JPS62124322A - Fastening structure for ceramic bearing - Google Patents

Fastening structure for ceramic bearing

Info

Publication number
JPS62124322A
JPS62124322A JP60140334A JP14033485A JPS62124322A JP S62124322 A JPS62124322 A JP S62124322A JP 60140334 A JP60140334 A JP 60140334A JP 14033485 A JP14033485 A JP 14033485A JP S62124322 A JPS62124322 A JP S62124322A
Authority
JP
Japan
Prior art keywords
bushing
bearing
ceramic bearing
housing
deformation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60140334A
Other languages
Japanese (ja)
Inventor
Masaaki Nakakado
中門 公明
Kazuyoshi Hatano
波多野 和好
Hiroshi Miyata
寛 宮田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP60140334A priority Critical patent/JPS62124322A/en
Publication of JPS62124322A publication Critical patent/JPS62124322A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/52Bearings with rolling contact, for exclusively rotary movement with devices affected by abnormal or undesired conditions
    • F16C19/525Bearings with rolling contact, for exclusively rotary movement with devices affected by abnormal or undesired conditions related to temperature and heat, e.g. insulation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/02Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows
    • F16C19/04Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for radial load mainly
    • F16C19/06Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for radial load mainly with a single row or balls
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C35/00Rigid support of bearing units; Housings, e.g. caps, covers
    • F16C35/04Rigid support of bearing units; Housings, e.g. caps, covers in the case of ball or roller bearings
    • F16C35/06Mounting or dismounting of ball or roller bearings; Fixing them onto shaft or in housing
    • F16C35/07Fixing them on the shaft or housing with interposition of an element
    • F16C35/077Fixing them on the shaft or housing with interposition of an element between housing and outer race ring

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Mounting Of Bearings Or Others (AREA)
  • Support Of The Bearing (AREA)

Abstract

PURPOSE:To correct automatically generation of a gap due to temperature variations by inserting, a bush having a particular linear expansion coefficient and deforming easily elastically in the circumferential direction, into a gap between a housing and a ceramic bearing. CONSTITUTION:A bush 4 is inserted into a gap between a housing 2 and a ceramic bearing 1, while said bush is composed of a material having a particular linear expansion coefficient determined by the linear expansion coefficient and the size of the housing 2 and the ceramic bearing 1 and having a function of being deformed easily elastically in the circumferential direction. As a result, generation of a gap depending on the temperature variations can be automatically corrected.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明はセラミック軸受の締結構造に係り、特に温度変
化を受ける部位での使用に好適なセラミック軸受の締結
構造に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a fastening structure for a ceramic bearing, and particularly to a fastening structure for a ceramic bearing suitable for use in a location subject to temperature changes.

〔発明の一17景〕 従来セラミック軸受の締結構−1において、軸受とハウ
ジング間の隙間調整は、例えば、実公昭55−2889
8に記載のように、ブツシュを挿入しその弾性変形を利
用するもの、あるいは実開昭50−148440に記載
のように、充填用被膜を形成するものであった。しかし
、これらの技術は鉄鋼材料とは線膨張係数が大きく異な
る構造用セラミックスである、窒化けい素、サイアロン
あるいは炭化けい素などを用いたセラミック軸受に対し
、隙間発生の防止、耐熱性の」二で不充分であった。
[One Seventeenth View of the Invention] In the conventional ceramic bearing fastening structure-1, the gap adjustment between the bearing and the housing was, for example, disclosed in Japanese Utility Model Publication No. 55-2889.
As described in No. 8, a bushing is inserted and its elastic deformation is utilized, or as described in Japanese Utility Model Application Laid-open No. 50-148440, a filling film is formed. However, these technologies are difficult to prevent gap formation and to improve heat resistance for ceramic bearings using structural ceramics such as silicon nitride, sialon, or silicon carbide, which have a coefficient of linear expansion that is significantly different from that of steel materials. was insufficient.

さらに第14図は、軸受1とハウジング2の間に、ブツ
シュ3を挿入し、その弾性変形を利用するものである。
Further, in FIG. 14, a bushing 3 is inserted between the bearing 1 and the housing 2, and its elastic deformation is utilized.

本構造では、ハウジングの熱膨張に伴い、ブツシュは熱
膨張および弾性変形により第15図の如くハウジング内
周とは密着性を保つことが出来るが、セラミック軸受の
熱膨張は小さいため、該軸受外周とブツシュの間に隙間
を生じる欠点があった。この様な構造では振動発生など
軸受性能の低下のほかに、荷重が加わる時に衝撃力が発
生する可能性が高くなる。
In this structure, as the housing thermally expands, the bushing can maintain close contact with the inner periphery of the housing due to thermal expansion and elastic deformation, as shown in Figure 15, but since the thermal expansion of the ceramic bearing is small, the outer periphery of the bearing It had the disadvantage of creating a gap between the and bush. In such a structure, in addition to deterioration of bearing performance such as vibration generation, there is a high possibility that impact force will be generated when a load is applied.

一方、セラミックスは脆いため衝撃などの負荷に対して
は強度面のイ;1頼性が著しく損なわれる。
On the other hand, since ceramics are brittle, their strength and reliability are significantly impaired when subjected to loads such as impact.

このため、セラミック軸受の特性の1つである耐熱性を
生か才には、数百塵の高温域において、隙間を発生し1
.い締結構造が不可欠である。
For this reason, it is possible to take advantage of the heat resistance, which is one of the characteristics of ceramic bearings, by preventing gaps from forming in the high temperature range of hundreds of dust particles.
.. A good fastening structure is essential.

〔発明の目的〕[Purpose of the invention]

本発明の「目的は、セラミック軸受を温度変化を受ける
部位で使用するにあたり、軸受と軸受を装着したハウジ
ングとの間に素材の熱膨張差に起因した隙間を生じるこ
となく、安定した軸受の保持を可能とするセラミック軸
受の締結構造を提供することにある。
The purpose of the present invention is to maintain stable bearings without creating gaps due to differences in thermal expansion of the materials between the bearing and the housing in which the bearing is mounted, when using the ceramic bearing in a location subject to temperature changes. The purpose of the present invention is to provide a fastening structure for ceramic bearings that enables the following.

〔発明の概要〕[Summary of the invention]

本発明は1−記目的を達成するため、ハウジングおよび
セラミック軸受の線膨張係数と寸法とによって定まる特
定の線膨張係数を有す材料よりなり、かつ円周方向に弾
性的に容易に変形する機能を有したブツシュを、ハウジ
ングとセラミックl1iill受との間に挿入すること
により、温度変化に起因した隙間発生を自動的に補1F
することをIIT能とした。
In order to achieve the object 1-, the present invention is made of a material having a specific coefficient of linear expansion determined by the coefficient of linear expansion and dimensions of the housing and the ceramic bearing, and has the ability to easily deform elastically in the circumferential direction. By inserting a bushing with a
This is what IIT Noh is all about.

〔発明の実施例〕[Embodiments of the invention]

本発明を第1図によりJL体的に説明する6外径dのセ
ラミック軸受1−9内径1つのハウジング2とブツシュ
4からなる締結部が′r℃の温度にnをした時の熱膨張
変形を考える。いま、各々の線膨張係数を、軸受αい、
ハウジングα□、ブツシュαとし、各々の熱膨張」盲人
変化を、軸受外径A d * 、ハウジング内径AD□
、ブツシュの内径Ad、外径ADとする。この時7次式
が成立つ。
The present invention will be explained in detail with reference to FIG. 1. Thermal expansion deformation when a fastening part consisting of a housing 2 and a bushing 4 having 6 outer diameters 1-9 and 1 inner diameter is exposed to a temperature of 'r°C. think of. Now, the linear expansion coefficient of each bearing α is
Let the housing α□ and the bushing α, and the thermal expansion change in each case be the bearing outer diameter A d * and the housing inner diameter AD□.
, the inner diameter Ad and the outer diameter AD of the bushing. At this time, the 7th order formula is established.

zj d R=α8・T−d       l/l D
M =a 、I・−r−D         ’−・(
1)4d α・T−d、  /1D=α・’I−・0円
周方向に自由に変形しうるとした時、半径方向に隙間を
生じないためには。
zz d R=α8・T−d l/l D
M = a, I・−r−D′−・(
1) 4d α・T−d, /1D=α・′I−・0 When it is assumed that it can be freely deformed in the circumferential direction, in order not to create a gap in the radial direction.

AD、−Ac3.l=/JD−Ad 、、α=(α□・D−α、・d)/(D−d  ・・(
2)また、円周方向の熱膨張変形はブツシュと軸受およ
びハウジングとの変形差を各々S j、 g S oと
すると1次式で表わされる。
AD, -Ac3. l=/JD-Ad ,, α=(α□・D-α,・d)/(D-d ・・(
2) Furthermore, the thermal expansion deformation in the circumferential direction is expressed by a linear equation, where S j and g S o are the deformation differences between the bush, the bearing, and the housing, respectively.

ところで、(2)式のαを(3)式に代入するととなる
7一般に、構造用セラミックスの線膨張係数は鉄鋼材の
それに比べ小さく、例えばハウジングを炭素鋼、軸受を
窒化けい素とした場合には、αイーh t t X I
 O−’/”C,α−3X 10−’/℃となる。した
がって、 α□−α、〉0 よって、(4)式、(3)式より ■−α、〉0.α−1,〉0       ・・・(5
)S i >O、S o >O−(6) となる。これから、ブツシュの円周方向の熱膨張変形は
軸受、ハウジングよりも大きくなることがオ)かる。−
例として、d = 30 nwn 、 D = 42 
nn 。
By the way, when α in equation (2) is substituted into equation (3), we get 7 Generally, the coefficient of linear expansion of structural ceramics is smaller than that of steel materials.For example, when the housing is made of carbon steel and the bearing is made of silicon nitride, For αee h t t X I
O-'/"C, α-3X 10-'/℃. Therefore, α□-α, 〉0 Therefore, from equation (4) and (3), 〉0...(5
) S i >O, S o >O−(6). From this, it can be seen that the thermal expansion deformation of the bushing in the circumferential direction is larger than that of the bearing and housing. −
As an example, d = 30 nwn, D = 42
nn.

T = 500℃の場合を考える。(2)、(3)式%
式% 一方、上記の線膨張係数αを有する素材としては、30
4ステンレスm (α+v字18X10−++/’C)
 。
Consider the case where T = 500°C. (2), (3) formula%
Formula % On the other hand, as a material having the above linear expansion coefficient α, 30
4 stainless steel m (α+V shape 18X10-++/'C)
.

2ONim (同2oxto−’/’C)、黄銅(同1
8〜23X10−″′/℃)などが挙げられる。
2ONim (same 2oxto-'/'C), brass (same 1
8 to 23 x 10-''/°C).

すなわち、(2)式で得られるαを有し、 (3)式で
得られる値以上の周方向変形を弾性的に吸収しうる、素
材、構造を持つブツシュを用いることにより、500℃
の温度変動に対し、隙間を生じることのないセラミック
軸受の締結が可能となる。
In other words, by using a bushing that has α obtained from equation (2) and has a material and structure that can elastically absorb circumferential deformation greater than the value obtained from equation (3), it is possible to
Ceramic bearings can be fastened without creating gaps despite temperature fluctuations.

一方、耐熱性などから、ブツシュの素材が決められた場
合には、(2)式を満たすDおよびdとすれば同様の結
果が1!)られる。
On the other hand, if the material of the bushing is determined based on heat resistance etc., if D and d satisfy equation (2), the same result will be 1! ) can be done.

また、(2)式から得られるαよりも大きな線膨張係数
の素材を選ぶことにより、ブツシュによね軸受の締結力
は高ず1λとなるほど増加するので、確実な締結を得る
ことが出来る。
Furthermore, by selecting a material with a coefficient of linear expansion larger than α obtained from equation (2), the tightening force of the bushing and spring bearing increases as it reaches 1λ, so that reliable tightening can be achieved.

次に、(2)式で与えられるαを有する適熱な材料がな
い場合の締結構造について、第2図により説明する。ブ
ツシュ・1の他に、半径方向の変形を弾性的に補正する
機能を有す緩衝層5を設けることにより、ブツシュ材の
線膨張係数が(2)式の値よりも大きな場合、あるいは
小さい場合にも、温度変動を受ける軸受を安定して締結
することが可能である。
Next, a fastening structure in the case where there is no suitable heat material having α given by equation (2) will be described with reference to FIG. 2. In addition to the bushing 1, by providing a buffer layer 5 that has the function of elastically correcting deformation in the radial direction, if the coefficient of linear expansion of the bushing material is larger than or smaller than the value of equation (2), It is also possible to stably fasten bearings that are subject to temperature fluctuations.

次に本発明の具体的実施例について説明する。Next, specific examples of the present invention will be described.

第;3図(,1)(b)は本発明の締結端造に使用する
円周方向の変形吸収機能を備えたブツシュの一実施例で
ある1本ブツシュ6は(3)式で与えられる円周方向変
形域より大きな幅Sをもつスリット7を円周−Lの1ケ
所に設けたものである。
Figure 3 (, 1) (b) is an example of a bushing with a function of absorbing deformation in the circumferential direction, which is used in the fastening end structure of the present invention.One bushing 6 is given by equation (3). A slit 7 having a width S larger than the circumferential deformation area is provided at one location on the circumference -L.

本プツシj、 6は高温時は円周方向変形域だけスリッ
ト幅が秋まくなり、低騒(室温)時はブツシュ6の弾性
回復力により、元の形に復元する。y1温、降温に伴う
、この様な変形は弾・1(1変形とすることが可能なた
め、膀労破懐の惧れはなく、信頼性の高い変形吸収機能
である。
The slit width of this pushbutton 6 decreases only in the circumferential deformation region when the temperature is high, and when the noise is low (room temperature), the elastic recovery force of the pushbutton 6 restores the original shape. This kind of deformation due to y1 temperature or temperature drop can be made into a bullet-1 (1 deformation), so there is no fear of exhaustion and it is a highly reliable deformation absorption function.

ところで、スリンI−の軸方向などの形状は特に指定す
る必要はなく、第4図に示したブツシュ8の如きスリン
1−9の形状でも良い。また、スリン1−幅Sを、 (
3)式の飴より小さくすることもiil能であり、この
場合は第5図(a)、(b)に示す如くブツシュIOは
破1i11で示す如く、軸方向への逃げにより、(3)
式の円周方向変形を吸収する。さらに、第6図に示すよ
うに、ブツシュ12はコイル状とすることによっても、
同様の効果が得られる8 他の例として、円周−にの2ケ所以上にスリットを設け
た実施例を第7図に示す。ブツシュ13は2ケ所にスリ
ット1.4,1.5を設けた例である。
By the way, there is no need to specify the shape of the sling I- in the axial direction, and the shape of the sling 1-9 such as the bush 8 shown in FIG. 4 may be used. Also, Surin 1-width S is (
It is also possible to make it smaller than the candy in formula 3). In this case, as shown in Figures 5 (a) and (b), the bush IO will escape in the axial direction as shown by the break 1i11, and (3)
To absorb the circumferential deformation of Eq. Furthermore, as shown in FIG. 6, by making the bushing 12 coil-shaped,
As another example in which a similar effect can be obtained, FIG. 7 shows an embodiment in which slits are provided at two or more locations on the circumference. The bush 13 is an example in which slits 1.4 and 1.5 are provided at two locations.

この時のスリット幅Sは−1−述の場合の1/2で良い
6なお、スリツI−間を低弾性率の接合材16゜17で
接合することにより、組立て効率を向上することが可能
である。
The slit width S at this time may be 1/2 of that in the case described in -1. It is.

他の実施例を第8図(a)、(b)により説明する。ブ
ツシュ18の円周4二の4ケ所に軸方向に肉厚を小さく
した部分19,20,21..22を設け、この部分1
9〜20の弾性変形を容易にした例である。高温時は破
線23で示した様な変形が生じ、これにより、ブツシュ
8の円周方向の熱膨張変形を吸収する。第9図(a)、
(+))は同じ考えに)ルづく他の実施例で、ブツシュ
24の円周−1−4ケ所に、半径lj向の肉厚を薄くし
た部分25゜26.27.28を設けている。破線29
で示した変形により−1−述と同様の効果が得られる。
Another embodiment will be explained with reference to FIGS. 8(a) and 8(b). Portions 19, 20, 21 where the wall thickness is reduced in the axial direction at four locations on the circumference 42 of the bush 18. .. 22, and this part 1
This is an example in which elastic deformation of numbers 9 to 20 is facilitated. When the temperature is high, deformation as shown by the broken line 23 occurs, thereby absorbing thermal expansion deformation of the bush 8 in the circumferential direction. Figure 9(a),
(+)) is another embodiment based on the same idea), in which portions 25° 26, 27, 28 of the circumference of the bushing 24 are provided with thinner wall thickness in the direction of the radius lj at positions −1 to 4. . Broken line 29
By the modification shown in (1), the same effect as described in -1- can be obtained.

他の応用例として、セラミック摺り軸受の様に軸長の長
い場合を第10図に示す、ブツシュ30の軸長Qが長く
なる時は、ブツシュ30の軸方向の・:芯膨張を考慮し
、セラミック軸受3j−の軸長I、より短くvることか
必要である。
As another example of application, when the axial length Q of the bushing 30 becomes long, as shown in FIG. 10 in the case of a ceramic sliding bearing with a long shaft length, the axial expansion of the bushing 30 in the axial direction is taken into account. It is necessary to shorten the axial length I of the ceramic bearing 3j-.

次に、第2図に示した半径方向の変形吸収機能をイCす
F&術層の実施例を第11図により説明する。
Next, an embodiment of the F & surgical layer that achieves the radial deformation absorbing function shown in FIG. 2 will be described with reference to FIG. 11.

図は形状記憶合金(INi−’I−i合金)の応力−ひ
すみ線図である6該合金は超弾性特・Vlを持つことが
知られている。すなわち、低温(室温)でA点まで伸ば
された合金を加熱すると、n、0点を径て0点まで復元
する。第2図に示したB 衝層5を本合金により製作し
、前述した1′径り向の変形を吸収することが可能であ
る、本な金をA点の変形状態で、例えば第2し1の如く
ブツシュ4の外周に装着し、加熱すると復元911里で
ブソンユに密着し、B点の状態となる。この状態でハウ
ジング5に組つける7さらに装置の稼働温度(高温)で
復元効果が生じる様な合金を選ぶと、0点で稼働するこ
とになる。この時、緩衝層の円周方向の収縮に対応して
、半径方向に膨張する。すなわち、ブツシュ40半怪方
向熱膨張の不足を補正する効果が1ull待できる。し
たがって、ブツシュ4の材料のもつ線膨張係数が(2)
式より小さい時には、本合金を用いた緩Nfj層5を設
けることにより、高温時においても隙間の生じない軸受
の締結が++J能である。
The figure is a stress-strain diagram of a shape memory alloy (INi-'I-i alloy).6 This alloy is known to have superelastic properties Vl. That is, when an alloy that has been stretched to point A at a low temperature (room temperature) is heated, it returns to the 0 point via the n, 0 point. The B barrier layer 5 shown in FIG. When it is attached to the outer periphery of the bushing 4 as shown in 1 and heated, it comes into close contact with the bushing at 911 degrees of restoration, resulting in the state of point B. If an alloy is assembled into the housing 5 in this state and an alloy that produces a restoring effect at the operating temperature (high temperature) of the device is selected, the device will operate at point 0. At this time, the buffer layer expands in the radial direction in response to the contraction in the circumferential direction. In other words, the effect of correcting the insufficient thermal expansion of the bushing 40 in the semicircular direction can be increased by 1ul. Therefore, the coefficient of linear expansion of the material of the bushing 4 is (2)
When it is smaller than the formula, by providing a loose Nfj layer 5 using this alloy, it is possible to fasten the bearing without creating a gap even at high temperatures.

一方、ブツシュ材の線膨張係数が(2)式の値よりも人
きな場合は、ブツシュの一部に半径方向のスリットを設
け、1弾性変形を容易にすねことにより補正機能を付与
することが出来る。第12図。
On the other hand, if the linear expansion coefficient of the bushing material is lower than the value of equation (2), a radial slit is provided in a part of the bushing to facilitate elastic deformation and provide a correction function. I can do it. Figure 12.

第13図に一実施例を示す。第12図はブツシュ32の
外周の円周方向のスリット33を設けた例であり、第1
3図はブツシュ:34の外周に軸方向のスリット35t
!:設けた例である。
An example is shown in FIG. 13. FIG. 12 shows an example in which a slit 33 is provided in the circumferential direction on the outer periphery of the bush 32.
Figure 3 shows a slit 35t in the axial direction on the outer periphery of the bushing: 34.
! : This is an example provided.

〔発明の効果〕〔Effect of the invention〕

以」二説明したように本発明によれば、温度変化を受け
る時にハウジングとセラミック軸受の熱変形に起因して
両者間に生じる隙間を防止することが出来、軸受を安定
して保持できるため、振動などの障害や2次的なN’M
力による破損を生じることなく、軸受の耐熱性を生かし
た使用を可能とする効果がある。
As explained above, according to the present invention, it is possible to prevent the gap that occurs between the housing and the ceramic bearing due to thermal deformation when the housing and the ceramic bearing are subjected to temperature changes, and the bearing can be stably held. Disturbances such as vibration and secondary N'M
This has the effect of making it possible to use the bearing by taking advantage of its heat resistance without causing damage due to force.

【図面の簡単な説明】[Brief explanation of drawings]

第1図から第13図は本発明に係わるセラミック軸受の
締結構造の説明図で、第1図はセラミック軸受の締結構
造の断面図、第2図は締結構造の他の実施例の断面図、
第3図は本発明に用いるブツシュの実施例で(a)は側
面図、(b)は正面図、第4図はブツシュの他の実施例
の側面図、第5図はブツシュのさらに他の実施例で(、
)は側面図、(1))は正面図、第6図はブツシュのさ
らに他の実施例の側面図、第7図はブツシュのさらに他
の実施例の正面図、第8図はブツシュのさらに他の実施
例で(,1)は側面図、(b)は正面図、第9図はブツ
シュのさらに他の実施例で(a)は側面図、(b)は正
面図、第10は締結構造の他の実施例の断面図、第11
図は締結構造の一実施例におけるひずみと応力との関係
図、第12図はブツシュのさらに他の実施例の断面図、
第13図はブツシュのさらに他の実施例の正面図、第1
4図及び第15図は従来のセラミック軸受の締結構造の
説明図である9 1・・・セラミック軸受、2・・ハウジング、3,4゜
6.8,10,12,13,18,24.30゜32.
34・・・ブツシュ、5・・・緩衝層、31・・・セラ
ミック摺り軸受。 第 1 目    早 2 回 第 3z (α)      (e)) 第 d     第 7 困 第90 2ご 第 70 口 第 /1 目 第74図    第1S閉 手続補正書(方式) 1、事件の表示 昭和60 年特許願第 140334  じZずこ明の
名1示 セラミック軸受の締結構造 3、捕11:をする各 (・f′巨、ハ1lltj  特許出願人t、    
+1        中)II 込ニー:)l    
 II     →ン、’    It    (乍 
  19「4、代 理 人 6、捕i  ))>4 象 明細書の図面の簡単な説明
の欄7・油11゛の内容
1 to 13 are explanatory diagrams of a fastening structure for a ceramic bearing according to the present invention, FIG. 1 is a sectional view of the fastening structure for a ceramic bearing, FIG. 2 is a sectional view of another embodiment of the fastening structure,
Fig. 3 shows an embodiment of the bushing used in the present invention, (a) is a side view, (b) is a front view, Fig. 4 is a side view of another embodiment of the bushing, and Fig. 5 is a still another embodiment of the bushing. In the example (,
) is a side view, (1)) is a front view, FIG. 6 is a side view of yet another embodiment of the bushing, FIG. 7 is a front view of still another embodiment of the bushing, and FIG. 8 is a further view of the bushing. In other embodiments, (1) is a side view, (b) is a front view, and FIG. 9 is another embodiment of the bushing, (a) is a side view, (b) is a front view, and 10th is a fastening. Cross-sectional view of another embodiment of the structure, No. 11
The figure is a diagram of the relationship between strain and stress in one embodiment of the fastening structure, and FIG. 12 is a sectional view of yet another embodiment of the bushing.
FIG. 13 is a front view of yet another embodiment of the bushing, the first
4 and 15 are explanatory diagrams of conventional ceramic bearing fastening structures. 30°32.
34... Bush, 5... Buffer layer, 31... Ceramic sliding bearing. Part 1 Early 2nd Part 3z (α) (e)) Part d Part 7 Part 90 Part 2 Part 70 Part 1 / Part 1 Part 74 Figure 1S Closed Proceedings Amendment (Method) 1. Display of the case 1988 Patent Application No. 140334 by Zuko Akira 1 Ceramic Bearing Fastening Structure 3, Capture 11:
+1 Medium) II Knee:)l
II →n,' It (乍
19 "4. Agent 6. Captivity)) > 4 Elephant Contents of brief description of drawings in the specification column 7/Oil 11"

Claims (1)

【特許請求の範囲】 1、セラミツク軸受を軸受とは異種材で製作されたハウ
ジングに締結する構造において、軸受とハウジング間に
、両者の素材、寸法から定まる特定の特性をもつ材料よ
りなり、円周方向の変形吸収機能を有するブツシユを設
けたことを特徴とするセラミツク軸受の締結構造。 2、特許請求の範囲第1項記載の締結構造において、ブ
ツシユの線膨張係数の不整合を補正する緩衝層を設けた
ことを特徴とするセラミツク軸受の締結構造。
[Claims] 1. In a structure in which a ceramic bearing is fastened to a housing made of a material different from that of the bearing, the circular A fastening structure for a ceramic bearing, characterized by being provided with a bushing having a function of absorbing deformation in the circumferential direction. 2. A fastening structure for a ceramic bearing according to claim 1, characterized in that a buffer layer is provided for correcting mismatching of linear expansion coefficients of the bushings.
JP60140334A 1985-06-28 1985-06-28 Fastening structure for ceramic bearing Pending JPS62124322A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60140334A JPS62124322A (en) 1985-06-28 1985-06-28 Fastening structure for ceramic bearing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60140334A JPS62124322A (en) 1985-06-28 1985-06-28 Fastening structure for ceramic bearing

Publications (1)

Publication Number Publication Date
JPS62124322A true JPS62124322A (en) 1987-06-05

Family

ID=15266407

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60140334A Pending JPS62124322A (en) 1985-06-28 1985-06-28 Fastening structure for ceramic bearing

Country Status (1)

Country Link
JP (1) JPS62124322A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0253523U (en) * 1988-10-08 1990-04-18
JPH03123944U (en) * 1990-03-29 1991-12-17
JPH0482427U (en) * 1990-11-27 1992-07-17
JPH0624231U (en) * 1991-12-24 1994-03-29 光洋精工株式会社 Rolling bearing device
JP2009174532A (en) * 2008-01-23 2009-08-06 Snecma Guiding shaft in turbomachine

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0253523U (en) * 1988-10-08 1990-04-18
JPH03123944U (en) * 1990-03-29 1991-12-17
JPH0482427U (en) * 1990-11-27 1992-07-17
JPH0624231U (en) * 1991-12-24 1994-03-29 光洋精工株式会社 Rolling bearing device
JP2009174532A (en) * 2008-01-23 2009-08-06 Snecma Guiding shaft in turbomachine

Similar Documents

Publication Publication Date Title
JP2005201445A (en) Sealing device for high-pressure turbine of turbomachine
JPS62124322A (en) Fastening structure for ceramic bearing
US4532445A (en) Rotor of superconductive generator
JPS5926668A (en) Gasket and production thereof
JP2010255438A (en) Turbocharger
JP3654921B2 (en) Current-carrying bearing
JPH0211615Y2 (en)
JP2754572B2 (en) Mounting device for shaft and ring
JPH04151076A (en) Shaft sealing device
JP2000009091A (en) Impeller structure
JPH0631252Y2 (en) Bellows type mechanical seal
JP2001050448A (en) Joint structure for tubular member
JPH1038708A (en) Shape memory alloy actuator
JPH03186609A (en) Floating mounting device for especially shaft of sensor
JPH04248013A (en) Ceramic ball joint and its manufacture
JPH06193404A (en) High temperature steam valve
KR960014942B1 (en) Heat-treatment transformation checking method of pipe fitting
JP3196216B2 (en) Connection structure of ceramic parts
JPS59159409A (en) Mechanical element
JPS5858860A (en) Multiple cylindrical rotor
JPH04200263A (en) Rotor of superconducting rotating machine
JPH1192748A (en) Rubber packing, watch exterior part and watch
JPS6298092A (en) Bellows for piping
JPS62101970A (en) Sealing construction
JPH06267354A (en) Flange-equipped bushing