JPS62125272A - Method of controlling electronic expansion valve - Google Patents

Method of controlling electronic expansion valve

Info

Publication number
JPS62125272A
JPS62125272A JP60264780A JP26478085A JPS62125272A JP S62125272 A JPS62125272 A JP S62125272A JP 60264780 A JP60264780 A JP 60264780A JP 26478085 A JP26478085 A JP 26478085A JP S62125272 A JPS62125272 A JP S62125272A
Authority
JP
Japan
Prior art keywords
expansion valve
electronic expansion
setting
defrost
controlling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60264780A
Other languages
Japanese (ja)
Inventor
浅井 節郎
文雄 原田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP60264780A priority Critical patent/JPS62125272A/en
Publication of JPS62125272A publication Critical patent/JPS62125272A/en
Pending legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明はDDC方式の電子膨脹弁に係り、特にデフロス
ト時間を短縮するのに有効な制御方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a DDC type electronic expansion valve, and particularly to a control method effective for shortening defrost time.

〔発明の背景〕[Background of the invention]

関連するものとしては実開昭55−139859公報等
があるが、これらのものは、単にデフロストを膨張弁全
開で行うというだけであり、デフロストに入る直前に液
冷媒をアキユムレータに天竜にためておき、デフロスト
中での圧縮機吸友梨の冷媒不足を解消することについて
は考慮されていない0 〔発明の目的〕 本発明の目的は短時間に除霜を終了できる(冷凍サイク
ルの)冷媒制御方法につき、特に電子膨脹弁のディジタ
ル内部処理方法を提供することにある。
Related publications include Japanese Utility Model Application Publication No. 55-139859, but these simply perform defrosting with the expansion valve fully open, and do not store liquid refrigerant in an accumulator immediately before defrosting. , there is no consideration given to resolving the refrigerant shortage in the compressor suction during defrosting. [Object of the Invention] The object of the present invention is to provide a refrigerant control method (for a refrigeration cycle) that can complete defrosting in a short time. In particular, the object of the present invention is to provide a digital internal processing method for electronic expansion valves.

〔発明の概要〕[Summary of the invention]

デフロストを短時間に終了きせる上で最も重要な事は(
1)熱運般媒体たる冷媒の流量を十分確保する→その為
にはP8を高くして圧縮機吸入ガスの比体積を小さく保
つ。
The most important thing to finish defrosting in a short time is (
1) Ensure a sufficient flow rate of the refrigerant, which is a heat transport medium. → To this end, increase P8 to keep the specific volume of the compressor suction gas small.

(2)熱源の確保→室内から取れない時は、事前に室内
熱交等を十分臨めておく。ないし、デフロスト中圧縮機
入力が大なるように運転点をセットしてやる。→Pgを
高くする必要がある。従来は(−)膨張弁をなるべく開
ける。(1))直前の数分間、高圧を高めて暖房する熱
交への蓄熱等が提案されていた。(a)はデフロスト運
転中圧縮機吸入側へ冷媒を速かに戻す目的を持つが、高
低圧の差が数Kq/dLかないので必ずしも速効がない
。(1))は熱源として多少とも役立つが、むしろ室内
熱交へ高圧液冷媒をため込む効果が大きい。
(2) Securing a heat source → If heat cannot be obtained from indoors, prepare for sufficient indoor heat exchange in advance. Otherwise, set the operating point so that the compressor input is large during defrost. →It is necessary to increase Pg. Conventionally, the (-) expansion valve was opened as much as possible. (1)) In the last few minutes, it was proposed to increase high pressure and store heat in a heat exchanger for heating. (a) has the purpose of quickly returning the refrigerant to the suction side of the compressor during defrost operation, but it is not necessarily effective because the difference between high and low pressures is only a few Kq/dL. Although (1)) is somewhat useful as a heat source, it has a greater effect of accumulating high-pressure liquid refrigerant in the indoor heat exchanger.

そして、これけデフロストに切り侠、うた時、低圧側の
冷媒量(減圧されるのでガス化する)j!1大につなが
る。しかし、ガス化しているので1時間かせぎが十分出
来ず、短時間に無くなってしまう。
And, when you cut to defrost, the amount of refrigerant on the low pressure side (it gasifies because it is depressurized) j! Leads to the 1st major. However, since it is gasified, it cannot be used in an hour and runs out in a short period of time.

最も有効な方法はデフロストに入る直前にアキュムレー
タに低圧液冷媒をためておく事である(四方弁が切り換
っても、この液はガス化しないので時間かせぎができる
と考えるに至った。これによるデフロスト時間短縮効果
は1分強であった。
The most effective method is to store low-pressure liquid refrigerant in the accumulator just before entering the defrost (I came to think that this could save time because even if the four-way valve is switched, this liquid will not be gasified.) The defrost time shortening effect was a little over 1 minute.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の一実施例を第1図乃至第8図によりar
する。本発明の対酸となる冷凍サイクルの例を第2図に
示す。冷房では圧縮1tから吐出された高圧がス冷媒は
四方弁2を経て室外熱交8で液化し、電子膨脹弁4によ
り減圧されて寛内熱交5で冷房効果を生じ、冷媒はガス
化して四方弁2、アキュムレータ6を経て圧縮機へ戻る
。暖房では四方弁2が破線側に切り換わる。暖房を行っ
ている時は、スーパヒート8Hは第1図の時刻T1迄の
ごとく、一定値8HI(25℃)になるよう制御される
。この時刻TでデフロストセンサがONとなると、設定
スーパヒートは5R2(ご1℃)に変更される。弁なフ
ィードバック制御されているので、5a41では液戻り
気味になり、液はアキエムレータにたまりつつ、時刻T
鵡は、ひきつづき暖房が行われる。時刻T2で四方弁が
OFFとなり、デフロストサイクル(冷房ザイクル)に
切シ換わると、弁は全開となり、スーパヒートは制御さ
れず、出来なりとなる。この場合は、通常かなしのしめ
りで、圧縮機へ液冷媒が戻るので、長時間持続するのは
好ましくない。それ故、比較的短時間後の時刻T3に達
すると、設定スーパヒートをS H+(g 5 )に戻
し%フィードバック制御となる。このままデフロストは
続行しく液戻りトしなくなっている)、デフロストセン
サがOFFとなった時刻T4で、暖房(四方弁ON )
K戻り、スーパヒーIt同じ<EiH+(=5)を保つ
ように運転される。以上のように、デフロストサイクル
に切り侯わる直前の(T2−T+)時間は未蒸発冷媒が
アキコムレータにためられ1次のデフ0スト運転に備見
られる。
Hereinafter, one embodiment of the present invention will be explained with reference to FIGS. 1 to 8.
do. An example of the acid-resistant refrigeration cycle of the present invention is shown in FIG. In cooling, the high-pressure refrigerant discharged from the compressor 1t passes through the four-way valve 2 and is liquefied in the outdoor heat exchanger 8.The electronic expansion valve 4 reduces the pressure and produces a cooling effect in the indoor heat exchanger 5, and the refrigerant is gasified. It returns to the compressor via the four-way valve 2 and the accumulator 6. For heating, the four-way valve 2 switches to the side shown by the broken line. During heating, the super heat 8H is controlled to a constant value of 8HI (25° C.) as shown in FIG. 1 until time T1. When the defrost sensor is turned ON at this time T, the super heat setting is changed to 5R2 (1° C.). Since the valve is under feedback control, the liquid tends to return at 5a41, and while the liquid is accumulating in the aqueous emulator, the time T
Parrots continue to be heated. When the four-way valve is turned off at time T2 and switched to the defrost cycle (cooling cycle), the valve is fully opened and the super heat is not controlled and is turned off. In this case, liquid refrigerant returns to the compressor after tightening, which is usually not the case, so it is undesirable for it to last for a long time. Therefore, when time T3 is reached after a relatively short period of time, the super heat setting is returned to S H+ (g 5 ) and % feedback control is performed. The defrost continues as it is and the liquid no longer returns), and at time T4 when the defrost sensor turns off, the heating (four-way valve turns on)
K returns and is operated so as to maintain the same <EiH+ (=5). As described above, during the time (T2-T+) immediately before the start of the defrost cycle, unevaporated refrigerant is stored in the accumulator and is prepared for the primary defrost operation.

次にこれを制御70−で示すと第8図のごとくなる。即
ち、デフロストセンサがONかOFFかを検知してON
になると、設定スーパヒートは1℃となシ、ついで、実
際のスーパヒートを読み込んで、設定値との偏差εを計
算する。ついで設定スーパヒートが1℃なので1時間t
1を経過してぃない時は弁開度は、先のεによりフィー
ドバック制御(F(ε))され、スーパヒートは1℃の
一定に保たれる。この運転は液戻り気味なので、この間
にアキエムレータに低圧液冷媒がためられる。ついで時
間t、が経過すると(四方弁が切り侠わりン弁は全開と
なり、デフロスト運転に入る。この全開状態は、時間t
ユを経過すると、設定スーパヒヒ セードが5℃となる。そして、実際のスーパヒートを読
み込んで、弁開度は偏差ε(=、5U−(SH)砒)の
フィードバック制御となる。この状態で、たえずデフロ
ストセンサをチェックに行く。
Next, when this is indicated by control 70-, it becomes as shown in FIG. In other words, it detects whether the defrost sensor is ON or OFF and turns it ON.
Then, the set superheat is 1°C. Next, the actual superheat is read and the deviation ε from the set value is calculated. Next, the setting superheat is 1℃, so it takes 1 hour.
When the temperature has not exceeded 1, the valve opening degree is feedback-controlled (F(ε)) based on the above ε, and the superheat is kept constant at 1°C. During this operation, liquid refrigerant tends to return, so low-pressure liquid refrigerant is accumulated in the Akiemulator during this period. Then, when time t has elapsed (the four-way valve is turned off, the four-way valve is fully opened, and defrost operation begins. This fully open state lasts until time t).
After the temperature has passed, the set superhysade becomes 5°C. Then, the actual super heat is read and the valve opening is controlled by feedback of the deviation ε (=5U-(SH) arsenic). In this state, I constantly check the defrost sensor.

デフ0ストが終了すると(フローの最上段に示すように
)、デフロストセンサのチェックのみが常に行われるよ
うになる。
Once the defrost is finished (as shown at the top of the flow), only the defrost sensor is constantly checked.

〔発明の効果〕〔Effect of the invention〕

本発明によればデフロスト中、圧縮機吸入側に十分な冷
媒が確保されるので、P8があまり下らず、デフロスト
時間を短縮できる効果がある。
According to the present invention, sufficient refrigerant is secured on the suction side of the compressor during defrosting, so that P8 does not drop much and the defrosting time can be shortened.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の中心をなすデフロストの運転制御シー
ケンス、第2図はその時の冷凍サイクル例、第8図は制
御フローを示す。 1・・・容量制御圧縮機  4・・・電子膨脹弁  2
・・・四方弁  5・・・室内熱交換器  8・・・室
外熱交検器  6・・・アキュムレータ 代理人 弁理士 小 川 勝 男 蓼1図 第2酊
FIG. 1 shows a defrost operation control sequence which is the core of the present invention, FIG. 2 shows an example of a refrigeration cycle at that time, and FIG. 8 shows a control flow. 1... Capacity control compressor 4... Electronic expansion valve 2
... Four-way valve 5 ... Indoor heat exchanger 8 ... Outdoor heat exchanger tester 6 ... Accumulator representative Patent attorney Masaru Ogawa Male figure 1 Figure 2

Claims (2)

【特許請求の範囲】[Claims] 1.容量制御圧縮機を持ち電子膨脹弁により冷媒流量の
ディジタル制拝を行うヒートポンプ冷凍サイクルに於て
、デフロストセンサONとなった時、前記電子膨脹弁を
制御する為のディシタル処理に於て、設定スーパヒート
を故意に0℃附近の特定値に設定を変更し、その後、5
秒〜10分は暖房のまま運転し、前記、電子膨脹弁はそ
の間、終始スーパヒート検知のフィードバック制御を行
い、その後、デフロストサイクルに切り換え、弁開度は
所定のパターンで制御することを特徴とする冷凍サイク
ル用ディジタル制御電子膨脹弁の制御方法。
1. In a heat pump refrigeration cycle that has a capacity-controlled compressor and uses an electronic expansion valve to digitally control the refrigerant flow rate, when the defrost sensor turns on, the digital processing for controlling the electronic expansion valve sets the superheat setting. intentionally changed the setting to a specific value around 0℃, and then
The electronic expansion valve is operated with heating for 10 seconds to 10 minutes, during which time the electronic expansion valve performs feedback control for superheat detection from beginning to end, and then switches to a defrost cycle, and the valve opening is controlled in a predetermined pattern. A method of controlling a digitally controlled electronic expansion valve for a refrigeration cycle.
2.前記、設定スーパヒートを0℃とする代りに、過熱
冷媒ガス温度検知サーミスタを電気ヒータで適度に温め
る事を特徴とする特許請求の範囲第1項記載の電子樹脂
弁の制御方法。
2. 2. The method of controlling an electronic resin valve according to claim 1, characterized in that, instead of setting the superheat setting to 0° C., the superheated refrigerant gas temperature detection thermistor is appropriately heated with an electric heater.
JP60264780A 1985-11-27 1985-11-27 Method of controlling electronic expansion valve Pending JPS62125272A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60264780A JPS62125272A (en) 1985-11-27 1985-11-27 Method of controlling electronic expansion valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60264780A JPS62125272A (en) 1985-11-27 1985-11-27 Method of controlling electronic expansion valve

Publications (1)

Publication Number Publication Date
JPS62125272A true JPS62125272A (en) 1987-06-06

Family

ID=17408087

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60264780A Pending JPS62125272A (en) 1985-11-27 1985-11-27 Method of controlling electronic expansion valve

Country Status (1)

Country Link
JP (1) JPS62125272A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005123622A (en) * 2003-10-14 2005-05-12 Samsung Electronics Co Ltd Flexible printed circuit board and liquid crystal display having the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005123622A (en) * 2003-10-14 2005-05-12 Samsung Electronics Co Ltd Flexible printed circuit board and liquid crystal display having the same

Similar Documents

Publication Publication Date Title
US4735054A (en) Method for minimizing off cycle losses of a refrigeration system during a cooling mode of operation and an apparatus using the method
US4197716A (en) Refrigeration system with auxiliary heat exchanger for supplying heat during defrost cycle and for subcooling the refrigerant during a refrigeration cycle
US4750672A (en) Minimizing off cycle losses of a refrigeration system in a heating mode
US4790142A (en) Method for minimizing cycling losses of a refrigeration system and an apparatus using the method
JPS63116073A (en) Heat accumulation type heat pump
JP7011766B2 (en) Cooling device and its control method and control program
CN111473496B (en) Air conditioning system, control method and device thereof and storage medium
CN110849008A (en) Refrigerating system and refrigerating method thereof
JPS62125272A (en) Method of controlling electronic expansion valve
JP2504416B2 (en) Refrigeration cycle
JPS62116862A (en) Refrigerator
JPS6325255B2 (en)
JPS611971A (en) Heat pump type room air conditioner
JPS60111851A (en) Heat pump type refrigerator
JPS6219656A (en) Refrigeration cycle device
JPS5952175A (en) Cooling device
CN2301686Y (en) Refrigerating device for freezing and cold-storage conversion type refrigerator
JPS63153376A (en) Air conditioner
JPS61128068A (en) Defrostation control system of heat pump
JPS6337863B2 (en)
JPH01107057A (en) Method and device for controlling screw type air conditioner
JPS59217453A (en) Refrigerator
JPS6129659A (en) Heat pump type room air conditioner
JPS6321449A (en) Refrigeration cycle
JPS5952171A (en) Cooling device