シリカヒドロゾルおよび有
機シリカゾルから成る群より選ばれる特許請求の範囲第
1項記載の多孔質構造を有する粘土誘導体の製造法。 3、水可溶性の多価金属塩がチタニウム、ジルコニウム
、アルミニウム及び鉄の塩から成る群より選ばれる特許
請求の範囲第1項記載の多孔質構造を有する粘土誘導体
の製造法。 4、酸化チタンヒドロゾルがTi(OR)_4〔Rは炭
素数1〜5の直鎖または分枝鎖状のアルキル基を示す〕
またはこれを加水分解し、次いで酸で解膠してえられる
特許請求の範囲第1項記載の多孔質構造を有する粘土誘
導体の製造法。
[Claims] 1. A product obtained by reacting a silica sol with one or more selected from the group consisting of a water-soluble polyvalent metal salt and a titanium oxide hydrosol, and reacting the product with smectite. A method for producing a clay derivative having a characteristic porous structure. 2. Silica sols are Si(OR)_4 [R is carbon number 1~
5 representing a linear or branched alkyl group], the porous structure according to claim 1 selected from the group consisting of polysilicic acid, silica hydrosol, and organic silica sol. A method for producing a clay derivative having 3. The method for producing a clay derivative having a porous structure according to claim 1, wherein the water-soluble polyvalent metal salt is selected from the group consisting of titanium, zirconium, aluminum and iron salts. 4. Titanium oxide hydrosol is Ti(OR)_4 [R represents a linear or branched alkyl group having 1 to 5 carbon atoms]
Alternatively, a method for producing a clay derivative having a porous structure according to claim 1, which is obtained by hydrolyzing this and then peptizing it with an acid.
JP15288385A 1985-07-10 1985-07-10 Production of clay derivative having porous structure Pending JPS6212612A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15288385A JPS6212612A (en) 1985-07-10 1985-07-10 Production of clay derivative having porous structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15288385A JPS6212612A (en) 1985-07-10 1985-07-10 Production of clay derivative having porous structure

Publications (1)

Publication Number Publication Date
JPS6212612A true JPS6212612A (en) 1987-01-21

Family

ID=15550202

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15288385A Pending JPS6212612A (en) 1985-07-10 1985-07-10 Production of clay derivative having porous structure

Country Status (1)

Country Link
JP (1) JPS6212612A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5348155A (en) * 1991-05-28 1994-09-20 Ringston Co., Ltd. Plastic film bag with an inflated pattern

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5348155A (en) * 1991-05-28 1994-09-20 Ringston Co., Ltd. Plastic film bag with an inflated pattern

Similar Documents

Publication Publication Date Title
JP5034264B2 (en) Oxide composite and method for producing the same
JP4296307B2 (en) Method for producing spherical silica-based mesoporous material
US2886460A (en) Organophilic and hydrophilic composition
US6534025B1 (en) Porous materials and methods for forming the same
Sawan et al. Fabrication, sinterabilty and characterization of non-colored and colored geopolymers with improved properties
JPH0352410B2 (en)
Johnson et al. Hydrolysis of (. gamma.-aminopropyl) triethoxysilane-silylated imogolite and formation of a silylated tubular silicate-layered silicate nanocomposite
US4792539A (en) Process for producing clay derivatives having a porous structure and novel clay derivatives obtained by the process
JP5476579B2 (en) 2: 1 type 3 octahedral synthetic clay, transparent clay gel, coating clay film and self-supporting clay film
US5980849A (en) Mesopore material, laminar silicic acid, and method of manufacturing mesopore material and laminar silicic acid
JP4488191B2 (en) Method for producing spherical silica-based mesoporous material
Peng et al. Precursors of TAA-magadiite nanocomposites
JPS6212612A (en) Production of clay derivative having porous structure
JP5141948B2 (en) Spherical silica-based mesoporous material having a bimodal pore structure and method for producing the same
JPS6227319A (en) Production of clay derivative having porous structure
JPS62171915A (en) Production of clay derivative having porous structure
Temuujin et al. Preparation and properties of potassium aluminosilicate prepared from the waste solution of selectively leached calcined kaolinite
JPH0667762B2 (en) Clay derivative with porous structure
JPS6212611A (en) Clay derivative having porous structure
JPS62187107A (en) Production of clay derivative having porous structure
JPS6328842B2 (en)
JPS6236016A (en) Clay derivative film having porous structure and its production
JP4479071B2 (en) Method for producing spherical porous body
US2739077A (en) Product and process
US2739074A (en) Chemical process and product