JPS62123427A - Active matrix liquid crystal display element and its production - Google Patents

Active matrix liquid crystal display element and its production

Info

Publication number
JPS62123427A
JPS62123427A JP60264349A JP26434985A JPS62123427A JP S62123427 A JPS62123427 A JP S62123427A JP 60264349 A JP60264349 A JP 60264349A JP 26434985 A JP26434985 A JP 26434985A JP S62123427 A JPS62123427 A JP S62123427A
Authority
JP
Japan
Prior art keywords
liquid crystal
substrate
counter
voltage
scanning
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60264349A
Other languages
Japanese (ja)
Other versions
JPH0473929B2 (en
Inventor
Kesao Noguchi
野口 今朝男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP60264349A priority Critical patent/JPS62123427A/en
Priority to EP86309136A priority patent/EP0224388A3/en
Publication of JPS62123427A publication Critical patent/JPS62123427A/en
Publication of JPH0473929B2 publication Critical patent/JPH0473929B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • G09G3/3611Control of matrices with row and column drivers
    • G09G3/3648Control of matrices with row and column drivers using an active matrix
    • G09G3/3655Details of drivers for counter electrodes, e.g. common electrodes for pixel capacitors or supplementary storage capacitors
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/1368Active matrix addressed cells in which the switching element is a three-electrode device
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2201/00Constructional arrangements not provided for in groups G02F1/00 - G02F7/00
    • G02F2201/12Constructional arrangements not provided for in groups G02F1/00 - G02F7/00 electrode
    • G02F2201/122Constructional arrangements not provided for in groups G02F1/00 - G02F7/00 electrode having a particular pattern
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/2007Display of intermediate tones
    • G09G3/2011Display of intermediate tones by amplitude modulation

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Liquid Crystal (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Nonlinear Science (AREA)
  • Computer Hardware Design (AREA)
  • Theoretical Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Mathematical Physics (AREA)
  • Optics & Photonics (AREA)
  • Power Engineering (AREA)
  • Liquid Crystal Display Device Control (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

PURPOSE:To raise an effective voltage applied to a liquid crystal to reduce a driving voltage by packing the liquid crystal material between a matrix substrate provided with display electrodes, thin film transistors TRs, scanning lines, and signal lines and a counter substrate provided with counter electrodes divided in the scanning direction into a prescribed number with respect to the number of scanning lines. CONSTITUTION:Scanning lines 102 and signal lines 103 are provided on a matrix substrate 101, and thin film TRs 104 are provided at intersections and the connected to display electrodes 105. A counter substrate 106 having counter electrodes 107 which are divided in the scanning direction into n/x [(n) is the number of scanning lines, and (x) is 1, 2,...,n/2 and can divide (n) without a remainder] is provided to face the substrate 101, and the liquid crystal material is sealed between substrates. A video signal is inputted from an input terminal 108 and is applied to TRs 104 through a video control circuit 109 and X and Y drivers. Meanwhile, a counter electrode signal is applied to electrodes 107 through a counter electrode driver 113 to display data on the liquid crystal.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は薄膜トランジスタ全スイッチング素子として走
査線と信号線の交点に設けたアクティブマトリックス形
の液晶表示素子に関するもの、及びその製造方法に関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to an active matrix type liquid crystal display element provided as a thin film transistor all-switching element at the intersection of a scanning line and a signal line, and a method for manufacturing the same. .

(従来方法) アクティブマトリックス液晶表示素子は従来の単純マト
リックス素子に比較し、大容晴表示が可能であゆ、表示
特性(コントラスト、視野角、階調数)が改善可能であ
ることから、その研究が活発化してきている。近年、O
A機器の表示素子としての要望も高く、増々開発に対す
る期待も高まっている。
(Conventional method) Compared to conventional simple matrix devices, active matrix liquid crystal display devices are capable of large-screen clear display and can improve display characteristics (contrast, viewing angle, number of gradation levels), so research on active matrix liquid crystal display devices is underway. is becoming more active. In recent years, O
There is a high demand for it as a display element for A equipment, and expectations for its development are also increasing.

アクティブマトリックス液晶表示孝子に設けられるアク
ティブ素゛子の内、薄膜トランジスタ金用い友場合が再
現性、製造歩留ゆが高い。特にアモルファスシリコンや
ポリシリコン薄膜音用いた薄膜トランジスタは、IC,
T、SI技術で高められ九半導体製造プロセス全応用で
きるので有望視されている。現状でも、アモルファスシ
リコン薄膜トランジスタを用いた例がアイイイイ イン
ターナシ−ナル コンファランス オン コンシネーマ
 エレクトロニクス レコード(IgBBINTERN
ATIONAL C0NF’ERgN(J ON CO
C0N5U’gLEcTRONIcs Record)
の1984年第74頁に報告されている。
Among the active elements provided in active matrix liquid crystal display devices, thin film transistors have high reproducibility and manufacturing yield. In particular, thin film transistors using amorphous silicon or polysilicon thin film are used for IC,
It is considered to be promising because it is improved by T and SI technology and can be applied to all nine semiconductor manufacturing processes. Even now, examples using amorphous silicon thin film transistors are excellent.
ATIONAL C0NF'ERgN(J ON CO
C0N5U'gLEcTRONIcs Record)
1984, p. 74.

一般的なアクティブマ) IJフックス晶表示素子の構
造の概略を斜視図全便つ1第4図に示す。ガラス等の絶
縁性基板音用いたマ) IJ 7クス基板401上に走
査線402及び信号線403のパスラインがマトリック
ス状に配線され、各交点近傍ニ薄膜トランジスタ(T 
[’ T ) 40 =1がそれぞれマトリックス内に
設けられ、走査線402、信号線403及びマトリック
ス内(L設Hらjまた一浸示電極405とに電気的に接
続さね、ている。このマトリックス基板401と対位し
て設けられ対向′電極407を有する対向基板406が
、基板間りこ液晶打金封入され、マトリックス基板40
1と封止剤で接着されている。
A general perspective view of the structure of an IJ Fuchs crystal display element is shown in FIG. 4. Pass lines of scanning lines 402 and signal lines 403 are wired in a matrix on an IJ7 substrate 401 using an insulating substrate such as glass, and two thin film transistors (T
['T) 40 = 1 are provided in the matrix, and are electrically connected to the scanning line 402, the signal line 403, and the immersion electrode 405 in the matrix. A counter substrate 406 which is provided opposite to the matrix substrate 401 and has a counter electrode 407 is sealed with a liquid crystal between the substrates, and the matrix substrate 40
1 and is bonded with a sealant.

ここで、対向電極407は対向基板406上に表示面以
上の領域に全面ベタに設けられている。
Here, the counter electrode 407 is provided over the entire surface of the counter substrate 406 in an area larger than the display surface.

又、対向ta極の取出し端子(1対向基版土で々く、ト
ランスファ電極全弁してマトリックス基板401側に設
けられる場合もある。さらに、カラー表示のためのカラ
ーフィルターが対向車極上もしくは下に設けられる場合
もある。
In addition, there are cases in which the extraction terminals of the opposing TA electrodes are provided on the matrix substrate 401 side with the transfer electrodes all valved.Furthermore, a color filter for color display is installed on the top or bottom of the oncoming vehicle. In some cases, it is provided in

表示音帯るためには入力端イ408よりビデオ信号金入
力する。入力金堂けたビデオ制御回路409でフレーム
周期と表示素子の走査線数及び走査方法力どから決めら
ね、た走査信号が作られる。
To produce display sound, a video signal is input from the input terminal 408. The input video control circuit 409 generates a scanning signal, which is determined based on the frame period, the number of scanning lines of the display element, the scanning method, etc.

又、ビデオ信号fc表示素子の表示容量にしたがってサ
ンプリングした信号もビデオ制御回路409で作られ、
液晶に電界全顎えるための対向電極に印加する電圧も作
られる。カラー表示を行う場合は色分離回路全通して色
信号としたサンプリング信号が作られる。走査信号は表
示素子の走査線側全駆動するため、さらにシフトレジス
タ金偏え友X方向ドライバー410によって信号処理さ
ね、表示素子の走査線402と接続されたTPTゲート
に印加される。ビデオサンプリング信号は線順次走査に
よる表示の場合、シフトレジスタの他にサンプリングホ
ールド回路を有し、1947分をホールド出来るY方向
ドライバー411によって処理され、表示素子の信号線
403と接続きれたTPTのドレイン(もしくはソース
)に印加される。対向車t4iに407に印加される電
圧は全表示電極に対して共通に作用するため、共通対向
電圧(VCOM) 412ともいわれる。以上のように
、アクティブマトリックス表示素子の走査線402及び
信号線403及び共通対向1!L極412に表示パター
ンに応じて各々電圧が印加されて、マトリックス中の任
意の画素を表示させることができる。
A video signal sampled according to the display capacity of the fc display element is also generated by the video control circuit 409.
A voltage is also created to be applied to the counter electrode to apply the full electric field to the liquid crystal. When displaying in color, a sampling signal as a color signal is generated through the entire color separation circuit. In order to fully drive the scanning line side of the display element, the scanning signal is further subjected to signal processing by a shift register biasing X-direction driver 410, and then applied to the TPT gate connected to the scanning line 402 of the display element. In the case of display by line sequential scanning, the video sampling signal is processed by a Y-direction driver 411 which has a sampling hold circuit in addition to a shift register and can hold 1947 minutes, and is processed by a TPT drain connected to the signal line 403 of the display element. (or source). The voltage applied to the oncoming vehicle t4i 407 is also referred to as a common opposing voltage (VCOM) 412 because it acts commonly on all display electrodes. As described above, the scanning line 402 and the signal line 403 of the active matrix display element and the common facing 1! Voltages are applied to the L poles 412 according to the display pattern, allowing any pixel in the matrix to be displayed.

表示音帯るために印加する電圧を、第5図及び第6図の
信号チャート図金用いて詳細に説1リド−する。
The voltage applied to generate the display sound will be explained in detail using the signal charts of FIGS. 5 and 6.

アモルファスシリコンTPT′fr、用いた例について
述べる。一画面を走査するフィールド期間’rFn+c
おいて、康査線数nK応じたパルス幅全有した10〜2
0V程度のゲート電圧全、第1詐目の走査線にV。1、
第1番目の走査線にVG、S第n番目の走倉線にV。n
の順でそれぞれ印加する。又ある信号線1本について、
そのフf−ルドJtJl 間’rFn’信号をみると、
走査線全走査しているタイミングに同期させ、表示させ
る個所に、例えば、第1番目の個所ならばvDl、第1
番目の個所ならばvDl、第n番目の個所ならばvDn
の信号が信号線で最大15〜20V程度のドレイン(又
はソース)電圧を印加し、階調表示全行う場合はlO〜
20Vの範囲でその′1曵圧値に変化を持たせて印加し
ている。
An example using amorphous silicon TPT'fr will be described. Field period to scan one screen 'rFn+c
10 to 2 with a total pulse width corresponding to the number of scanning lines nK
The total gate voltage is about 0V, and the first scanning line is V. 1,
VG on the first scanning line, V on the Sth scanning line. n
Apply each in the following order. Regarding one signal line,
Looking at the 'rFn' signal between fields Jt and Jl,
Synchronize with the timing when all the scanning lines are scanned, and set the position to be displayed, for example, vDl for the first position, vDl for the first position,
vDl for the th location, vDn for the nth location
When applying a maximum drain (or source) voltage of about 15 to 20 V to the signal line and displaying all gradations, lO ~
The voltage is applied while varying the '1 pump pressure value within the range of 20V.

しかし彦がら、電界効果形液晶材を用いる場合、単一方
向の電界が長年月別わると液晶材特性の劣化が起きるた
め、液晶材の寿命を考えて、交番電界を液晶材に印加し
ている。このため、対向電極には前述のドレイン(又は
ソース)電圧のピーク値の1/2の値を共通対向電圧V
COMとして印加し、そのドレイン(又はソース)電圧
の基準レベルもVCOMと同一にしている。そして、次
のフィールド期間TFn+1では表示させる個所にタイ
ピング全台せて、前のフィールド期間TFnとけ逆VD
I + vDI+vDn’に:零にしている。その結果
、フィールド期間ごとに液晶には逆向きの電界が印加さ
れて表示していることに々す、表示をしない個所では対
向電極の共通対向電圧と、表示電極の信号1u圧(ドレ
インもしくはンース篭圧)とが一致して液晶には電界が
印加されない。
However, when using a field-effect liquid crystal material, the properties of the liquid crystal material will deteriorate if the electric field in a single direction changes over many years, so an alternating electric field is applied to the liquid crystal material in consideration of the lifespan of the liquid crystal material. . Therefore, the common counter voltage V
It is applied as COM, and the reference level of its drain (or source) voltage is also the same as VCOM. Then, in the next field period TFn+1, all the typing devices are placed in the display area, and the previous field period TFn is reversed.
I + vDI + vDn': set to zero. As a result, an electric field in the opposite direction is applied to the liquid crystal for each field period, and display is performed by applying an electric field in the opposite direction to the liquid crystal. (containment pressure) and no electric field is applied to the liquid crystal.

例えばn番目の走査線上のある信号線との交点に設けら
れた表示電極と静電容tを有する液晶材金倉した対向′
遁極間に発生する液晶印加電圧vLわは、TF’Tのス
イッチングによってl VDn  ’COM ’の絶対
値だけ充電されvLlとなる。TPTがOFFし念後も
、液晶側から見たCR時定数によって、VLoTri放
電して減衰するが、TF’TのOFF’低抗が10”Q
と高いことや液晶自体の抵抗も同程度の高抵抗であるこ
とによって、その時定数はフィールド期間で減衰か4割
程度に抑えられる値である。
For example, a display electrode provided at the intersection with a certain signal line on the n-th scanning line and a liquid crystal material having a capacitance t are placed opposite to each other.
The liquid crystal applied voltage vL generated between the fugitive electrodes is charged by the absolute value of l VDn 'COM' by the switching of TF'T and becomes vLl. Even after TPT is turned off, VLoTri is discharged and attenuated due to the CR time constant seen from the liquid crystal side, but the OFF' resistance of TF'T is 10"Q
Because the resistance of the liquid crystal itself is high, and the resistance of the liquid crystal itself is similarly high, the time constant is attenuated or suppressed to about 40% during the field period.

従来のアクティブマトリックス液晶表示素子は上述のよ
うに、液晶に交番電界を印加するのに、共通電極に信号
電圧のX/2 全印加17てぃた友め、駆′@電圧は実
効電圧の2倍必要である欠点金有していた。
As mentioned above, in conventional active matrix liquid crystal display elements, to apply an alternating electric field to the liquid crystal, the total application voltage is X/2 of the signal voltage to the common electrode. It had the disadvantage of being twice as expensive.

ところで、共通電極ても交番電圧全印加する方法が考え
られる。しかし、正負の交番電圧を用いるには、信号電
圧に正負の交番電圧金柑いる場合と同様、負の別電源が
必要となる欠点がある。別の方法として、負の別電源を
用いずに、第6図で示すLうに信号電圧となるドレイン
(もしくはノー、x)′Ilt圧VDI e ■D i
 p VDll YC7イーにド期間ごとに正の交番1
に圧とし、表示をONさせる時に逆電圧全印加させ、一
方の共通対向′電圧VCOMにも正の交番電圧全フィー
ルド周期ごと信号電圧とは逆の交番直圧全印加させて、
液晶に印加される実効電圧を高め1.駆動電圧を低下さ
せることが考えられる。しかし、この方法も、第1の走
査線上の駆動は上記の理想通りに液晶印加電圧vL工が
得られるが、第n番目の走査線上の液晶印加電圧vLn
Fi、前述のTPTのRo FF抵抗、液晶抵抗、液晶
容量、さらに別付加されることのあるストレージ容t々
どの効果はほとんど無く、対向電極の電位が第n番目の
走査後続いて直ちに逆向きに変化するために第6図のv
Loのごとく液晶印加電圧の幅が短かく、実効電圧が小
さくなり、液晶全ONさせることができ々込欠点がある
By the way, a method can be considered in which the entire alternating voltage is applied to the common electrode as well. However, using positive and negative alternating voltages has the disadvantage that a separate negative power supply is required, as in the case where the signal voltage uses positive and negative alternating voltages. As another method, without using a separate negative power supply, the drain (or no,
p VDll YC7E positive alternating 1 every de period
When the display is turned on, a full reverse voltage is applied, and a full alternating direct voltage opposite to the signal voltage is applied to one common opposing voltage VCOM every field period of a positive alternating voltage.
Increase the effective voltage applied to the liquid crystal.1. One possibility is to lower the driving voltage. However, in this method as well, the driving on the first scanning line can obtain the liquid crystal applied voltage vLn as ideally described above, but the liquid crystal applied voltage vLn on the n-th scanning line can be obtained.
Fi, the above-mentioned TPT Ro FF resistance, liquid crystal resistance, liquid crystal capacitance, and storage capacitors that may be added have almost no effect, and the potential of the counter electrode immediately reverses after the nth scan. V in Figure 6 to change
Like Lo, the width of the voltage applied to the liquid crystal is short, the effective voltage is small, and the liquid crystal cannot be turned on completely, which has the disadvantage of being impossible.

し九がって、従来の対向WXが1枚の共通電極であるア
クティブマトリックス液晶表示素子は多少の駆動方法の
変更では解決できない駆動電圧の問題が、その構造上不
可避であった。
Therefore, the conventional active matrix liquid crystal display element in which the opposing WX is a single common electrode has an unavoidable problem of driving voltage due to its structure, which cannot be solved by changing the driving method to some extent.

々お、従来のアクティブマトリックス表示素子の製造工
程において、上述のように対向基板406に設けられる
対向電極は、マトリックス基板401の全部の表示電極
405に対して共通に作用きせるため、表示面以上の領
域に全面ベタに設けられる。又、このためマトリックス
基板401と対向基板406との張り合せ工程において
は、表示電極405と対向X極407との目合せは行っ
てなく、対向電極407からマトリックス基板401ヘ
トランスフア電極を介して増出し電極へ接続する時にそ
のトラ/スフアミ極の目合せ全行う程度であっ友。
In addition, in the manufacturing process of the conventional active matrix display element, the counter electrode provided on the counter substrate 406 acts on all the display electrodes 405 of the matrix substrate 401 in common, as described above, so that the counter electrode is larger than the display surface. It is provided all over the area. Also, for this reason, in the process of bonding the matrix substrate 401 and the counter substrate 406, alignment between the display electrode 405 and the counter X pole 407 is not performed, and the electrodes are extended from the counter electrode 407 to the matrix substrate 401 via the transfer electrode. All you need to do is align the tiger/sphere electrodes when connecting them to the electrodes.

(発明が解決しようとする問題点) 上記のような構造及び製造方法のアクティブマトリック
ス液晶表示素子は、最良のコントラ、X)、視野角、階
調数を得るためには、駆動電圧金高くする必要があり、
したがって高電圧が得られる電源を必要とする欠点があ
った。所要電流は少ないため電圧が高くとも消費電力が
低い利点(1あるものの、旨電圧電源の使用は、ドライ
バーICへの、制約や、用いるバッテリーへの制約等が
発生し、トータル的かシステムの欠点となる。
(Problems to be Solved by the Invention) The active matrix liquid crystal display device having the above structure and manufacturing method requires a high driving voltage in order to obtain the best contrast, viewing angle, and number of gradations. There is a need,
Therefore, there was a drawback that a power source capable of obtaining high voltage was required. Since the required current is small, the power consumption is low even when the voltage is high (although there is one advantage, the use of a voltage power supply imposes restrictions on the driver IC, restrictions on the battery used, etc., and there are overall system disadvantages.) becomes.

又、負の別電源金柑いることもシステムの欠点となり、
その分だけ重電が増加するため、ハンドベルトのシステ
ムには不向である。
Also, the fact that there is a separate negative power source is also a drawback of the system.
This increases the amount of heavy electricity required, making it unsuitable for hand belt systems.

なお、これらの欠点を解決するためのアクティブマトリ
ックス液晶表示素子の構造は従来提案されておらず、又
、その製造方法も提案されていなか−)友。
It should be noted that a structure of an active matrix liquid crystal display element to solve these drawbacks has not been proposed so far, nor has a method of manufacturing the same been proposed.

(発明の目的) そこで、本発明の目的は液晶にかかる実効電圧を高めら
れ、駆動電圧を従来より低下できるアクティブマ) I
Jフックス晶表示素子及びその製造方法の提供にある。
(Object of the Invention) Therefore, the object of the present invention is to provide an active material that can increase the effective voltage applied to the liquid crystal and lower the driving voltage than before.
The present invention provides a J Fuchs crystal display element and a method for manufacturing the same.

(問題点を解決するtめの手段) 本願の第一の発明によれば、表示電極及び薄膜トランジ
スタ及び走査線と信号線とが各々マトリックス状九設け
られたマトリックス基板と、マトリックス基板の走査線
数nに対して、走査方向にn/x本分割され九対向電極
(x=1.2.3…、1゜でかつnを整数に割切れる数
)が設けられた対向基板との2枚の基板間に液晶材が充
填され几ことを特徴とするアクティブマトリックス液晶
表示素子が得られろ。
(Tth Means for Solving the Problem) According to the first invention of the present application, there is provided a matrix substrate in which nine display electrodes, thin film transistors, scanning lines, and signal lines are provided in a matrix, and a matrix substrate having nine scanning lines. For n, two opposing substrates are divided into n/x pieces in the scanning direction and provided with nine opposing electrodes (x = 1.2.3..., a number that is 1° and n can be divided into an integer). An active matrix liquid crystal display element characterized in that a liquid crystal material is filled between substrates can be obtained.

まt1本願の第2の発明によればアクティブマトリック
ス液晶表示素子の製造方法において、対向電極が設けら
れる対向基板上に、複数本に分割され九対向電極を設け
る工程と、表示電極及び薄膜トランジスタ及び走査線と
信号線とが各々マトリックスに設けられたマトリックス
基板と上記対向基板とを、マトリックス基板上の走査線
のパスラインを目合せに用いて、対向基板上の対向電極
ラインの間隙と上記バスラインとをほゞ一致させて張り
合せる工程とを有することを特徴とするアクティブマト
リックス液晶表示素子の製造方法が得られる。
According to the second invention of the present application, in the method for manufacturing an active matrix liquid crystal display element, the steps include: providing nine counter electrodes divided into a plurality of pieces on a counter substrate on which a counter electrode is provided; and a step of providing a display electrode, a thin film transistor, and a scanning electrode. A matrix substrate in which wires and signal lines are provided in a matrix, respectively, and the above-mentioned counter substrate are aligned between the gap between the counter electrode lines on the counter substrate and the above-mentioned bus line, using the pass line of the scanning line on the matrix substrate as alignment. There is obtained a method of manufacturing an active matrix liquid crystal display element, which comprises the step of laminating the substrates in substantially the same manner.

(作用) 本発明のアクティブマトリックス液晶表示素子では、上
記手段により、対向基板に設けられる対向電極を、マ)
 IJフックス板の走査線数を割り切れる数で割っ九本
数に分割して設は几こと1(より、表示電極と対向電極
とを互に逆向きの交番電圧で駆動することができ、かつ
、最後の第n番目の走査後、第1番目を走査しても第n
番目の液晶印加電圧はCRの時定数で保つことができる
。この結果、従来より液晶印加電圧全2倍に改善できる
(Function) In the active matrix liquid crystal display element of the present invention, the counter electrode provided on the counter substrate is
Divide the number of scanning lines of the IJ Fuchs plate by a divisible number and divide it into 9 lines. After the n-th scan, even if the first scan is performed, the n-th
The voltage applied to the liquid crystal can be maintained with the time constant of CR. As a result, the voltage applied to the liquid crystal can be improved by a total of twice that of the conventional one.

し友がって、本発明のアクティブマトリックス液晶表示
素子を用い友システムでは、低い電源電圧を用いること
が可能となり、通常の乾電池駆動ができ、ハンドベルト
のシステムが可能となる。
Therefore, in a system using the active matrix liquid crystal display element of the present invention, it is possible to use a low power supply voltage, and the system can be driven by a normal dry cell battery, making it possible to use a hand belt system.

又、表示を得る友めの、ドライバー回路も低電圧化でき
、ICの設計が極めて容易となる。
Further, the voltage of the driver circuit that obtains the display can also be reduced, making IC design extremely easy.

さらに、本発明のアクティブマトリックス液晶表示素子
の製造方法では、マ) IJフックス板と対向基板との
張り合せ工程において、マトリックス基板の走査線のパ
スラインを目合せに用い、対向基板上の対向電極ライン
の間隙と走査線のパスラインとをほぼ一致させて張り合
せることにより、表示電極に印加される電圧と対向電極
に印加される電圧とに、液晶に対する空間的な位相のず
れが生じ々い。又、この製造方法による目合せKは、走
査線が光を透過しない金属配線であることを利用して、
透過光による目合せが行なえる利点もある。し友がって
、従来の張り合せ工程を大幅に複雑にすることなく導入
することができる。
Furthermore, in the method for manufacturing an active matrix liquid crystal display element of the present invention, in the step of laminating the IJ Fuchs plate and the counter substrate, the pass line of the scanning line of the matrix substrate is used for alignment, and the counter electrode on the counter substrate is By aligning the line gaps and the scan line pass lines so that they almost match, a spatial phase shift with respect to the liquid crystal is unlikely to occur between the voltage applied to the display electrodes and the voltage applied to the counter electrode. . In addition, alignment K by this manufacturing method takes advantage of the fact that the scanning line is a metal wiring that does not transmit light.
Another advantage is that alignment can be performed using transmitted light. Therefore, it can be implemented without significantly complicating the conventional lamination process.

(実施例) 以下、本発明の実施例について、図面全参照して説明す
る。
(Example) Hereinafter, an example of the present invention will be described with reference to all the drawings.

(実施例1) 第1図は本願の第1の発明の実施例の構造全説明するt
めのアクティブマトリックス液晶表示素子の概略全斜視
図で示したものである。
(Example 1) Figure 1 illustrates the entire structure of the embodiment of the first invention of the present application.
1 is a schematic full perspective view of an active matrix liquid crystal display element.

第1図において、従来例と同様にマトリックス基板10
1上に走査線102及び信号線103が設けられており
、その交点近傍に薄膜トランジスタ(TPT)104が
設けられ、表示電極105と接続されて、それぞれマト
リックスに設ケラれている。このマトリックス基板10
1と対位して設けられ、複数水圧分割された対向電極1
07を有する対向基板106が、基板間知液晶材を封入
され、マトリックス基板101と封止剤で接着されてい
る。
In FIG. 1, like the conventional example, a matrix substrate 10
1, a scanning line 102 and a signal line 103 are provided, and a thin film transistor (TPT) 104 is provided near the intersection thereof, connected to a display electrode 105, and arranged in a matrix. This matrix substrate 10
A counter electrode 1 that is provided opposite to the counter electrode 1 and divided into a plurality of hydraulic pressure parts.
A counter substrate 106 having a substrate 07 is filled with a liquid crystal material between the substrates and is bonded to the matrix substrate 101 with a sealant.

ここで、対向電極はマトリックス基板上に設けられた走
査線数が400本であるため、400本に分割された分
割対向電極lo7である。分割対向電極107の長さは
表示面以上の長さ金有し工いる。又、分割対向電極10
7のを出し端子は対向基板106でなく、トランスファ
電極全弁してマトリックス基板101の走査線の増出し
端子とは反対側に設けられる場合もある。さらに、カッ
−表示のためのカラーフィルターが対向電極上もしくは
下に設けられる場合もある。
Here, since the number of scanning lines provided on the matrix substrate is 400, the counter electrode is a divided counter electrode lo7 divided into 400 lines. The length of the divided counter electrode 107 is longer than the display surface. Moreover, the divided counter electrode 10
The output terminal 7 may be provided not on the opposing substrate 106 but on the side of the matrix substrate 101 opposite to the scanning line extension terminal with all the transfer electrodes. Furthermore, a color filter for displaying a curl may be provided above or below the counter electrode.

表示を得るtめには、入力端子108よりビデオ信号を
入力し、ビデオ制御回路109で走査信号や、信号線に
印加する画像のサンプリング信号が作られることは従来
と同様であり、それぞれドライバーで処理を受けて、ゲ
ート電圧及びドレイン(又はソース)電圧としてマトリ
ックス内のTPTに印加されることも同様である。しか
し、従来一定の電圧を全面素に共通に印加していた対向
電極の電圧は、ここでは用いカい。対向電極信号112
はマトリックス基板101の走査線102の走査周期か
らのトリガーが受けられるものである。又、そのトリガ
ーによって信号を処理するシフトレジスターを有する対
向電極ドライバー113を介して分割対向電極107に
順次電圧が印加される。対向電極の走査と、マ) +3
ツクス基板101内の表示電極105の走査が同期して
いる。この結果、従来のように、走査線102と信号線
103とに選択され比表示電極1050個所で液晶の表
示を行うことができる。
To obtain a display, a video signal is input from the input terminal 108, and the video control circuit 109 generates a scanning signal and an image sampling signal to be applied to the signal line, as in the conventional case. Similarly, the TPTs in the matrix are subjected to processing and applied as gate and drain (or source) voltages. However, the voltage of the counter electrode, which conventionally applies a constant voltage to the entire surface of the element, is not used here. Counter electrode signal 112
can receive a trigger from the scanning period of the scanning line 102 of the matrix substrate 101. Further, by the trigger, a voltage is sequentially applied to the divided counter electrodes 107 via a counter electrode driver 113 having a shift register that processes signals. Scanning of the counter electrode and ma) +3
The scanning of the display electrodes 105 in the Tx substrate 101 is synchronized. As a result, liquid crystal display can be performed using the 1050 ratio display electrodes selected for the scanning line 102 and the signal line 103, as in the prior art.

ところで、本発明を実施し次アクティブマトリックス液
晶表示素子の場合、第2図に示すような信号が用いられ
、信号線に印加されるドレイン(又はソース)電圧はフ
ィールド周期ごとに交番し、分割対向電極に印加される
電圧は走査ごとにフィールド周期で交番する几め、第1
番目の走査線上の液晶印加電圧VLIも、i番目のVL
iも、最後のn番目のvLnも同じ実効電圧とすること
ができる。
By the way, in the case of an active matrix liquid crystal display device according to the present invention, a signal as shown in FIG. 2 is used, and the drain (or source) voltage applied to the signal line is alternated every field period, and The voltage applied to the electrodes is alternated with a field period for each scan;
The liquid crystal applied voltage VLI on the th scanning line is also
Both i and the last nth vLn can have the same effective voltage.

し友がって、従来より液晶に印加される実効電圧t−2
倍にすることができ、その分だけ駆動電圧全低下させる
ことができた。これによって、従来のドレイン電圧’j
i10〜20Vを5〜12Vにすることができ、通常の
乾電池動作を行うことができ友。又、ドレイン電流はゲ
ート電圧だけでなく、ドレイン電圧にも依存するから、
ドレイン電圧の実効値が高まった分だけゲート電圧をも
低電圧化できることになる。さらに、ドライバー回路に
用いられるICの低電圧化が行えることから、従来の最
大20Vの信号を処理するICに比べ、12Vの信号処
理のICの設計は非常釦容易である。
Therefore, conventionally the effective voltage t-2 applied to the liquid crystal
It was possible to double the number of drives, and the total drive voltage could be lowered by that amount. This reduces the conventional drain voltage 'j
It can convert 10~20V to 5~12V, allowing normal dry battery operation. Also, since the drain current depends not only on the gate voltage but also on the drain voltage,
As the effective value of the drain voltage increases, the gate voltage can also be lowered. Furthermore, since the voltage of the IC used in the driver circuit can be reduced, it is extremely easy to design an IC for processing 12V signals compared to conventional ICs that process signals of up to 20V.

又、分割対向電極の電位の交番はフィールド周期である
ため低周波でよい。
Furthermore, since the alternation of the potentials of the divided opposing electrodes is a field period, a low frequency may be used.

上記の場合マトリックス基板の走査線数と同数に対向電
極を分割しtが、液晶のOFF時の時定数と走査時間と
走査線数によっては、走査線数の半数程度に分割するな
ど分割数を変えることが可能である。
In the above case, the counter electrode is divided into the same number as the number of scanning lines on the matrix substrate, but depending on the time constant when the liquid crystal is turned off, the scanning time, and the number of scanning lines, the number of divisions may be changed, such as dividing it into about half the number of scanning lines. It is possible to change.

(実施例2) 第3図は本願の第2の発明の実施例の方法を説明するた
めのアクティブマトリックス液晶表示素子の製造方法の
張り合せを示す概略図で、(a)は素子の平面図の一部
を示したもの、(b)は素子の(a1図における破断線
上の素子の断面図の一部を示したものである。
(Example 2) FIG. 3 is a schematic diagram showing a method of manufacturing an active matrix liquid crystal display element for explaining the method of the embodiment of the second invention of the present application, and (a) is a plan view of the element. (b) shows a part of a cross-sectional view of the element on the broken line in figure a1 of the element.

第3図において、走査線302と信号線303とTFT
304と表示tWL30sとが設けられたマトリックス
基板301が、複数本に分割され次分割対向電極307
が設けられた対向基板306に対して、走査線端子(図
示せず)、信号線端子314及び対向電極端子315が
露出するよう忙重ね合せられている。この状態で光を照
射して素子を透かして見る。すると走査線は金属配線で
あるため光を透過せず黒い線状に見える。この黒い線と
なった走査線を目合せに用い、対向電極間隙317’i
それに一致するよういずれかの基板を移動させる。一致
した状態でいずれかの基板に塗布しておい次封止剤31
6を用いて側基板を接着させ張り合せる。々お、従来の
アクティブマトリックス液晶表示素子の製造方法と異る
点は、前述の張妙合せの工程に先立って、対同基板30
6に設ける対向電極を複数本に分割する工程が必要であ
るが、対向電極用導電性薄膜を形成後、周知のホトプロ
セス等を用いてバターニングすればよい。
In FIG. 3, a scanning line 302, a signal line 303, and a TFT
The matrix substrate 301 on which the display tWL 304 and display tWL30s are provided is divided into a plurality of pieces, and the next divided counter electrode 307
A scanning line terminal (not shown), a signal line terminal 314, and a counter electrode terminal 315 are stacked so as to be exposed on a counter substrate 306 provided with a counter substrate 306. In this state, light is irradiated to see through the element. Since the scanning line is a metal wiring, it does not transmit light and appears as a black line. Using this black scanning line for alignment, the opposing electrode gap 317'i
Move one of the boards to match it. Apply the sealant 31 to one of the substrates in a matched state, and then apply the sealant 31
6 to adhere and laminate the side substrates together. The difference from the conventional method of manufacturing an active matrix liquid crystal display element is that, prior to the above-mentioned bonding process, the substrate 30 is
Although a step of dividing the counter electrode provided in step 6 into a plurality of pieces is required, after forming the conductive thin film for the counter electrode, patterning may be performed using a well-known photo process or the like.

又、その他の製造工程は周知の従来技術と同じである。Further, the other manufacturing steps are the same as those of the well-known prior art.

以上のように本発明を実施し7’CW造方法は、走査線
と分割対向電極との目合せが容易であり、位置ずれが生
じないため、液晶に印加される電圧に位相ずれが生じな
い。又、この製造方法は非較的に容易な目合せで済むこ
とから、従来の基板張り合せ工程と比較し、トータルコ
スi上昇させることは極めて少々い。
As described above, in the 7'CW manufacturing method according to the present invention, alignment between the scanning line and the divided counter electrodes is easy, and no positional shift occurs, so no phase shift occurs in the voltage applied to the liquid crystal. . Furthermore, since this manufacturing method requires only relatively easy alignment, the total cost i increases very little compared to the conventional substrate bonding process.

(発明の効果) 以上詳細に説明したとおり、本発明のアクティブマトリ
ックス液晶表示素子では、駆動の低電圧化を計ることが
でき、通常の乾電池動作を容易にするものであり、かつ
乾電池程度の電圧でも、十分な液晶印加電圧の実効値が
得られる友め、表示特性も改善される。又、表示素子に
付属して設けられるドライバー回路のICも低電圧化で
きるtめ、その設計が容易とがる。さらに、従来より低
電圧電源で済むことや、2電源が必要でないことから、
ハンドベルトのシステム応用が容易となる。
(Effects of the Invention) As explained in detail above, the active matrix liquid crystal display element of the present invention can be driven at a low voltage, facilitates normal dry battery operation, and has a voltage comparable to that of a dry battery. However, since a sufficient effective value of the voltage applied to the liquid crystal can be obtained, the display characteristics are also improved. Furthermore, since the voltage of the driver circuit IC attached to the display element can be reduced, its design is easy. Furthermore, since it requires a lower voltage power supply than before and does not require two power supplies,
It becomes easier to apply the hand belt system.

又、本発明全実施し次製造方法では、表示素子の組立て
工程が容易であり、トータルコストヲ上昇させ力い。又
走査線と分割対向電極との位置すれが生じないため、生
産されるに水素子の表示は正確な表示や表示特性の良い
表示が得られる。
In addition, in the manufacturing method in which the present invention is fully implemented, the assembly process of the display element is easy, and the total cost does not increase. Further, since there is no misalignment between the scanning line and the divided counter electrode, accurate display and display with good display characteristics can be obtained for hydrogen atoms during production.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本願の第1の発明の実施例の構造全説明するた
めのアクティブマトリックス液晶表示素子の概略図、第
2図は本願の第1の発明全実施した表示素子に印加され
る信号全説明するチャート図、第3図は本願の第2の発
明の実施例の方法全説明する次めのアクティブマトリッ
クス液晶表示素子の製造方法の張り合せ工程を示す概略
図で、第4図は従来の一般的なアクティブマトリックス
液晶表示素子の構造を示す概略図、第5図及び第6図は
従来の表示素子に印加さハ、る信号のチャート図である
。第3図(alは表示素子の平面図の一部、(b)は(
alの破断線上で見た断面図の一部を示す模式図におい
て、101,301,401はマトリックス基板、10
2,302,402は走査線、103.303,403
は信号線、104,304゜404FiTFT、105
,305,405は表示電極、106,306,406
は対向基板、107゜307Fi分割対向電極、407
は対向電極、108゜408は入力端子、109,40
9はビデオ制御回路、112は対向電極信号、113は
対向電極ドライバー、311は信号線端子、315は対
向電極端子、3161’!封止剤、317は対向電極間
隙、410はX方向ドライバー、411はY方向ドライ
バー、412は共通対向電圧金それぞれ示す。 第 2I!I ニー 第 5 図
FIG. 1 is a schematic diagram of an active matrix liquid crystal display element for fully explaining the structure of an embodiment of the first invention of the present application, and FIG. FIG. 3 is a schematic diagram showing the bonding process of the next method of manufacturing an active matrix liquid crystal display element, which will be fully explained in accordance with the embodiment of the second invention of the present application, and FIG. A schematic diagram showing the structure of a general active matrix liquid crystal display element, and FIGS. 5 and 6 are charts of signals applied to the conventional display element. Figure 3 (al is a part of the plan view of the display element, (b) is (
In a schematic diagram showing a part of a cross-sectional view taken along a breaking line of al, 101, 301, 401 are matrix substrates;
2,302,402 is a scanning line, 103.303,403
is a signal line, 104,304°404FiTFT, 105
, 305, 405 are display electrodes, 106, 306, 406
is a counter substrate, 107°307Fi divided counter electrode, 407
is the counter electrode, 108°408 is the input terminal, 109,40
9 is a video control circuit, 112 is a common electrode signal, 113 is a common electrode driver, 311 is a signal line terminal, 315 is a common electrode terminal, 3161'! A sealant, 317 a gap between opposing electrodes, 410 an X-direction driver, 411 a Y-direction driver, and 412 a common counter voltage gold. 2nd I! I Knee Figure 5

Claims (1)

【特許請求の範囲】 1、表示電極及び薄膜トランジスタ及び走査線と信号線
とが各々マトリックス状に設けられたマトリックス基板
と、マトリックス基板の走査線数nに対して、走査方向
にn/x本分割された対向電極(x=1、2、3…、n
/2、でかつnを整数に割切れる数)が設けられた対向
基板との2枚の基板間に液晶材が充填されたことを特徴
とするアクティブマトリックス液晶表示素子。 2、アクティブマトリックス液晶表示素子の製造方法に
おいて、対向電極が設けられる対向基板上に、複数本に
分割された対向電極を設ける工程と表示電極及び薄膜ト
ランジスタ及び走査線と信号線とが各マトリックスに設
けられたマトリックス基板と上記対向基板とを、マトリ
ックス基板上の走査線のバスラインを目合せに用いて、
対向基板上の対向電極ラインの間隙と上記バスラインと
をほゞ一致させて張り合せる工程とを有することを特徴
とするアクティブマトリックス液晶表示素子の製造方法
[Claims] 1. A matrix substrate in which display electrodes, thin film transistors, scanning lines, and signal lines are each provided in a matrix, and the number n of scanning lines of the matrix substrate is divided into n/x lines in the scanning direction. counter electrode (x=1, 2, 3..., n
1. An active matrix liquid crystal display element, characterized in that a liquid crystal material is filled between two substrates, including a counter substrate provided with a number of n/2 and n divisible by an integer. 2. In the method for manufacturing an active matrix liquid crystal display element, a step of providing a counter electrode divided into a plurality of lines on a counter substrate on which a counter electrode is provided, and a step of providing a display electrode, a thin film transistor, a scanning line, and a signal line in each matrix. The matrix substrate and the opposing substrate are aligned using the bus line of the scanning line on the matrix substrate,
1. A method of manufacturing an active matrix liquid crystal display element, comprising the step of bonding the counter electrode lines on the counter substrate so that the gap between the counter electrode lines and the bus line substantially coincide with each other.
JP60264349A 1985-11-22 1985-11-22 Active matrix liquid crystal display element and its production Granted JPS62123427A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP60264349A JPS62123427A (en) 1985-11-22 1985-11-22 Active matrix liquid crystal display element and its production
EP86309136A EP0224388A3 (en) 1985-11-22 1986-11-21 Active matrix liquid crystal display device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60264349A JPS62123427A (en) 1985-11-22 1985-11-22 Active matrix liquid crystal display element and its production

Publications (2)

Publication Number Publication Date
JPS62123427A true JPS62123427A (en) 1987-06-04
JPH0473929B2 JPH0473929B2 (en) 1992-11-25

Family

ID=17401921

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60264349A Granted JPS62123427A (en) 1985-11-22 1985-11-22 Active matrix liquid crystal display element and its production

Country Status (2)

Country Link
EP (1) EP0224388A3 (en)
JP (1) JPS62123427A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0553136A (en) * 1991-06-13 1993-03-05 Oki Electric Ind Co Ltd Thin film transistor type liquid crystal display device
US6052104A (en) * 1995-07-12 2000-04-18 Lg Electronics Inc. Structure and operation method of LCD

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3069930B2 (en) * 1992-02-28 2000-07-24 キヤノン株式会社 Liquid crystal display
JPH05323365A (en) * 1992-05-19 1993-12-07 Casio Comput Co Ltd Active matrix liquid crystal display device
FR2693305B1 (en) * 1992-07-02 1994-09-30 Sagem Liquid crystal display device, active matrix.
EP0622655A3 (en) 1993-04-22 1995-09-13 Matsushita Electric Ind Co Ltd Display device, method of driving the same and projection-type display apparatus using the same.
JP2002278517A (en) * 2001-03-15 2002-09-27 Hitachi Ltd Liquid crystal display
US7760214B2 (en) * 2004-08-17 2010-07-20 Intel Corporation Inserting transitions into a waveform that drives a display
WO2014064863A1 (en) * 2012-10-22 2014-05-01 Necカシオモバイルコミュニケーションズ株式会社 Device for processing information, and method and program for managing chronological information

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2034953B (en) * 1978-10-25 1982-10-27 Sharp Kk Mos Fet Array drive for liquid crystal matrix display
US4455576A (en) * 1981-04-07 1984-06-19 Seiko Instruments & Electronics Ltd. Picture display device
GB2160346B (en) * 1984-06-12 1987-11-04 Stc Plc Active matrix display
FR2571526B1 (en) * 1984-08-22 1991-02-08 Canon Kk DISPLAY PANEL AND ITS CONTROL METHOD

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0553136A (en) * 1991-06-13 1993-03-05 Oki Electric Ind Co Ltd Thin film transistor type liquid crystal display device
US6052104A (en) * 1995-07-12 2000-04-18 Lg Electronics Inc. Structure and operation method of LCD

Also Published As

Publication number Publication date
EP0224388A3 (en) 1989-12-06
JPH0473929B2 (en) 1992-11-25
EP0224388A2 (en) 1987-06-03

Similar Documents

Publication Publication Date Title
US8384644B2 (en) Display device and driving apparatus
EP0661581A1 (en) Active matrix type liquid crystal display apparatus
CN107527599B (en) Scanning driving circuit, array substrate and display panel
US20050219196A1 (en) Liquid crystal display
US8228456B2 (en) Liquid crystal display and driving method thereof
US20110043498A1 (en) Active matrix substrate, liquid crystal panel, liquid crystal display device, liquid crystal display unit, and television receiver
US6897841B2 (en) Liquid crystal display device and electronic apparatus comprising it
EP1860639A1 (en) Display device
US20200183563A1 (en) Touch display panel and method for driving touch display panel
KR20110107659A (en) Liquid crystal display
US5745090A (en) Wiring structure and driving method for storage capacitors in a thin film transistor liquid crystal display device
JPH09269511A (en) Liquid crystal device, its driving method and display system
US5369512A (en) Active matrix liquid crystal display with variable compensation capacitor
JPS62123427A (en) Active matrix liquid crystal display element and its production
WO2011104947A1 (en) Liquid crystal display device, television receiver and display method employed in liquid crystal display device
US7859502B2 (en) Array substrate operable in dual-pixel switching mode, display apparatus having the same and method of driving the display apparatus
US20050140891A1 (en) Liquid crystal display device
US20110063260A1 (en) Driving circuit for liquid crystal display
EP1570311B1 (en) Active matrix display devices
US9001162B2 (en) Display apparatus
JP3637909B2 (en) Driving method of liquid crystal device
JPH09236790A (en) Liquid crystal display device and its drive method
US20020126081A1 (en) Liquid crystal display device and method for driving the same
KR100978255B1 (en) Liquid crystal display device and driving method thereof
JPS635324A (en) Active-matrix liquid crystal display element and its driving method

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term