JPS62125408A - Fine adjustment mechanism - Google Patents

Fine adjustment mechanism

Info

Publication number
JPS62125408A
JPS62125408A JP26480685A JP26480685A JPS62125408A JP S62125408 A JPS62125408 A JP S62125408A JP 26480685 A JP26480685 A JP 26480685A JP 26480685 A JP26480685 A JP 26480685A JP S62125408 A JPS62125408 A JP S62125408A
Authority
JP
Japan
Prior art keywords
actuator
load
movable
flucrum
movable part
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26480685A
Other languages
Japanese (ja)
Inventor
Tomoyuki Masui
増井 知幸
Hisaaki Hirabayashi
平林 久明
Koichi Sugimoto
浩一 杉本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP26480685A priority Critical patent/JPS62125408A/en
Publication of JPS62125408A publication Critical patent/JPS62125408A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q1/00Members which are comprised in the general build-up of a form of machine, particularly relatively large fixed members
    • B23Q1/25Movable or adjustable work or tool supports
    • B23Q1/26Movable or adjustable work or tool supports characterised by constructional features relating to the co-operation of relatively movable members; Means for preventing relative movement of such members
    • B23Q1/34Relative movement obtained by use of deformable elements, e.g. piezoelectric, magnetostrictive, elastic or thermally-dilatable elements
    • B23Q1/36Springs

Abstract

PURPOSE:To attain the high resistance against the load having high load as well as against the fatigue with high rigidity for a four-joint link fine adjustment mechanism without increasing the thickness of a flucrum part having a notch by providing an elastic body that has the load of the bias force corresponding to an actuator. CONSTITUTION:An actuator 407 is fixed to an end of a fixing part 401 of a four-link mechanism having flucrum parts 402-404 containing notches. A movable part 406 has a fine movement by the expansion and contraction of the actuator 407. A bias coil spring 408 is set at the other end of the part 401 at the side opposite to the actuator 407 of the part 406. Thus a close contact is always secured between the part 406 and the actuator 407 by the compression force of the spring 408. The movement of the part 406 is detected by a displacement detector 409. Then a driving amplifier 412 of the actuator 407 is controlled by an arithmetic controller 411 provided in a controller 410. Thus the part 406 is positioned at a desired point.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明はサブミクロンオーダの位置決め機構に係り、特
に可動範囲が広く、高荷重負荷下における位置決めに好
適な微動機構に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a positioning mechanism on the submicron order, and particularly to a fine movement mechanism that has a wide movable range and is suitable for positioning under high loads.

〔発明の背景〕[Background of the invention]

近年、半導体レーザは通信、計測等の分野における利用
度が急速に拡がりつつあるが、例えばシングルモードフ
ァイバ付レーザダイオードの製造の工程では、ミクロン
に近いいわゆるサブミクロン級の位置ぎめ寸法精度が要
求されるが、集光用光ファイバの光軸合せなどは、作業
者の経験?勘にたよるところが多いため、機械化への要
望が高かった。上記光軸合せのために光ファイバを移動
させる機構については種々提案されており、これらの−
例として、雑誌「精密機械・48巻6号734〜739
頁・1982年」に掲載されている論文「一体構造の縮
少機構つき複合平行はね」に示されているものを第6図
に示す。これは11を固定部とし切欠きを有する支点部
12 、13 、14 、45をもつ一体構造の4節リ
ンク機構から成り、固定部11の逆り型端部に固定した
直動アクチュエータ17が連結部18を介して可動部1
6と対接するように設けられている。アクチュエータ1
8による稼動と、支点部12 、13 、14 、15
を回り対隅とした看)ンク機構により、可動部1日は矢
印入方向に平行移動し点線の位置まで微動変位する。
In recent years, the use of semiconductor lasers has been rapidly expanding in fields such as communications and measurement, but for example, in the manufacturing process of laser diodes with single-mode fibers, dimensional accuracy of so-called submicron positioning is required. However, does the operator have experience in aligning the optical axis of the condensing optical fiber? Since much of the process relies on intuition, there was a strong desire for mechanization. Various mechanisms have been proposed for moving the optical fiber for the above-mentioned optical axis alignment, and these
For example, the magazine "Precision Machinery Volume 48 No. 6 734-739
Figure 6 shows what is shown in the paper ``Composite Parallel Spring with Integrated Reduction Mechanism'' published in ``Page 1982''. This consists of an integral four-bar link mechanism with a fixed part 11 and fulcrum parts 12, 13, 14, and 45 having notches, and a linear actuator 17 fixed to the inverted end of the fixed part 11 is connected. Movable part 1 via part 18
It is provided so as to be in contact with 6. Actuator 1
8 and the fulcrum parts 12 , 13 , 14 , 15
By means of a link mechanism with the movable part rotating in opposite corners, the movable part moves in parallel in the direction of the arrow and slightly moves to the position indicated by the dotted line.

アクチュエータ17と可動部16との連結部18は、ア
クチュエータ17の稼動によって生ずる捩れ、曲げ等の
外力によって生ずる捩れ1曲げ等の応力を極力減らすた
めに、可動部16とアクチュエータ17とは点接触する
ことが好ましくまた密着状態のまま静止している必要が
ある。
The connecting portion 18 between the actuator 17 and the movable portion 16 is such that the movable portion 16 and the actuator 17 are in point contact in order to minimize stress such as torsion and bending caused by external forces such as torsion and bending caused by the operation of the actuator 17. It is preferable that they remain in close contact with each other and remain stationary.

したがって図示の実線の中立状態では各支点部12 、
13 、14 、15におけるモーメントは零で1、本
引例においては上記中立状態から矢印入方向のみ移動が
可能である。また外部負荷がA方向に加わる場合はアク
チュエータ17による負荷が加算されるから支点部12
 、13 、14 、15の剛性を増すために支点部の
肉厚を厚くする必要が生ずるが、肉厚を増すことに伴っ
て支点部12゜13 、14 、15に発生する応力も
増加するから可動範囲の許容限度を小さくしなければな
らないという問題点が生ずる。
Therefore, in the neutral state indicated by the solid line in the figure, each fulcrum portion 12,
The moments at 13, 14, and 15 are zero and 1, and in this reference, movement is possible only in the direction of the arrow from the neutral state. In addition, when an external load is applied in the A direction, the load from the actuator 17 is added, so the fulcrum part 12
, 13, 14, and 15, it becomes necessary to increase the wall thickness of the fulcrum part, but as the wall thickness increases, the stress generated in the fulcrum parts 12, 13, 14, and 15 also increases. A problem arises in that the permissible limit of the range of motion must be reduced.

〔発明の目的〕[Purpose of the invention]

本発明は上記の問題点を解決するためになされ、可動範
囲を十分とることができ、剛性が大で高負荷荷重に耐え
る位置ぎめ用微動機構を提供することを目的とする。
The present invention was made in order to solve the above-mentioned problems, and it is an object of the present invention to provide a positioning fine movement mechanism that can have a sufficient range of movement, has high rigidity, and can withstand high loads.

〔発明の概要〕[Summary of the invention]

本発明は上記目的を達成するために、アクチュエータに
対抗するパイアスカを負荷する弾性体を可動部を挟んで
アクチュエータの反対側に設けたことを特徴とする。
In order to achieve the above-mentioned object, the present invention is characterized in that an elastic body for applying a load to a piascus opposing the actuator is provided on the opposite side of the actuator with the movable part in between.

〔発明の実施例〕[Embodiments of the invention]

本発明の作用の概要を第1〜2図によって説明する。第
1図に示すように可動部16を挟んでアクチュエータ1
7の反対側に固定部11の延長部を設は圧縮ばねから成
る弾性体21を固定し、矢印Aとは逆方向に接合部22
を介して可動部16に圧縮力を負荷する。弾性体21と
可動部22とは点接触し、アクチュエータ17と可動部
16との連結部18と可動部22とを介してアクチュエ
ータ17の矢印A方向の押圧力と弾性体21の矢印Aと
逆方向の圧縮力とは同一線上に作用するようにな己れる
。これにより可動部にはねじれ、曲げ等の力は加わるこ
とはない。
An overview of the operation of the present invention will be explained with reference to FIGS. 1 and 2. As shown in FIG.
An extension part of the fixing part 11 is provided on the opposite side of the fixing part 7, and an elastic body 21 made of a compression spring is fixed thereto, and the joint part 22 is attached in the opposite direction to the arrow A.
A compressive force is applied to the movable portion 16 via the compressive force. The elastic body 21 and the movable part 22 are in point contact, and the pressing force of the actuator 17 in the direction of arrow A and the pressure force of the elastic body 21 in the opposite direction of arrow A are generated through the connecting part 18 between the actuator 17 and the movable part 16 and the movable part 22. The compressive force in the direction acts on the same line as the compressive force. As a result, no force such as twisting or bending is applied to the movable part.

上記によりアクチュエータ17は常時矢印Aと逆方向の
パイアスカ3加えられており、第2図に示すように可動
部16の端末QがQ′の位置にあっても第1図に示すよ
うにアクチュエータ17は連結部18で密着し、可動部
16の可動範囲は第2図中点線で示すようにQ’Q’に
拡大する。
As a result of the above, the actuator 17 is always connected to the piston 3 in the opposite direction to the arrow A, and even if the end Q of the movable part 16 is at the position Q' as shown in FIG. are in close contact with each other at the connecting portion 18, and the movable range of the movable portion 16 is expanded to Q'Q' as shown by the dotted line in FIG.

次に本発明の実施例を第3図により説明する。Next, an embodiment of the present invention will be explained with reference to FIG.

切欠きを有する支点部402〜404をもつ4節リンク
機構の固定部401の一端にはアクチュエータ407が
固定され、アクチュエータ407の伸縮により可動部4
06が微動する。可動部406のアクチュエータ407
と反対側の固定部401の他端にバイアス用のコーrル
ばね408を設け、ばねの圧縮力により可動部406と
アクチュエータ407を常時密着させる。可動VAS4
06の動きは、変位検出器409で検出し、制御装置4
10内の演算制御装置411によってアクチュエータ4
07の駆動用増幅器412を制御して、所要の位置に対
する可動部406の位置決めを行う。アクチュエータ4
07は圧電素子、リニアモータ等ミクロンまたはサブミ
クロンオーダでの変位可能な直動形アクチュエータが好
ましく、制御系は演算制御装置を使用して構成すること
が可能である。
An actuator 407 is fixed to one end of a fixed part 401 of a four-bar linkage mechanism having fulcrum parts 402 to 404 having notches, and the movable part 4 is expanded and contracted by the actuator 407.
06 moves slightly. Actuator 407 of movable part 406
A biasing Cole spring 408 is provided at the other end of the fixed part 401 on the opposite side, and the movable part 406 and the actuator 407 are always brought into close contact with each other by the compressive force of the spring. Movable VAS4
06 is detected by the displacement detector 409, and the movement of the controller 4 is detected by the displacement detector 409.
The actuator 4 is controlled by the arithmetic and control unit 411 in the
The driving amplifier 412 of 07 is controlled to position the movable part 406 to a required position. Actuator 4
07 is preferably a direct-acting actuator capable of displacement on the micron or submicron order, such as a piezoelectric element or a linear motor, and the control system can be configured using an arithmetic control device.

第4図は本発明の他の実施例を示す図であって、パイア
スカの負荷用に板は′ね508を用いたものであるが、
板ばねはコイルばねと比較するとコンパクトで大きな圧
縮力を得られるため・小型軽量ながら高荷重の負荷用と
して適当であるp第5図はさらに他の実施例を示す図で
一%亀磁石608αと永久磁石608bを直列に設置し
、同極同士の反溌力を利用してパイアスカを負荷するも
のである。本実施例においては電磁石608αに対する
電流を図示しない電流制御器によって0、増減設定する
ことにより、パイアスカを調整することができる。
FIG. 4 is a diagram showing another embodiment of the present invention, in which a plate 508 is used for the load of the pie scan.
Leaf springs are more compact than coil springs and can obtain a large compressive force, so they are suitable for high loads despite being small and lightweight.Figure 5 shows yet another example, with a 1% tortoise magnet 608α and Permanent magnets 608b are installed in series, and the repulsive force between the same poles is used to load the pie scan. In this embodiment, the bias voltage can be adjusted by increasing or decreasing the current to the electromagnet 608α to 0 using a current controller (not shown).

〔発明の効果〕〔Effect of the invention〕

本発明の実施により、可動範囲を従来の2倍以上に拡大
し、切欠きを有する支点部の肉厚を厚くせずに高荷重の
負荷に耐え、剛性が大で疲労に強い4節リンクから成る
微動機構が得られる。
By implementing the present invention, the range of motion has been expanded to more than twice that of the conventional one, and the 4-bar link has high rigidity and is resistant to fatigue. A fine movement mechanism is obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図、第2図は本発明の原理説明図、第6図は本発明
の一実施例の全体構成図、第4図は本発明の他の実施例
図、第5図は本発明のさらに他の実施例図、第6図は従
来の微動機構を示す図である。 401・・・固定部、   402〜405・・・支点
部、406・・・可動部、407・・・アクチュエータ
、l108・・・コイルばね、  409・・・変位検
出器、410・・・制御装置、508・・・板ばね、6
08α・・・電磁石、   608b・・・永久磁石。 代理人弁理士 小  川  勝  男 第 12 第2口 第 3 図 第、S図
1 and 2 are diagrams explaining the principle of the present invention, FIG. 6 is an overall configuration diagram of one embodiment of the present invention, FIG. 4 is a diagram of another embodiment of the present invention, and FIG. 5 is a diagram of the present invention. Still another embodiment, FIG. 6, is a diagram showing a conventional fine movement mechanism. 401... Fixed part, 402-405... Fulcrum part, 406... Movable part, 407... Actuator, l108... Coil spring, 409... Displacement detector, 410... Control device , 508... leaf spring, 6
08α...Electromagnet, 608b...Permanent magnet. Representative Patent Attorney Katsutoshi Ogawa No. 12, Part 2, Figure 3, Figure S

Claims (1)

【特許請求の範囲】[Claims] 円弧状の切欠き支点部を4節有する平行4節リンクにお
いて、固定リンクに対向する可動リンクの一端にアクチ
ュエータ、他端に圧縮弾性体を配置したことを特徴とす
る微動機構。
A fine movement mechanism characterized in that an actuator is disposed at one end of a movable link facing a fixed link and a compression elastic body is disposed at the other end in a parallel four-bar link having four circular arc-shaped notched fulcrum parts.
JP26480685A 1985-11-27 1985-11-27 Fine adjustment mechanism Pending JPS62125408A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26480685A JPS62125408A (en) 1985-11-27 1985-11-27 Fine adjustment mechanism

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26480685A JPS62125408A (en) 1985-11-27 1985-11-27 Fine adjustment mechanism

Publications (1)

Publication Number Publication Date
JPS62125408A true JPS62125408A (en) 1987-06-06

Family

ID=17408473

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26480685A Pending JPS62125408A (en) 1985-11-27 1985-11-27 Fine adjustment mechanism

Country Status (1)

Country Link
JP (1) JPS62125408A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01110204A (en) * 1987-10-23 1989-04-26 Jeol Ltd Scanning tunnel microscope for electron microscope
JPH0423109A (en) * 1990-05-18 1992-01-27 Nachi Fujikoshi Corp Microalignment device incorporated with piezoelectric element having feedback function
WO2022008029A1 (en) * 2020-07-06 2022-01-13 MAX-PLANCK-Gesellschaft zur Förderung der Wissenschaften e.V. Joint for a device moveable in vacuum, mechanism for moving a device in vacuum and device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01110204A (en) * 1987-10-23 1989-04-26 Jeol Ltd Scanning tunnel microscope for electron microscope
JPH0423109A (en) * 1990-05-18 1992-01-27 Nachi Fujikoshi Corp Microalignment device incorporated with piezoelectric element having feedback function
WO2022008029A1 (en) * 2020-07-06 2022-01-13 MAX-PLANCK-Gesellschaft zur Förderung der Wissenschaften e.V. Joint for a device moveable in vacuum, mechanism for moving a device in vacuum and device

Similar Documents

Publication Publication Date Title
Scire et al. Piezodriven 50‐μm range stage with subnanometer resolution
US6188161B1 (en) Driving apparatus using transducer
US4664487A (en) Laser mirror positioning apparatus
US5862003A (en) Micromotion amplifier
US6040653A (en) Piezoelectric positioner
US7301257B2 (en) Motion actuator
Newton et al. A linear piezoelectric motor
US4805543A (en) Micropositioning device
JP2577423B2 (en) Large-stroke scanning tunneling microscope
US5191252A (en) Displacement amplification mechanism using piezoelectric element
JPH1190867A (en) Micromanipulator
US6498892B1 (en) Positioning device especially for assembling optical components
US6860020B2 (en) Ultra-precision feeding apparatus
JP3454026B2 (en) Driving device using electromechanical transducer
JPS62125408A (en) Fine adjustment mechanism
JP3434709B2 (en) Table mechanism
US7075738B2 (en) Linear positioning apparatus
JP3884288B2 (en) Micro displacement device
Zhang et al. A linear piezomotor of high stiffness and nanometer resolution
JPS6162110A (en) Transfer device for precision sample
JP3809624B2 (en) Lever displacement expansion mechanism
US7249535B2 (en) Two-dimensional displacement apparatus
JPH01109047A (en) Positioning mechanism
JP2000099153A (en) Displacement expanding mechanism
US5925969A (en) Ferroelectric transducers