JPS62125742A - Transmission system for digital signal - Google Patents

Transmission system for digital signal

Info

Publication number
JPS62125742A
JPS62125742A JP26638885A JP26638885A JPS62125742A JP S62125742 A JPS62125742 A JP S62125742A JP 26638885 A JP26638885 A JP 26638885A JP 26638885 A JP26638885 A JP 26638885A JP S62125742 A JPS62125742 A JP S62125742A
Authority
JP
Japan
Prior art keywords
signal
error correction
band
transmission
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26638885A
Other languages
Japanese (ja)
Inventor
Shuzo Kato
加藤 修三
Shuji Kubota
周治 久保田
Harumi Sakai
坂井 春美
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP26638885A priority Critical patent/JPS62125742A/en
Publication of JPS62125742A publication Critical patent/JPS62125742A/en
Pending legal-status Critical Current

Links

Landscapes

  • Radio Relay Systems (AREA)
  • Digital Transmission Methods That Use Modulated Carrier Waves (AREA)
  • Detection And Prevention Of Errors In Transmission (AREA)

Abstract

PURPOSE:To obtain a practical code error rate even when a transmission band width narrower than a required Nyquist band width by applying an error correction coding having a high gain and a 1/2 of coding rate to an input signal and limiting the band of a modulation output number band width using the said signal as a modulation signal to a band smaller than the required Nyquist band of the input signal so as to send the signal while an inter-code interference is given in advance. CONSTITUTION:An input signal of speed Ri is inputted to a convolution error correction coder 2 whose code rate is 1/2 and a quadruple phase modulation is applied to the output at the next stage. The modulation output passes through a narrow band filter 4 of a band width Bw for transmission band limit. The output signal of the filter 4 is subject to frequency conversion into a radio frequency by a transmission circuit 5. The demodulated output passes through a reception band limit filter 8 having a width Bw and is demodulated by a quadruple phase demodulator 9 and inputted to an error correction decoder 10. The decoder 10 is a decoder having the same logic as that of the coder 2, applies error correction to an output signal of the quadruple phase demodulator 9 and sends an output signal of the speed Ri to a terminal 11. The relation between the speed Ri of the input signal and the band width Bw of the transmission signal is selected to be Bw<Bn<=Ri, where Bn is the Nyquist band width.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は大容量のディジタル無線通信方式に利用するに
適する。特に、衛星通信方式の周波数利用効率を増大す
る方式として適する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention is suitable for use in large-capacity digital wireless communication systems. In particular, it is suitable as a method for increasing the frequency utilization efficiency of a satellite communication method.

〔従来の技術〕[Conventional technology]

周波数利用効率を増大するために、多相のpsK変調方
式や16QAMなどの多値変調方式が知られている。い
ずれの方式も信号の速度に比例して伝送周波数帯域幅が
必要であり、一般に伝送周波数帯域幅を所要ナイキスト
帯域幅より狭く設定すると、符号量干渉が急激に増大し
て有用な信号伝送を行うことはできない。
In order to increase frequency utilization efficiency, multi-level modulation methods such as a polyphase psK modulation method and 16QAM are known. Both methods require a transmission frequency bandwidth in proportion to the signal speed, and in general, if the transmission frequency bandwidth is set narrower than the required Nyquist bandwidth, the amount of code interference will increase rapidly, making it difficult to carry out useful signal transmission. It is not possible.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

多相変調方式あるいは多値変調方式では、装置または回
路が複雑になるとともに、衛星通信のように非線形回線
への°適用にはなお解決すべき問題が大きい。
In polyphase modulation or multi-level modulation, the equipment or circuits become complicated, and there are still many problems to be solved when applied to nonlinear lines such as satellite communications.

本発明は、所要ナイキスト帯域幅より狭い伝送周波数帯
域幅を設定しても、実用的な符号誤り率を得ることがで
きるディジタル信号伝送方式を提供することを目的とす
る。
An object of the present invention is to provide a digital signal transmission method that can obtain a practical bit error rate even if a transmission frequency bandwidth is set narrower than the required Nyquist bandwidth.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、送信側では、速度Ri  (bits/Se
c)のディジタル入力信号を符号化率2のたたみ込み符
号語にて誤り訂正符号化を施し、さらに、送信信号の周
波数帯域幅BW(Hz)を Bw   <    Bn (ただし、Bnは上記ディジタル入力信号の所要ナイキ
スト帯域幅(Hz)、Bn≦Ri)に帯域制限して送信
し、 受信側では、復調出力から上記誤り訂正符号化に対応す
る論理による誤り訂正復号化を行うことを特徴とする。
In the present invention, on the transmitting side, the rate Ri (bits/Se
The digital input signal in c) is subjected to error correction encoding using a convolutional code word with a coding rate of 2, and the frequency bandwidth BW (Hz) of the transmission signal is determined as Bw < Bn (where Bn is the above digital input signal). The transmission is limited to the required Nyquist bandwidth (Hz), Bn≦Ri), and on the receiving side, the demodulated output is subjected to error correction decoding using logic corresponding to the error correction encoding described above.

〔作用〕[Effect]

速度Ri  (bits/Sec)のディジタル入力信
号に符号化率2の高い利得の誤り訂正符号化を施してお
き、この信号を変調信号とする変調出力を周波数帯域幅
Bw (Bw<Bn)に帯域制限して、あらかじめ符号
量干渉を与えた形でディジタル信号の伝送を行う。この
とき信号の等価伝送能率は、’A    <    R
<    %(Ri/Bw)となる。
A digital input signal with a speed Ri (bits/Sec) is subjected to high gain error correction coding with a coding rate of 2, and the modulated output using this signal as a modulation signal is divided into a frequency bandwidth Bw (Bw<Bn). The digital signal is transmitted in a manner in which code amount interference is given in advance. In this case, the equivalent transmission efficiency of the signal is 'A < R
<%(Ri/Bw).

信号対雑音比が小さい回線では、伝送路の雑音により発
生する誤りが支配的になり、符号量干渉による誤りは見
掛は上小さくなる。信号に裔い利得の誤り訂正符号化を
施し、伝送帯域幅を所要ナイキスト帯域幅より狭く設定
しても、このように実際の衛星通信回線に近い比較的信
号対雑音比が小さい無線回線で、実用的な符号誤り率の
伝送方式を得ることができる。
In a line with a small signal-to-noise ratio, errors caused by transmission path noise become dominant, and errors caused by code amount interference appear to be smaller. Even if the signal is subjected to error correction coding of the descendant gain and the transmission bandwidth is set to be narrower than the required Nyquist bandwidth, this wireless link with a relatively low signal-to-noise ratio, which is close to the actual satellite communication link, A transmission system with a practical bit error rate can be obtained.

ナイキスト帯域幅Bnは、変調の相数により入力信号の
速度R4に等しい場合も、速度Riより小さい場合もあ
る。
The Nyquist bandwidth Bn may be equal to the speed R4 of the input signal or smaller than the speed Ri depending on the number of phases of modulation.

〔実施例〕〔Example〕

第1図は本発明を実施した通信装置のブロック構成図で
ある。
FIG. 1 is a block diagram of a communication device embodying the present invention.

送信側では、端子1に伝送すべきディジタル入力信号が
到来する。このディジタル入力信号の速度はRi  (
bits/Sec)である。この端子1の信号は誤り訂
正符号器2に入力する。この誤り訂正符号器2はここで
は符号化率1/2のたたみ込み符号器である。この誤り
訂正符号器2の出力は四相位相変調器3に入力して、公
知の四相位相変調が施される。この四相位相変調器3の
出力は送信帯域制限用の狭帯域フィルタ4を通過する。
On the transmitting side, a digital input signal to be transmitted arrives at terminal 1. The speed of this digital input signal is Ri (
bits/Sec). This signal at terminal 1 is input to error correction encoder 2 . The error correction encoder 2 here is a convolutional encoder with a coding rate of 1/2. The output of this error correction encoder 2 is input to a four-phase phase modulator 3, where it is subjected to known four-phase phase modulation. The output of this four-phase phase modulator 3 passes through a narrowband filter 4 for limiting the transmission band.

このフィルタ4の通過帯域幅はBW(T−1z)である
。このフィルタ4の出力信号は送信回路5で搬送波によ
り無線周波数に周波数変換されて無線伝送路6に送信さ
れる。
The passband width of this filter 4 is BW (T-1z). The output signal of this filter 4 is frequency-converted into a radio frequency by a carrier wave in a transmission circuit 5 and is transmitted to a radio transmission path 6.

受信側では、無線伝送路6の信号を受信回路7で受信し
復調する。この復調出力は受信帯域制限フィルタ8を通
過して四相位相復調器9により復調され、誤り訂正復号
器10に入力する。この誤り訂正復号器10は、送信側
の誤り訂正符号器2と同一の論理の復号器であって、四
相位相復調器9の復調出力信号に誤り訂正を行い端子1
1にディジタル出力信号を送出する。この出力信号の速
度は入力信号と等しいR4である。
On the receiving side, the signal on the wireless transmission path 6 is received by a receiving circuit 7 and demodulated. This demodulated output passes through a reception band-limiting filter 8, is demodulated by a four-phase demodulator 9, and is input to an error correction decoder 10. This error correction decoder 10 is a decoder having the same logic as the error correction encoder 2 on the transmitting side, and performs error correction on the demodulated output signal of the four-phase phase demodulator 9.
Sends a digital output signal to 1. The speed of this output signal is R4, which is equal to the input signal.

ここで本発明の特徴とするところは、伝送すべきディジ
タル信号の速度Riと、伝送信号の帯域幅Bwとの関係
が、ナイキスト帯域幅をBnとするとき、 Bw  <  Bn  ≦ R4 に設定されたところにある。
Here, the feature of the present invention is that the relationship between the speed Ri of the digital signal to be transmitted and the bandwidth Bw of the transmitted signal is set to Bw < Bn ≦ R4, where the Nyquist bandwidth is Bn. There it is.

第2図はこの実施例ディジタル伝送方式の各位置での信
号波形および信号スペクトラムを模式的に示す図である
。第2図Fatは誤り訂正符号器2の出力信号波形図(
アイパターン)、同(blは誤り訂正復号器10の入力
信号波形図(アイパターン)である。また第2図(C1
は四相位相変調器3の出力信号スペクトラム、同fd)
は各フィルタ出力の信号スペクトラムである。
FIG. 2 is a diagram schematically showing the signal waveform and signal spectrum at each position in the digital transmission system of this embodiment. FIG. 2 Fat is an output signal waveform diagram of the error correction encoder 2 (
bl is an input signal waveform diagram (eye pattern) of the error correction decoder 10.
is the output signal spectrum of the four-phase phase modulator 3 (fd)
is the signal spectrum of each filter output.

このようなディジタル信号伝送方式では、上述のように
、フィルタ4の通過周波数帯域幅Bwを狭く設定しても
、実用的な符号誤り率の信号伝送を行うことができる。
In such a digital signal transmission system, as described above, even if the pass frequency bandwidth Bw of the filter 4 is set narrow, signal transmission with a practical bit error rate can be performed.

つぎに、これを試験した結果を説明する。Next, the results of testing this will be explained.

試験は第1図に示す系を用いた。伝送路6には擬似伝送
路を利用し、別の雑音発生器】3がら伝送路6に雑音を
混入して実用的な無線回線に近い状態を作った。混入す
る雑音の量は可変である。
The test used the system shown in Figure 1. A pseudo transmission line was used for the transmission line 6, and a separate noise generator [3] mixed noise into the transmission line 6 to create a state similar to a practical radio line. The amount of noise mixed in is variable.

端子1に入力するディジタル信号の速度は、Ri=6.
144  Mb/S であり、フィルタ4(および8)の通過帯域幅をBW=
8. 192  Mllz とした。誤り訂正符号および復号方式として、符号化率
 R=1/2 拘束長  K=7 のたたみ込み符号・ビタビ復号方法を用いた。この誤り
訂正符号器および復号器は集積回路により既製のものを
容易に得ることができる。
The speed of the digital signal input to terminal 1 is Ri=6.
144 Mb/S, and the passband width of filter 4 (and 8) is BW=
8. 192 Mllz. As the error correction code and decoding method, a convolutional code/Viterbi decoding method with a coding rate of R=1/2 and a constraint length of K=7 was used. This error correction encoder and decoder can be easily obtained off-the-shelf using integrated circuits.

第3図に試験結果をグラフにして示す。第3図は横軸に
信号対雑音比をとり、縦軸に符号誤り率をとり、本発明
実施例および比較例についてその特性を示す図である。
Figure 3 shows the test results in graph form. FIG. 3 is a diagram showing the characteristics of an example of the present invention and a comparative example, with the horizontal axis representing the signal-to-noise ratio and the vertical axis representing the code error rate.

横軸の信号対雑音比は、信号の1ビット当たりの受信電
力Ebに対する雑音電力NOの比をデシベルで示す。
The signal-to-noise ratio on the horizontal axis indicates the ratio of the noise power NO to the received power Eb per 1 bit of the signal in decibels.

第3図に示す曲線Aが本発明実施例の試験結果である。Curve A shown in FIG. 3 is the test result of the example of the present invention.

曲線B、CおよびDは比較例の実測結果である。曲線T
は誤り訂正のない場合の理論値である。
Curves B, C, and D are actual measurement results of comparative examples. curve T
is the theoretical value without error correction.

すなわち、曲線Aは、本発明実施例で上記パラメタによ
るディジタル信号の送受信を行い、混入する雑音の量を
変化させて、端子1がら端子11の符号誤り率を測定し
たものである。曲線Bは、曲線Aに示す本発明実施例と
情報伝送量が等しく、誤り訂正を用いた実用的な従来例
方式の一例であって、符号化率Rが2/3のB CH符
号(2ビット誤り訂正、3ビット誤り検出 (31,2
o、2))を用いたものの実測結果である。ごの曲線A
とBとを比較すると、符号誤り率として10−4を得る
ための必要な信号対雑音比は、本発明方式では従来例方
式に比べて約1.7dBだけ低減されていることがわか
る。
That is, curve A is the result of measuring the bit error rate of terminal 1 to terminal 11 by transmitting and receiving digital signals according to the above parameters in the embodiment of the present invention and varying the amount of mixed noise. Curve B is an example of a practical conventional method using error correction, which has the same information transmission amount as the embodiment of the present invention shown in curve A, and is a BCH code (2 Bit error correction, 3 bit error detection (31, 2
This is an actual measurement result using 2). curve A
Comparing B and B, it can be seen that the signal-to-noise ratio required to obtain a bit error rate of 10-4 is reduced by about 1.7 dB in the method of the present invention compared to the conventional method.

また、曲線CおよびDは誤り訂正を行わない場合に、本
発明実施例と等しい信号速度Riのディジタル信号を伝
送させる方式の比較例である。曲線Cではフィルタの通
過帯域幅を信号速度R1に等しく設定した例であり、こ
れは誤り訂正を行ゎない場合の理論値Tに近似する結果
となる。また曲線りは、フィルタの通過帯域幅を本発明
実施例と同一に設定した例であって、曲線Tに示す理論
値よりかなり悪い値となる。
Further, curves C and D are comparative examples of a system for transmitting a digital signal at the same signal speed Ri as in the embodiment of the present invention when error correction is not performed. Curve C is an example in which the passband width of the filter is set equal to the signal speed R1, and this results in a result that approximates the theoretical value T when no error correction is performed. Further, the curved line is an example in which the passband width of the filter is set to be the same as in the embodiment of the present invention, and the value is considerably worse than the theoretical value shown by the curve T.

ごのように、本発明の方式は信号対雑音比が比較的小さ
い領域で、従来例方式に比べて優位な符号誤り率のディ
ジタル伝送方式を実現することができる。
As shown, the system of the present invention can realize a digital transmission system with a code error rate superior to the conventional system in a region where the signal-to-noise ratio is relatively small.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明によれば伝送信号の帯域幅
をナイキスト帯域幅より狭く設定しても、実用的な符号
誤り率のディジタル伝送回線を得ることができる。本発
明は、比較的に信号対雑音比が小さく、しかも周波数利
用効率をきわめて高くすることが望まれる衛星通信方式
に実施してその効果が大きい。
As described above, according to the present invention, a digital transmission line with a practical bit error rate can be obtained even if the bandwidth of the transmission signal is set narrower than the Nyquist bandwidth. The present invention is highly effective when applied to satellite communication systems in which it is desired to have a relatively low signal-to-noise ratio and extremely high frequency utilization efficiency.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明実施例の通信方式ブロック構成図。 第2図は本発明実施例方式の各部の信号波形および信号
スペクトラムを示す図。 第3図は本発明実施例方式および比較例方式について、
試験結果を示す図。 ■・・・伝送すべきディジタル信号が入力する◇モ1子
、2・・・誤り訂正符号器、3・・・四相位相変調器、
4・・・送信帯域制限フィルタ、5・・・送信回路、6
・・・無線伝送路、7・・・受信回路、8・・・受信:
1?域制限フイルタ、9・・・四相位相復調器、10・
・・誤り訂正復号器、11・・・受信出力信号が送信さ
れる端子、13・・・雑音発生器。
FIG. 1 is a block diagram of a communication system according to an embodiment of the present invention. FIG. 2 is a diagram showing signal waveforms and signal spectra of each part of the system according to the embodiment of the present invention. Figure 3 shows the embodiment method of the present invention and the comparative example method.
A diagram showing test results. ■... Digital signal to be transmitted is input ◇Moder 1, 2... Error correction encoder, 3... Four-phase phase modulator,
4... Transmission band limiting filter, 5... Transmission circuit, 6
...Wireless transmission path, 7...Reception circuit, 8...Reception:
1? range limiting filter, 9... four-phase phase demodulator, 10...
...Error correction decoder, 11...Terminal to which the received output signal is transmitted, 13...Noise generator.

Claims (1)

【特許請求の範囲】[Claims] (1)送信側では、 速度Ri(bits/Sec)のディジタル入力信号を
符号化率1/2のたたみ込み符号語にて誤り訂正符号化
を施し、さらに、 送信信号の周波数帯域幅Bw(Hz)を Bw<Bn (ただし、Bnは上記ディジタル入力信号の所要ナイキ
スト帯域幅(Hz)、Bn≦Ri) に帯域制限して送信し、 受信側では、 復調出力から上記誤り訂正符号化に対応する論理による
誤り訂正復号化を行う ことを特徴とするディジタル信号の伝送方式。
(1) On the transmitting side, the digital input signal at a rate Ri (bits/Sec) is subjected to error correction encoding using a convolutional code word with a coding rate of 1/2, and furthermore, the frequency bandwidth Bw (Hz) of the transmitted signal is ) is transmitted with the band limited to Bw<Bn (where Bn is the required Nyquist bandwidth (Hz) of the above digital input signal, Bn≦Ri), and on the receiving side, the above error correction encoding is performed from the demodulated output. A digital signal transmission method characterized by error correction decoding using logic.
JP26638885A 1985-11-26 1985-11-26 Transmission system for digital signal Pending JPS62125742A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26638885A JPS62125742A (en) 1985-11-26 1985-11-26 Transmission system for digital signal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26638885A JPS62125742A (en) 1985-11-26 1985-11-26 Transmission system for digital signal

Publications (1)

Publication Number Publication Date
JPS62125742A true JPS62125742A (en) 1987-06-08

Family

ID=17430241

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26638885A Pending JPS62125742A (en) 1985-11-26 1985-11-26 Transmission system for digital signal

Country Status (1)

Country Link
JP (1) JPS62125742A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008222270A (en) * 2007-03-12 2008-09-25 Shionogi & Co Ltd Over-cap and container equipped with over-cap

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008222270A (en) * 2007-03-12 2008-09-25 Shionogi & Co Ltd Over-cap and container equipped with over-cap

Similar Documents

Publication Publication Date Title
JP2554219B2 (en) Digital signal superposition transmission method
US5351016A (en) Adaptively self-correcting modulation system and method
KR960008988B1 (en) Apparatus for using orthogonal coding in a communication system
KR100592631B1 (en) Receiving spread spectrum signals with narrowband interference
JPH03179948A (en) Hf high data rate modem
EA031912B1 (en) Combined amplitude-time modulation and phase modulation
JPH02501022A (en) Equalization method and equalization system for data communication systems
ITRM950715A1 (en) PROCEDURE AND APPARATUS FOR DIGITAL COMMUNICATIONS WITH SOFT DECISION MAKING
RU2157044C2 (en) Device and method for enlarging dynamic range of receiver
US5867537A (en) Balanced tranversal I,Q filters for quadrature modulators
Wong et al. Time diversity with adaptive error detection to combat Rayleigh fading in digital mobile radio
US7142613B2 (en) Methods, systems and devices for generating pulse shapes
JPS62125742A (en) Transmission system for digital signal
RU2608569C2 (en) System of decametric radio communication with high-speed data transmission
AU681676B2 (en) Self-adjusting modulator
JP2002208980A (en) Method for transmitting stream of digital data value
JP3428846B2 (en) Time diffusion root Nyquist filter
KR960008960B1 (en) Orthogonal coding method in communication system
JPH0646033A (en) Spread spectrum communication equipment
JP3201444B2 (en) Digital signal superimposition transmission method
JPH05227228A (en) Transmission system for digital signal
AU712678B2 (en) Balanced transversal I,Q filters for quadrature modulators
Davis et al. Advanced modulation technology development for earth station demodulator applications
JPH03249847A (en) Modulation/demodulation device
JPH06252881A (en) Spread spectrum communications equipment