JPS62125891A - Treatment of fly ash - Google Patents

Treatment of fly ash

Info

Publication number
JPS62125891A
JPS62125891A JP60262519A JP26251985A JPS62125891A JP S62125891 A JPS62125891 A JP S62125891A JP 60262519 A JP60262519 A JP 60262519A JP 26251985 A JP26251985 A JP 26251985A JP S62125891 A JPS62125891 A JP S62125891A
Authority
JP
Japan
Prior art keywords
coal
combustion
oxygen
ashes
fly ash
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60262519A
Other languages
Japanese (ja)
Other versions
JPH0824902B2 (en
Inventor
Seiichi Shirakawa
白川 精一
Nobuaki Murakami
信明 村上
Yuichi Fujioka
祐一 藤岡
Toshiyuki Takegawa
敏之 竹川
Jun Izumi
順 泉
Tsugitoshi Ogura
小倉 次利
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP60262519A priority Critical patent/JPH0824902B2/en
Publication of JPS62125891A publication Critical patent/JPS62125891A/en
Publication of JPH0824902B2 publication Critical patent/JPH0824902B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/34Indirect CO2mitigation, i.e. by acting on non CO2directly related matters of the process, e.g. pre-heating or heat recovery

Landscapes

  • Gasification And Melting Of Waste (AREA)
  • Processing Of Solid Wastes (AREA)

Abstract

PURPOSE:To decrease the carbon content in fly ashes by separating and capturing the fly ashes from the gas formed by the combustion of coal, conducting the fly ashes to a slag tap type combustion furnace and burning the fly ashes by air enriched with oxygen in said furnace. CONSTITUTION:The fly ashes are separated and captured from the gas formed by the combustion of coal and are conducted to the slag tape type combustion furnace where the fly ashes are burned by the air enriched with oxygen to decrease the carbon content in the fly ashes. As a result, the burned ashes of the coal which cannot be made into fly ash cement because of the unburned carbon contained the permissible threshold or above and with which a discarding treatment is difficult are thoroughly burned out to substantially decrease the unburned carbon in the ashes. The fly ashes are thereby made usable as heavy aggregate for concrete, etc. The pulverized coal is made into the coarse grains at least equivalent to the grain sizes of sand or larger, by which the remedy and handling of dust are made easy and economy is improved. The high fuel ratio carbon is made utilizable for a coal firing boiler, etc., by such effects.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、石炭の燃焼によって生成されるフライアッシ
ュの処理方法に関し、石炭焚きボイラ、石炭水スラリ焚
きボイラ、石炭コークス、石油コークスの燃焼炉、流動
床式石炭ガス化炉等にて発生する含末燃分灰を処理する
技術に利用される。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a method for treating fly ash produced by combustion of coal, and relates to a method for treating fly ash produced by combustion of coal, and is applicable to coal-fired boilers, coal-water slurry-fired boilers, coal coke, petroleum coke combustion furnaces, and fluid flow furnaces. It is used in technology to process the residual combustion ash generated in bed-type coal gasifiers, etc.

従来の技術 石炭の燃焼性は石炭化度が低い穆、また燃料比(石炭中
の固定炭素の発熱量/揮発分の発熱量の比)が低い程良
く、逆に石炭化度も燃料比も高い程燃えにクク、未燃分
が残り易い。これらの値が最も高い無煙炭は、したがっ
て、微粉炭バーナで燃焼させるのが困難である。
Conventional technology The combustibility of coal is better as the degree of coalification is lower, and the fuel ratio (the ratio of the calorific value of fixed carbon to the calorific value of volatile matter in the coal) is lower; The higher the temperature, the more likely it is to burn, and the more likely it is that unburned matter will remain. Anthracite coals with the highest of these values are therefore difficult to burn in pulverized coal burners.

さらに、石炭を水スラリにして用いる石炭高濃度水スラ
リ(以下CWMと略称する)の場合には、火 水が多いために(石炭の約3AM量)、氷焔の温度が上
りに<<、フライアッシュ中に未燃分がより残り易い。
Furthermore, in the case of coal-concentrated water slurry (hereinafter abbreviated as CWM), which uses coal as a water slurry, the temperature of the ice flame rises due to the large amount of fire water (approximately 3 AM amount of coal). Unburned matter is more likely to remain in fly ash.

日本では、石炭焚きボイラの灰中未燃分は5係以下に規
制されているために、CWMの場合には、乾式の微粉炭
燃焼の場合に比し、石炭化度や燃料比の高い石炭の使用
がより制限され、歴青炭の中にも使い切れないものが多
い。ところが、無煙炭を除けば、炭化度と燃料比の高い
石炭の方が良質のCWMを作り易く、高濃度になり易い
ために、ボイラの効率は高くなり、経済的効果も大きい
のである。このため、高石炭化度、高燃料比の石炭を燃
焼した場合に生成されるフライアッシュ中の未燃分対策
が強く望まれている。
In Japan, the unburned content in the ash of coal-fired boilers is regulated to less than 5%, so in the case of CWM, compared to dry pulverized coal combustion, coal with a high degree of coalification and fuel ratio is used. The use of bituminous coal is more restricted, and much of the bituminous coal cannot be used up. However, with the exception of anthracite coal, coal with a high degree of carbonization and high fuel ratio makes it easier to produce high-quality CWM and easily becomes highly concentrated, resulting in higher boiler efficiency and greater economic effects. For this reason, there is a strong demand for countermeasures against unburned matter in fly ash produced when coal with a high degree of coalification and a high fuel ratio is combusted.

同様な要求が、また、流動床ボイラ、流動床石炭ガス化
炉の燃焼灰中の未燃分対策にも望まれている。
Similar requirements are also desired for measures against unburned matter in the combustion ash of fluidized bed boilers and fluidized bed coal gasifiers.

発明が解決しようとする問題点 石炭の燃焼灰中の未燃分を減らすために、次のような対
策が取られているが、不充分で、特にCWMの場合には
その程度が大きい。
Problems to be Solved by the Invention The following measures have been taken to reduce the amount of unburned content in coal combustion ash, but these measures are insufficient, especially in the case of CWM.

(1)微粉炭ボイラの場合 (al (Il−falに同じ (bl CWMの製造時に、粉砕機出口にて粗粒分を塩
ふるい又は沢過器にて除去し、粉砕機の入口に戻して再
粉砕する。
(1) In the case of a pulverized coal boiler (al (same as Il-fal) (bl) When manufacturing CWM, coarse particles are removed at the outlet of the pulverizer using a salt sieve or filter, and returned to the inlet of the pulverizer. Re-grind.

乾式粉砕の場合にはふるい技術は比較的容易であるが、
安定したCWMの製造が容易な湿式粉砕の場合には濾過
技術はむずかしく、不完全である。
In the case of dry grinding, sieving technology is relatively easy;
In the case of wet milling, which is easy to produce stable CWM, filtration techniques are difficult and incomplete.

tc+ fat、fblなどの技術の改良が進められて
いるが、まだ不充分で、結局燃えにくぃ炭種の使用を制
限又は中止せざるを得ない。
Although improvements are being made to technologies such as TC+FAT and FBL, they are still insufficient, and the use of less combustible coal types will eventually have to be restricted or discontinued.

(3)燃焼灰の焼却処理技術 前述の(1)、(2)のいずれにも適用できる技術とし
て、ボイラの集塵器で捕集された灰分を焼却処理炉で補
助燃料と共に再燃焼して未燃分を下げる方法がある。
(3) Incineration treatment technology for combustion ash A technology that can be applied to both (1) and (2) above is to re-burn the ash collected in the boiler dust collector together with auxiliary fuel in an incinerator. There is a way to reduce unburned content.

しかして、この方法が技術的経済的にうまく行けば問題
は解決するのであるが、以下に述べるように従来の技術
では達成できていない。
If this method were successful technically and economically, the problem would be solved, but as described below, this has not been achieved with conventional techniques.

すなわち、未燃分はもともと燃えにくい縮重合の進んだ
炭素質であるために、一般の燃焼では未燃分を低減でき
ないので、非常に高温の燃焼技術が必要で、条件によっ
ては蔵入が炉壁に付着しいわゆるタリンカトラブルを生
じる。このタリンカトラブルを避けるためには、火焔温
度を充分高く保ち、灰を完全に溶かして流動性を良くし
、燃焼炉底部から流出せしめるいわゆるスラグタップ方
式を採用する必要がある。
In other words, unburned matter is a highly condensed carbonaceous material that is inherently difficult to burn, so ordinary combustion cannot reduce unburned matter, so very high-temperature combustion technology is required, and depending on the conditions, storage may be carried out in the furnace. It adheres to walls and causes so-called tarinka trouble. In order to avoid this talinka trouble, it is necessary to maintain the flame temperature sufficiently high, completely melt the ash, improve its fluidity, and adopt the so-called slag tap method, which allows the ash to flow out from the bottom of the combustion furnace.

ところが、石炭灰には流動点が1,500〜1,700
°C以上のものも多く、依然として炭種による使用制限
を解決できていない。
However, coal ash has a pour point of 1,500 to 1,700.
℃ or higher, and the restrictions on use based on the type of coal have not yet been resolved.

また、火焔温度を上げる方法としては、燃焼時に空気の
代りに酸素又は酸素富化空気を用いるのが非常に有力で
あるが、従来の酸素製造方法の深冷分離プラントは、運
転温度が一200’C近傍であるために起動に時間がか
かること、また短時間の停止ができないこと、更に灰の
焙焼炉用など小型のプラントでは酸素の製造コストが高
いことなどの欠点があった。
In addition, as a method of increasing the flame temperature, it is very effective to use oxygen or oxygen-enriched air instead of air during combustion, but in cryogenic separation plants for conventional oxygen production methods, the operating temperature is Since it is close to 'C, it takes time to start up, it cannot be stopped for a short period of time, and it has disadvantages such as the high cost of producing oxygen in small plants such as those for ash roasting furnaces.

以上のような欠点があるために、フライアッシュのスラ
グタップ燃焼処理は、余り注目されていなかった。
Due to the above drawbacks, slag tap combustion treatment of fly ash has not received much attention.

そこで、本発明は、石炭焚きボイラ、石炭水スラリ焚き
ボイラなどにて発生する含未燃分灰を酸素ないしは酸素
富化空気を用いたスラグタップ式燃焼炉に入れて溶融焼
成する方法を提供しようとするものである。
Therefore, the present invention provides a method in which unburned ash generated in a coal-fired boiler, coal-water slurry-fired boiler, etc. is placed in a slag tap type combustion furnace using oxygen or oxygen-enriched air to melt and burn it. That is.

問題点を解決するための手段 本発明は、石炭の燃焼によって生成されたガスからフラ
イアッシュを分離捕集してスラグタップ式燃焼炉へ導き
、この炉でフライアッシュを酸素富化空気により燃焼さ
せて、フライアッシュ中の炭素分を低減させるようにし
たものである。
Means for Solving the Problems The present invention separates and collects fly ash from the gas produced by combustion of coal, guides it to a slag tap combustion furnace, and burns the fly ash with oxygen-enriched air in the furnace. Therefore, the carbon content in fly ash is reduced.

作用 このような方法によれば、したがって、燃えにくい未燃
炭素を含むフライアッシュを高温燃焼させて、未燃炭素
を燃え切らせることができる。また、スラグ状で炉から
流出した蔵入の固化に際し、粗粒状又は塊状にすること
ができるので、粉塵が立ち易くて取扱いが面倒な微粉状
のフライアッシュ ユのもう一つの欠点をも同時に解決することかできる。
Effect: According to this method, fly ash containing unburned carbon, which is difficult to burn, is combusted at a high temperature to burn off the unburned carbon. In addition, when solidifying the slag-like stock that flows out of the furnace, it can be made into coarse particles or lumps, which solves another drawback of fly ash, which is in the form of a fine powder that easily generates dust and is difficult to handle. I can do something.

実施例 以下図面を参照して、本発明の一実施例について詳述す
る。
EXAMPLE Hereinafter, an example of the present invention will be described in detail with reference to the drawings.

単一の図は、石炭焚きボイラと圧力スイング吸着分離法
(以下PSAと略称する)式の酸素富化空気製造装置を
有するスラグタップ式フライアッシユ処理炉とを組合せ
た系統を示す。
A single diagram shows a system combining a coal-fired boiler and a slag tap fly ash processing furnace having a pressure swing adsorption separation (hereinafter abbreviated as PSA) type oxygen-enriched air production device.

図において、石炭は、給炭ライン1を通して給炭処理装
置2に入る。この給炭処理装置は、微粉炭焚きボイラの
場合には石炭微粉砕機であり、またCWM焚きボイラの
場合にはCWM製造装置である。そして、製造された微
粉炭又はCWMはフューエルパイプ3を通してボイラ4
に送られ、このボイラ内で図示していないバーナによっ
て燃焼される。
In the figure, coal enters a coal feed processing device 2 through a coal feed line 1 . This coal feeding processing device is a coal pulverizer in the case of a pulverized coal-fired boiler, and is a CWM manufacturing device in the case of a CWM-fired boiler. The produced pulverized coal or CWM is passed through the fuel pipe 3 to the boiler 4.
and is burned in this boiler by a burner (not shown).

この燃焼時に発生した燃焼ガスは、フライアッシュをの
せて、ダクト5を通して触媒式脱硝装置6に入り、窒素
酸化物を除去された後、ダクト7、エアヒータ8、ダク
ト9を経て集塵器10に入る。
The combustion gas generated during this combustion enters a catalytic denitrification device 6 through a duct 5 with fly ash on it, and after nitrogen oxides are removed, it passes through a duct 7, an air heater 8, and a duct 9 to a dust collector 10. enter.

フライアッシュはこ\で燃焼ガスから分離捕集され、ダ
ストの無くなった燃焼ガスはダクト11を通して脱硫装
置工2に入り、こ\で完全にクリーンな排ガスとなって
ダクト13、煙突14を経て大気中に放出される。
The fly ash is separated and collected from the combustion gas here, and the dust-free combustion gas enters the desulfurization equipment 2 through the duct 11, where it becomes completely clean exhaust gas and passes through the duct 13 and chimney 14 to the atmosphere. released inside.

しかして、ボイラ4において、燃焼時に溶融し、相互に
衝突し、あるいは火炉壁に衝突して粗大化した灰は、火
炉内を落下しクリンカホッパ15からボイラ4の外へ排
出される。この灰は、灰が完全に溶ける程燃焼が充分で
あるので、未然炭素分を実質的に含んでいない。また、
その形状もいわゆるザラメ状であるので、取り扱いは容
易である。
Thus, in the boiler 4, the ash that melts during combustion, collides with each other, or collides with the furnace wall and becomes coarse, falls in the furnace and is discharged from the clinker hopper 15 to the outside of the boiler 4. This ash is substantially free of residual carbon since combustion is sufficient to completely dissolve the ash. Also,
Since its shape is so-called grainy, it is easy to handle.

一方、集塵器10で燃焼ガスから分離捕集されたフライ
アッシュは、従来ライン16′を経て図示していない灰
捨場に捨てられるか、又は同様に図示していないフライ
アッシュ貯蔵槽に一時貯蔵された後フライアッシュ運搬
船や貨車により搬出されていた。
On the other hand, the fly ash separated and collected from the combustion gas by the precipitator 10 is conventionally disposed of via a line 16' to an ash disposal site (not shown), or is temporarily stored in a fly ash storage tank (not shown). After that, it was transported out by fly ash carriers and freight cars.

これに対し、本発明によれば、このフライアッシュはラ
イン16を経てスラグタップ式燃焼炉17に送られる。
In contrast, according to the present invention, this fly ash is sent via line 16 to a slag tap combustion furnace 17.

この輸送の方法としては、図示していない送風機によっ
て送られて来た空気、又はダクト13等から送られて来
た排ガス、場合によっては自然着火の危険性のない条件
下で後述するライン22から分岐された図示していない
ラインによって送られて来た酸素富化空気などによる気
流搬送が望ましい。
This transportation method includes air sent by a blower (not shown), exhaust gas sent from the duct 13, etc., or in some cases from the line 22 (described later) under conditions where there is no risk of spontaneous ignition. Airflow conveyance using oxygen-enriched air or the like sent through a branched line (not shown) is preferable.

このようにライン16から送られて来たフライアッシュ
は、その未燃炭素分がスラグタップ燃焼に十分な場合に
は単独で、又は不十分な場合には補助燃料例えばライン
18から送られて来た微粉炭もしくはCWMと予混合さ
れて、スラグタップ式燃焼炉17へ導びかれ、この炉へ
ライン22を通して送られて来た酸素富化空気によって
、スラグタップ式燃焼炉17内にて高温燃焼される。
The fly ash thus sent from line 16 can be used alone if its unburned carbon content is sufficient for slag tap combustion, or if it is insufficient, it can be sent as an auxiliary fuel, for example from line 18. The oxygen-enriched air is premixed with pulverized coal or CWM and led to the slag tap combustion furnace 17, where the oxygen-enriched air is sent to the furnace through line 22 to perform high-temperature combustion in the slag tap combustion furnace 17. be done.

こメで用いられる酸素富化空気は、ライン19から押込
通風機もしくはコンプレッサ20により大気圧以上、少
くとも1.05気圧以上に昇圧された空気をライン19
′から窒素吸着剤を用いたPSA式酸素富化空気製造装
置21に送り、ここで空気中の窒素を選択的に吸着除去
することにより、作られる。このPSA式酸素富化空気
製造装置は、深冷分離式のものに比し、スタート時間が
X以下であるなど機動性が良いものである。
The oxygen-enriched air used in the rice is air that has been pressurized to at least atmospheric pressure, at least 1.05 atm, by a forced draft fan or compressor 20 from line 19.
' to a PSA type oxygen-enriched air production device 21 using a nitrogen adsorbent, where nitrogen in the air is selectively adsorbed and removed. This PSA type oxygen-enriched air production device has good maneuverability, such as a start time of X or less, compared to a cryogenic separation type.

また、酸素富化空気製造装置21に用いられる窒素選択
型吸着剤は、例えば特°開昭59−17927号公報に
記載されているように、Na−X型ゼオライトに代表さ
れるナトリウムファウジアサイトやNa−A型ゼオライ
トの60〜70%Ca交換体が適している。
In addition, the nitrogen selective adsorbent used in the oxygen-enriched air production device 21 is, for example, sodium faudiasite represented by Na-X type zeolite, as described in Japanese Patent Application Laid-open No. 59-17927. A 60-70% Ca exchanger such as Na-A type zeolite is suitable.

ナトリウムファウジアサイトを用いる場合には、上記公
開公報に記載の如く、ナトリウムファウジアサイトを充
填した少くとも2塔の吸着塔において、一方の塔に室温
以下の温度で空気を大気圧板耳 上3 ata以上の圧力で流入させて空気中の窒素を選
択的に吸着せしめ、該吸着塔の出口から酸素又は酸素富
化空気を流出させ、先に窒素を吸着せしめた他の吸着塔
を0,08 ata以上0.5ata以下に減圧せしめ
て再生し、この吸着行程と再生行程とを交互もしくは順
送りに行うことによって連続的に酸素富化空気を製造す
る。
When using sodium faugiasite, as described in the above-mentioned publication, in at least two adsorption towers filled with sodium faugiasite, air is blown into one tower at a temperature below room temperature above the atmospheric pressure plate. Nitrogen in the air is selectively adsorbed by flowing in at a pressure of 3 ata or more, and oxygen or oxygen-enriched air is flowed out from the outlet of the adsorption tower, and the other adsorption tower that previously adsorbed nitrogen is The pressure is reduced to 0.08 ata or more and 0.5 ata or less for regeneration, and the adsorption step and regeneration step are performed alternately or sequentially to continuously produce oxygen-enriched air.

一方、Na−A型ゼオライトのCa交換体を用いた場合
には、低温での窒素の吸着速度、脱着速度が遅いために
、温度は室温、圧力は吸着圧力は大気圧以上脱着圧力は
大気圧以下で、且つ吸着圧力/脱着圧力≧3 ataの
条件で、あとは前述したナトリウムファウジアサイトの
場合とはソ同様に2塔以上の吸着塔で吸着−脱着行程が
交互に又は位相をずらして順送りに操作される。
On the other hand, when a Ca exchanger made of Na-A type zeolite is used, the adsorption and desorption rates of nitrogen at low temperatures are slow, so the temperature is room temperature, the adsorption pressure is above atmospheric pressure, and the desorption pressure is atmospheric pressure. In the following, and under the conditions of adsorption pressure/desorption pressure ≥ 3 ata, the adsorption-desorption process is performed alternately or out of phase in two or more adsorption towers, as in the case of sodium faudisite described above. Operated in sequential order.

しかして、いずれの場合にも、脱着行程で減圧下に排出
される窒素は、ライン23から真空ポンプ24、ライン
23′を経て排出される。
In either case, the nitrogen discharged under reduced pressure during the desorption process is discharged from line 23 via vacuum pump 24 and line 23'.

スラグタップ式燃焼炉17において、酸素富化燃焼され
た石炭と含炭素フライアッシュ中の灰分の一部は、溶融
スラグとなって炉底よりスラグ流路35を経て炉外に排
出され、砂状、ザラメ状もしくは塊状にされる。そして
、蔵入であるため、場合によっては、大塊としたり、整
型したりする。
In the slag tap combustion furnace 17, part of the ash in the oxygen-enriched coal and carbon-containing fly ash becomes molten slag and is discharged from the bottom of the furnace through the slag flow path 35 to the outside of the furnace, forming a sandy state. , made into grains or lumps. Since it is stored in storage, it may be made into large chunks or shaped.

一方、燃焼炉17中において、灰分の他の一部は、微粒
状にて燃焼ガスに随伴され、熱回収炉2Sで冷却されて
、粘着性を除かれ、ダクト26を経てサイクロン27に
入り、ここで比較的粗粒の灰分が捕集される。そして、
この捕集された粗粒の灰分は、ライン32、送風機33
、ライン34を経てスラグタップ式燃焼炉17に送り込
まれ、再びスラグ化により排出が図られる。
On the other hand, in the combustion furnace 17, the other part of the ash is entrained in the combustion gas in the form of fine particles, cooled in the heat recovery furnace 2S to remove stickiness, and enters the cyclone 27 through the duct 26. Here, relatively coarse ash is collected. and,
This collected coarse ash is transferred to the line 32 and the blower 33.
, through line 34 to the slag tap type combustion furnace 17, where it is turned into slag again and discharged.

この場合、ライン34から微粉のまま炉17に送入する
と、粗粒化が悪く、再び熱回収炉25がらダクト26を
経てサイクロン27に戻る微粉の割合が多いことがある
ので、ライン32もしくは34の途中に転動造粒などの
粗粒化手段を設けても良(・。
In this case, if the fine powder is fed into the furnace 17 from the line 34, the grains will not be coarsened, and a large proportion of the fine powder may return to the cyclone 27 through the duct 26 from the heat recovery furnace 25. It is also possible to provide coarse graining means such as rolling granulation in the middle of the process.

また、ライン34からの微粒を、直接スラグタップ式燃
焼炉17に送入せず、ライン18からの比較的粗粒の石
炭に混合吸着せしめて、スラグタップ式燃焼炉17に供
給しても良い。
Alternatively, instead of directly feeding the fine particles from the line 34 to the slag tap type combustion furnace 17, the fine particles may be mixed and adsorbed with relatively coarse coal from the line 18 and then supplied to the slag tap type combustion furnace 17. .

サイクロン27で灰分を粗取りされた燃焼ガスは、ダク
ト28を経て集塵器29に入り、残りの微粉灰をも捕集
される。この集塵器29としては、電気集塵器、グラニ
ュラベッドフィルタ、バグフィルタ等が望ましく・。
The combustion gas from which the ash content has been roughly removed by the cyclone 27 enters the dust collector 29 through the duct 28, where the remaining fine ash is also collected. The dust collector 29 is preferably an electric dust collector, a granular bed filter, a bag filter, or the like.

このようにして集塵器29で微粉灰も除去された燃焼ガ
スは、ライン30.送風機31、ライン31′を経てボ
イラ4の脱硝装置6の前に戻される。
The combustion gas from which fine ash has also been removed in the dust collector 29 is transferred to the line 30. It is returned to the front of the denitrification device 6 of the boiler 4 via the blower 31 and line 31'.

この場合、ライン18からの石炭中窒素が充分少ない場
合には、より後流に戻しても良い。
In this case, if the amount of nitrogen in the coal from line 18 is sufficiently low, it may be returned further downstream.

集塵器29で捕集された微粉のフライアッシュは、良く
焼成されて居り、炭素分も実質的に存在しないので、ラ
イン36.37’から系外に取り出され、フライアッシ
ュセメント原料として用いることが出来る。1だ、サイ
クロン27において捕集された灰分も、条件によっては
ライン32,37.37′から取り出して、フライアッ
シュセメント原料としても良い。
The fine fly ash collected by the dust collector 29 is well-calcined and has virtually no carbon content, so it is taken out of the system through lines 36 and 37' and used as a raw material for fly ash cement. I can do it. 1. Depending on the conditions, the ash collected in the cyclone 27 may also be taken out through the lines 32, 37, 37' and used as a raw material for fly ash cement.

しかし、集塵器29で捕集された微粉灰をフライアッシ
ュセメント原料にしない場合には、ライン36からライ
ン32へ送ってサイクロン27がらのフライアッシュに
混合するなどの方法により、炉17に再送式し、スラグ
化排出を行なう。
However, if the pulverized ash collected by the dust collector 29 is not to be used as a raw material for fly ash cement, it is sent from the line 36 to the line 32 and mixed with the fly ash from the cyclone 27, and then sent again to the furnace 17. The slag is then discharged.

いずれにせよ、全てのフライアッシュは一部をフライア
ッシュセメント等の原料として取り出され、他の一部は
スラグタップ式燃焼炉17へいずれかのラインから造粒
処理カテクもしくは必要に応じて造粒処理を行なって、
スラグタップ式燃焼炉17に送入し、スラグタップ方式
でライン35から流出せしめ、粗粒化するものである。
In any case, part of all fly ash is taken out as a raw material for fly ash cement, etc., and the other part is sent to the slag tap combustion furnace 17 for granulation processing or granulation as necessary. After processing,
It is fed into a slag tap type combustion furnace 17 and discharged from a line 35 using a slag tap type, where it is coarsened.

以上述べた系統において、PSA式酸素富化空気製造装
置21にて使用される窒素吸着剤の代りに、酸素吸着剤
を用いることもできる。この酸素吸着剤としては、特開
昭56−163753号公報に記載されているように、
Na−A型ゼオライトに少くとも2価以上の背教を有す
る鉄を溶解してなる酸素、窒素2成分系からの酸素吸着
剤や、市販の力−ボンモレキュラシーブ等が望ましい。
In the system described above, an oxygen adsorbent can also be used instead of the nitrogen adsorbent used in the PSA type oxygen-enriched air production device 21. As this oxygen adsorbent, as described in JP-A-56-163753,
It is desirable to use an oxygen adsorbent based on a two-component system of oxygen and nitrogen, which is obtained by dissolving iron having a valence of at least two or more in Na-A type zeolite, or a commercially available carbon molecular sieve.

いずれの場合にも、図に示すライン19′から吸着塔2
1に送入された空気を1その中の酸素を吸着され、窒素
はそのまま通過するので、ライン22が窒素ガスの排気
管となり、再生ラインであるライン23、真空ポンプ2
4、ライン23′から酸素富化空気が出て来るので、こ
のライン23’をスラグタップ式燃焼炉17に接続する
こととなる。
In either case, from the line 19' shown in the figure to the adsorption tower 2
Since the air sent to 1 is adsorbed with oxygen and nitrogen passes through as is, line 22 serves as a nitrogen gas exhaust pipe, line 23 is a regeneration line, and vacuum pump 2
4. Since oxygen-enriched air comes out from line 23', this line 23' is connected to the slag tap type combustion furnace 17.

発明の効果 以上詳述したように、本発明によれば、未燃炭素を許容
限度以上に含むためにフライアッシュセメントにも出来
ず、廃棄処理も困難な石炭燃焼灰を燃え切らせ、灰中未
燃炭素を充分小さくすることができ、これによりコンク
リート用の重量骨材等として使用することができる。
Effects of the Invention As detailed above, according to the present invention, coal combustion ash, which cannot be made into fly ash cement because it contains more than the permissible amount of unburned carbon and is difficult to dispose of, is burnt out, and the ash is Unburned carbon can be made sufficiently small, which allows it to be used as heavy aggregate for concrete, etc.

また同時に、微粉灰を少くとも砂状以上の粗粒とし、粉
塵対策、・・ンドリンクを容易にすることができ、経済
性が大幅に改善できる。
At the same time, the pulverized ash can be made into coarse particles at least as coarse as sand, making dust countermeasures and linkage easier, and economical efficiency can be greatly improved.

そして、これらの効果により、高燃料比炭を石炭焚きボ
イラやCWM焚きボイラに利用できるようにすることが
できる。
These effects allow high fuel ratio coal to be used in coal-fired boilers and CWM-fired boilers.

【図面の簡単な説明】[Brief explanation of drawings]

単一の図は、本発明の一実施例を示すもので、石炭焚き
ボイラプラントと7ライアツンユ処理用の酸素富化空気
製造装置付きスラグタップ式燃焼灰処理系統を示す図で
ある。 1・・給炭ライン、2・・給炭処理装置、3・・7 ニ
ー1 /L/パイプ、4・・ボイラ、6・・触媒式脱硝
装置、8・・エアヒータ、10・・集塵器、16・・フ
ライアッシュライン、17・・スラグタップ式燃焼炉、
18・・補助燃料供給ライン、19・・空気供給ライン
、21・・酸素富化空気製造装置、22・・酸素富化空
気供給ライン、25・・熱回収炉、27・・サイクロン
、29Φ・集塵器、32,34,36  ・・捕集フラ
イアッシュ再循環ライン、35・・スラグ流出路、37
.37’つ・フライアッシュ取出ライン。 復代理人 木 村 正 巳 (1ヱか7名)
A single figure shows one embodiment of the present invention, showing a coal-fired boiler plant and a slag tap combustion ash treatment system with an oxygen-enriched air production device for a seven-day treatment. 1. Coal feed line, 2. Coal feed processing device, 3..7 Knee 1/L/pipe, 4. Boiler, 6. Catalytic denitrification device, 8. Air heater, 10. Dust collector , 16... fly ash line, 17... slag tap type combustion furnace,
18...Auxiliary fuel supply line, 19...Air supply line, 21...Oxygen enriched air production device, 22...Oxygen enriched air supply line, 25...Heat recovery furnace, 27...Cyclone, 29Φ・collection Dust container, 32, 34, 36... Collection fly ash recirculation line, 35... Slag outlet path, 37
.. 37' fly ash extraction line. Sub-agent Masami Kimura (1 or 7 people)

Claims (1)

【特許請求の範囲】[Claims] 石炭の燃焼によって生成されたガスからフライアッシュ
を分離捕集してスラグタップ式燃焼炉へ導き、この炉で
フライアッシュを酸素富化空気により燃焼させて、フラ
イアッシュ中の炭素分を低減させるようにしたことを特
徴とするフライアッシュの処理方法。
Fly ash is separated and collected from the gas generated by coal combustion and guided to a slag tap combustion furnace, where the fly ash is combusted with oxygen-enriched air to reduce the carbon content in the fly ash. A method for processing fly ash, characterized by:
JP60262519A 1985-11-25 1985-11-25 Fly ash processing equipment Expired - Fee Related JPH0824902B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60262519A JPH0824902B2 (en) 1985-11-25 1985-11-25 Fly ash processing equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60262519A JPH0824902B2 (en) 1985-11-25 1985-11-25 Fly ash processing equipment

Publications (2)

Publication Number Publication Date
JPS62125891A true JPS62125891A (en) 1987-06-08
JPH0824902B2 JPH0824902B2 (en) 1996-03-13

Family

ID=17376931

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60262519A Expired - Fee Related JPH0824902B2 (en) 1985-11-25 1985-11-25 Fly ash processing equipment

Country Status (1)

Country Link
JP (1) JPH0824902B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08243526A (en) * 1995-03-15 1996-09-24 Hitachi Zosen Corp Method of removing unburned material in coal ash
JP2002349834A (en) * 2001-05-25 2002-12-04 Hitachi Ltd Melting method and melting disposing system for coal combustion ash
CN112212321A (en) * 2019-07-11 2021-01-12 韩国能源技术研究院 Pure oxygen circulating fluidized bed combustion device for reburning fly ash
CN112356230A (en) * 2020-10-18 2021-02-12 北京海威百信科技有限公司 Method for forming and curing household garbage incineration fly ash

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6033418A (en) * 1983-08-03 1985-02-20 Ishikawajima Harima Heavy Ind Co Ltd Disposal device for incinerating slag
JPS6033419A (en) * 1983-08-03 1985-02-20 Ishikawajima Harima Heavy Ind Co Ltd Disposal device for incineration slag

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6033418A (en) * 1983-08-03 1985-02-20 Ishikawajima Harima Heavy Ind Co Ltd Disposal device for incinerating slag
JPS6033419A (en) * 1983-08-03 1985-02-20 Ishikawajima Harima Heavy Ind Co Ltd Disposal device for incineration slag

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08243526A (en) * 1995-03-15 1996-09-24 Hitachi Zosen Corp Method of removing unburned material in coal ash
JP2002349834A (en) * 2001-05-25 2002-12-04 Hitachi Ltd Melting method and melting disposing system for coal combustion ash
JP4652609B2 (en) * 2001-05-25 2011-03-16 株式会社日立製作所 Coal combustion ash melting method and melt processing system
CN112212321A (en) * 2019-07-11 2021-01-12 韩国能源技术研究院 Pure oxygen circulating fluidized bed combustion device for reburning fly ash
CN112356230A (en) * 2020-10-18 2021-02-12 北京海威百信科技有限公司 Method for forming and curing household garbage incineration fly ash

Also Published As

Publication number Publication date
JPH0824902B2 (en) 1996-03-13

Similar Documents

Publication Publication Date Title
JP3203255B2 (en) Method and apparatus for utilizing biofuel or waste material for energy production
US5425317A (en) Process for gasifying waste materials which contain combustible constituents
TWI422739B (en) Mild gasification combined-cycle powerplant
US5937772A (en) Reburn process
JPH0456202B2 (en)
CN104403697B (en) A kind of coal-fired boiler in power plant smoke emissioning pollution thing controls device and control method
JP2003004211A5 (en)
KR20030085599A (en) Waste treatment apparatus and method
JP6224903B2 (en) Method for removing sulfur in pulverized coal combustion equipment
JP4652609B2 (en) Coal combustion ash melting method and melt processing system
JPS62125891A (en) Treatment of fly ash
JPH11173520A (en) Method and device for fluidized bed type thermal decomposition
JPH07506179A (en) Method for maintaining the nominal operating temperature of flue gas in a PFBC power plant
JP2017128703A (en) Filter device, gasification plant having the same, and filer regeneration method
JP3091197B1 (en) Method and apparatus for reducing dioxins in garbage gasification and melting equipment with char separation method
JP3732640B2 (en) Waste pyrolysis melting combustion equipment
JP4089080B2 (en) Waste treatment method and waste treatment system
CA2194611A1 (en) Method of and apparatus for processing limestone to meet circulating fluidized bed combustion requirement
JP2519523B2 (en) Method and apparatus for burning end-of-life dust of oil coke
JPS638361B2 (en)
JP4264862B2 (en) A pulverized coal boiler, its operating method, and a modification method of a pulverized coal boiler
JP3788149B2 (en) Combined power generation system
JPH0238172Y2 (en)
JPS5896913A (en) Solid fuel feeding method for fluidized bed combustion device
JPH08152106A (en) Coal fired boiler

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees