JPS62123296A - Exhaust gas heat exchanging method - Google Patents

Exhaust gas heat exchanging method

Info

Publication number
JPS62123296A
JPS62123296A JP10786186A JP10786186A JPS62123296A JP S62123296 A JPS62123296 A JP S62123296A JP 10786186 A JP10786186 A JP 10786186A JP 10786186 A JP10786186 A JP 10786186A JP S62123296 A JPS62123296 A JP S62123296A
Authority
JP
Japan
Prior art keywords
exhaust gas
heat exchanger
heat transfer
corrosion
exchanger tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10786186A
Other languages
Japanese (ja)
Inventor
Hiroshi Kashiwagi
博 柏木
Iwao Sawada
沢田 磐雄
Kunihiko Minami
南 邦彦
Hiroshi Fukada
博 深田
Mitsuhiro Watanabe
光弘 渡辺
Minoru Uemura
植村 実
Keiichi Akaeda
赤枝 敬一
Sosaburo Ebihara
蛯原 荘三郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sasakura Engineering Co Ltd
Original Assignee
Sasakura Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sasakura Engineering Co Ltd filed Critical Sasakura Engineering Co Ltd
Publication of JPS62123296A publication Critical patent/JPS62123296A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F21/00Constructions of heat-exchange apparatus characterised by the selection of particular materials
    • F28F21/08Constructions of heat-exchange apparatus characterised by the selection of particular materials of metal
    • F28F21/081Heat exchange elements made from metals or metal alloys
    • F28F21/086Heat exchange elements made from metals or metal alloys from titanium or titanium alloys

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)

Abstract

PURPOSE:To enable stable recovery of heat from high temperature corrosive atmosphere exhaust gas, containing sodium sulfate and sodium carbonate, or potassium sulfate in a sodium recovery boiler for a long time, by a method wherein heat transfer tubes made of Ti or a heat transfer tubes made of a Ti based alloy, e.g., Ti-Pd, are used. CONSTITUTION:Exhaust gas, e.g., SOX, H2S and HCl, produced resulting from analysis of black liquid and partial combustion and containing sodium sulfate and sodium carbonate, or dust, e.g., potassium sulfate, is introduced to a heat exchanger 4. A heat transfer tube bundle 9, spanned between two headers 10 and 11 of a heat exchanger, is formed with heat transfer tubes, made of Ti or a Ti radical alloy, e.g., Ti-Pd, and this constitution results in remarkable prevention of the occurrence of usual corrosion by SOX and H2S through the presence of sodium sulfate and sodium carbonate or potassium sulfate, and in the possibility to use the heat transfer tube for a long time. Further, this constitution can reduce gap corrosion, occurring at a gap between the tubes and the two headers 10, 11 or a support plate 12 when steam is condensed on the surface of the heat transfer tube on the low temperature side, corrosion, occurring as a result of condensate producing an HCl solution, and corrosion on the high temperature side due to the use of a heat transfer tube made of Ti based alloy, e.g., Ti-Pd, and permits decrease of a rise in a price.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は製紙、パルプ製造の際のソーダ回収ボイラにお
ける排熱回収に際して、硫酸ナトリウム及び炭酸ソーダ
又は硫酸カリウムを含む高温の腐食雰囲気排ガスから長
期にわたって安定して熱回収を実施できる熱交換方法に
関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention is used to recover waste heat in a soda recovery boiler during paper and pulp manufacturing, and to recover waste heat from high-temperature corrosive atmosphere exhaust gas containing sodium sulfate, soda carbonate, or potassium sulfate for a long period of time. The present invention relates to a heat exchange method that can perform stable heat recovery over a long period of time.

〔従来の技術〕[Conventional technology]

一般に製紙、バルブ製造では、木材チップを蒸解釜で苛
性ソーダと硫化ソーダよりなる蒸解液で加熱し、次いで
パルプと黒液とに分離しているが、この黒液は有機物を
多く含み、また無機物の有価成分を回収するため、多重
効用缶で濃縮した後、ソーダ回収ボイラで燃焼し、有価
成分とともに排熱も回収している。
Generally, in paper and valve manufacturing, wood chips are heated in a digester with a cooking liquor consisting of caustic soda and soda sulfide, and then separated into pulp and black liquor, but this black liquor contains many organic substances and In order to recover the valuable components, it is concentrated in a multi-effect canister and then burned in a soda recovery boiler, recovering the waste heat as well as the valuable components.

〔発明が゛解決しようとする問題点〕[Problem that the invention seeks to solve]

しかし黒液には硫酸塩、塩化物等が含まれていることか
ら、ソーダ回収ボイラの伝熱管の腐食は避けられないも
のであった。すなわち、燃焼排ガスの温度は通常150
℃〜200℃で有り、この排ガスの保有熱を回収利用す
れば、燃焼の省エネルギー化を図ることができるが、該
排ガス中にはSOx、ICE 、l1sS等の腐食性ガ
スが含まれており、低温になればIlz SOx 、 
)IC1等が凝縮水に溶解するため、該排ガスの熱回収
を行なうためにはHzSO+やHClに対して耐食性の
ある材料を使用しなければならない問題があった。
However, since black liquor contains sulfates, chlorides, etc., corrosion of the heat exchanger tubes of soda recovery boilers was unavoidable. That is, the temperature of combustion exhaust gas is usually 150
℃ to 200℃, and if the heat retained in this exhaust gas is recovered and used, it is possible to save energy during combustion, but the exhaust gas contains corrosive gases such as SOx, ICE, and 11S. When the temperature becomes low, Ilz SOx,
) Since IC1 and the like are dissolved in condensed water, there is a problem in that in order to recover heat from the exhaust gas, a material that is resistant to corrosion by HzSO+ and HCl must be used.

この為、従来該排ガスの熱回収装置は伝熱管材料として
1125O4に強い鉛二重管(鉛そのものは強度がない
ため、ステンレス鋼等のパイプの表面に鉛を被覆した管
)、又はガラス管等が使用されていた。
For this reason, conventional exhaust gas heat recovery equipment uses heat transfer tubes such as double-lead tubes that are resistant to 1125O4 (lead itself is not strong, so the surface of the pipe is coated with lead, such as stainless steel), or glass tubes. was used.

しかし、前者の鉛は、I11水溶液やアルカリ水に対し
て耐食性がないこと、170°C以上の温度では耐クリ
ープ性がないこと、重量が重いことなどの欠点があり、
また、後者のガラス管では強度的に弱く、且つ重量が重
い等の問題があった。
However, the former lead has disadvantages such as lack of corrosion resistance against I11 aqueous solution and alkaline water, lack of creep resistance at temperatures above 170°C, and heavy weight.
Further, the latter glass tube has problems such as low strength and heavy weight.

本発明は、このようなSOx 、 1Icj’やHls
等の腐食性ガス以外に硫酸ナトリウム及び炭酸ソーダ又
は硫酸カリウムを含む高温排ガス雰囲気において、耐食
性があり実用性のある排ガス熱交換方法を提供するもの
である。
The present invention is applicable to such SOx, 1Icj' and Hls
The present invention provides a corrosion-resistant and practical exhaust gas heat exchange method in a high-temperature exhaust gas atmosphere containing sodium sulfate, sodium carbonate, or potassium sulfate in addition to corrosive gases such as.

(問題を解決するための手段及び作用・効果〕本発明者
らは実験により、腐食性ガスであるSOx 、 IIc
βの雰囲気下ではほとんど使用に耐えられない金属材料
が、硫酸ナトリウム及び炭酸ソーダ又は硫酸カリウムを
含む黒液燃焼ダストの存在により腐食の進行が著しく抑
制され、とくにTiや、Ti−Pd等のTi基合金の材
料においては、腐食の程度が硫酸ナトリウム及び炭酸ソ
ーダ又は硫酸カリウムの存在によって一層減少すること
を確認することができた。
(Means for Solving the Problem and Actions/Effects) Through experiments, the present inventors found that SOx, IIc, which is a corrosive gas,
The progress of corrosion of metal materials, which are almost unusable in β atmosphere, is significantly suppressed by the presence of black liquor combustion dust containing sodium sulfate, soda carbonate, or potassium sulfate. In the base alloy material, it was confirmed that the degree of corrosion was further reduced by the presence of sodium sulfate and sodium carbonate or potassium sulfate.

この腐食試験として各種金属材料のテストピースを、H
λSO+ 60%の水ン容液(A?夜)と、!+、So
今60%濃度の水溶液50%に黒液燃焼ダスト50%を
加えた溶液くB液)と、JSO+ 60%濃度の水溶液
71%に黒液燃焼ダスト29%を加えた溶液(C液)と
、更に、112s0460%の水溶液71%に硫酸ナト
リウム及が硫酸カリウムの混合物を29%加えた溶液(
D液)に浸漬し、80℃及び100°Cの温度における
腐食量を求めた。
For this corrosion test, test pieces of various metal materials were
λSO+ 60% water solution (A? night) and! +, So
A solution (solution B) in which 50% black liquor combustion dust was added to 50% aqueous solution with a concentration of 60%, and a solution (solution C) in which 29% black liquor combustion dust was added to a 71% aqueous solution with a JSO+ 60% concentration. Furthermore, a solution prepared by adding 29% of a mixture of sodium sulfate and potassium sulfate to a 71% aqueous solution of 112s0460% (
D) and the amount of corrosion at temperatures of 80°C and 100°C was determined.

その結果、25時間後の腐食ff1(+u/Y)は下表
のとおりであった。
As a result, the corrosion ff1 (+u/Y) after 25 hours was as shown in the table below.

C以下余白〕 ここで上記テストピースのうちrTi−Pd合金裂テス
トピース」は、Ti−Pd ASTMグレード7であり
、また、r Tii テ、2. )ピース」は、Ti 
ASTMグレード2である。
Margin below C] Here, among the above test pieces, the rTi-Pd alloy crack test piece is Ti-Pd ASTM grade 7, and r Tii Te, 2. ) Peace” is Ti
ASTM grade 2.

これらの腐食実験の結果より、Ti、及びTi基合金は
、硫酸の水溶液では可成り腐食されるが、この硫酸水溶
液に更に硫酸すI・リウム及び炭酸ソーダを含む黒液燃
焼ダストを加えた場合(B液及びC液)、及び硫酸ナト
リウムと硫酸カリウムとを加えた場合(D液)には、腐
食量が著しく減少するものであることが判った。
The results of these corrosion experiments show that Ti and Ti-based alloys are considerably corroded by an aqueous solution of sulfuric acid, but when black liquor combustion dust containing lithium sulfate and soda carbonate is added to this aqueous sulfuric acid solution, It was found that the amount of corrosion was significantly reduced when sodium sulfate and potassium sulfate were added (solutions B and C) and when sodium sulfate and potassium sulfate were added (solution D).

そこで本発明は、硫酸ナトリウム及び炭酸ソーダ又は硫
酸カリウムを含む高温排ガス雰囲気での、排ガス熱交換
装置として、Tit!の伝熱管又はTi−Pd等のTi
基合金製の伝熱管を使用することを提案するものである
Therefore, the present invention provides Tit! as an exhaust gas heat exchange device in a high temperature exhaust gas atmosphere containing sodium sulfate and sodium carbonate or potassium sulfate. Ti heat exchanger tube or Ti-Pd etc.
It is proposed to use heat exchanger tubes made of base alloys.

すなわち、Ti金屈、及びTi−Pd等のTi基合金は
、黒液を燃焼分解して無機物を炭酸ソーダと硫化ソーダ
として回収し、有機物の燃焼生成熱を蒸気として回収す
る際に、排ガス中にSOx 、Has等の腐食成分が含
まれていたとしても、前記実験の通り硫酸ナトリウム及
び炭酸ソーダ又は硫酸カリウムの存在によって腐食の進
行が著しく抑制されるものであるから、材質SUSでは
腐食量が大きくて実用できなかった排ガス熱交換器に、
Ti調の伝熱管又はTi−Pd等のTi基合金製の伝熱
管を採用することにより、硫酸環境中における伝熱管の
腐食の進行を遅延させ、装置の寿命を、前記従来の場合
よりも遥かに長く保つことができるのである。
In other words, Ti-based alloys such as Ti-based alloys and Ti-Pd burn and decompose black liquor to recover inorganic substances as soda carbonate and soda sulfide, and when recovering the heat produced by combustion of organic substances as steam, Even if the material contains corrosive components such as SOx and Has, the progress of corrosion is significantly suppressed by the presence of sodium sulfate, soda carbonate, or potassium sulfate, as shown in the above experiment. For exhaust gas heat exchangers that were too large to be put into practical use,
By adopting a Ti-tone heat exchanger tube or a heat exchanger tube made of a Ti-based alloy such as Ti-Pd, the progression of corrosion of the heat exchanger tube in a sulfuric acid environment is delayed, and the life of the equipment is extended much longer than in the conventional case. It can be kept for a long time.

しかし、Ti−Pd等のTi基合金は、前記Ti及びT
i−Pd合金盟テスl−ピースの腐食試験で判るように
、高温時における耐腐食性が、Tiよりも悪いものであ
る。
However, Ti-based alloys such as Ti-Pd
As can be seen from the corrosion test of the i-Pd alloy test l-piece, its corrosion resistance at high temperatures is worse than that of Ti.

一方、Tiは、Ti−Pd等のTi基合金よりも硫酸ナ
トリウム及び炭酸ソーダ又は硫酸カリウムを含む排ガス
に対する耐腐食性が高温時においても優れており、且つ
、Ti基合金よりも可成り高価であるが、Tiは、II
Cjl!を含む溶液の場合には、前記Ti基合金よりも
隙間腐食(伝熱管と当該伝熱管の両端に対する管板との
間の隙間、又は、前記伝熱管と当該伝熱管の中程部を支
持する支持板との間の隙間に発生する腐食)を起し易く
、また、硫酸ナトリウム及び炭酸ソーダ又は硫酸カリウ
ムを含む排ガス中においてもHiに対する耐食性が悪い
ものである。これに反し、Ti−Pd合金は、II(l
を含む溶液中におりる耐食性はTiよりも優れており、
本発明者等は経験より、腐食性ガスであるSOx、HC
ρの凝縮雰囲気のもとでも前記Tiよりも耐食性及び耐
隙間腐食が優れていることが確認できた。
On the other hand, Ti has better corrosion resistance against exhaust gases containing sodium sulfate, soda carbonate, or potassium sulfate than Ti-based alloys such as Ti-Pd, even at high temperatures, and is considerably more expensive than Ti-based alloys. There is, but Ti is II
Cjl! In the case of a solution containing Corrosion that occurs in the gap between the support plate and the support plate is likely to occur, and corrosion resistance against Hi is poor even in exhaust gas containing sodium sulfate, soda carbonate, or potassium sulfate. On the contrary, Ti-Pd alloys have II(l
The corrosion resistance in solutions containing Ti is superior to that of Ti,
The inventors have learned from experience that corrosive gases such as SOx and HC
It was confirmed that the corrosion resistance and crevice corrosion resistance were superior to that of Ti even in a condensed atmosphere of ρ.

従って、前記の熱回収に使用するχ、eでの伝熱管をT
iff1にすることは、伝熱管群のうち低温側において
伝熱管の表面に水が凝縮した場合において、この凝縮水
には排ガス中のIll!が溶解していることによって、
]’ i 5の伝熱管について隙間腐食が発生ずるおそ
れがあると共に、当該Ti製の伝熱管についてのIli
によるF!1食が大きくなる。
Therefore, the heat exchanger tube at χ and e used for heat recovery is T
Setting iff1 means that when water condenses on the surface of the heat exchanger tubes on the low temperature side of the heat exchanger tube group, this condensed water contains Ill! in the exhaust gas. Due to the dissolution of
]' There is a possibility that crevice corrosion may occur in the heat exchanger tube made of i5, and
by F! One meal becomes big.

この問題に対して他の発明は、硫酸ナトリウム及び炭酸
ソーダ又は硫酸カリウムを含む高温排ガス雰囲気からの
3!ハ回収する場合に、その高温側にはTi梨の伝熱管
を使用し、低温側にはTi−r’d等のTi基合金製の
伝熱管を使用することを提案するものである。
Other inventions have addressed this problem in that 3! In the case of recovery, it is proposed to use a heat exchanger tube made of Ti on the high temperature side and a heat exchanger tube made of Ti-based alloy such as Ti-r'd on the low temperature side.

このように構成すると、熱回収のための総ての伝熱管に
、Ti−Pd等のTi基合金製の伝熱管を1史用するこ
とに伴う価洛の上界を、低温側における伝熱管のみにT
i−Pd等のTi基合金製の伝熱管を使用することによ
って回避できる一方、総ての伝熱管にTi盟の伝j:J
、5管を使用することに伴う低温側における隙間腐食及
びlIC7!による腐食を、高温側における伝熱管のみ
にTi−Pd等のTi基合金製の伝熱管を使用すること
によって低減できるのであり、また、高温側における伝
熱管にTilの伝熱管を使用することにより、高温側で
の排ガスによる腐食を低減できるのである。
With this configuration, the upper bound of the value associated with the use of heat exchanger tubes made of a Ti-based alloy such as Ti-Pd as all heat exchanger tubes for heat recovery can be reduced to Only T
While this can be avoided by using heat exchanger tubes made of Ti-based alloys such as i-Pd, all heat exchanger tubes are
, crevice corrosion on the low temperature side due to the use of 5 tubes and lIC7! corrosion can be reduced by using a Ti-based alloy heat exchanger tube such as Ti-Pd only for the heat exchanger tube on the high temperature side, and by using a Til heat exchanger tube for the heat exchanger tube on the high temperature side. Therefore, corrosion caused by exhaust gas on the high temperature side can be reduced.

その結果、(云熱管の耐久性をより向上できると共に、
安価に提供できるのである。
As a result, (the durability of the heat tube can be further improved,
It can be provided at low cost.

〔実施例〕〔Example〕

第1図はソーダ回収ボイラのフローシートであり、固形
分50〜50%を含むa縮黒液は管1よりソーダ回収ボ
イラ2に導入噴射され、黒液滴は燃焼排ガスにより浮遊
状態で乾燥を受けつつ落下し、はとんど固形分のみチャ
ーと称する状態となって炉底に達する。このとき粒径が
小さいと無1次分はフライアッシュとして排ガス中に持
し去られ、ダスト障害をおこし、逆に過大のときは乾燥
不十分の状態で炉底に到るので、炉床の温度が低下し、
燃焼は不安定となってソーダ還元率は低下するから、適
正な粒径の維持が重要である。更に硫酸ナトリウムを還
元するためには炉床附近では空気は不足状態とし、炉上
部では過剰となるように特殊な操作が必要である。
Figure 1 is a flow sheet of a soda recovery boiler. A reduced black liquor containing 50 to 50% solids is introduced into the soda recovery boiler 2 through pipe 1 and is injected, and the black droplets are dried in a suspended state by the combustion exhaust gas. It falls while receiving the char, and reaches the bottom of the furnace in a state called char, where only the solid content remains. At this time, if the particle size is small, the non-primary particles will be carried away as fly ash in the exhaust gas, causing dust problems, and if the particle size is too large, it will reach the bottom of the hearth in an insufficiently dry state, resulting in drying of the hearth. temperature drops,
It is important to maintain an appropriate particle size because combustion becomes unstable and the soda reduction rate decreases. Furthermore, in order to reduce sodium sulfate, a special operation is required so that there is insufficient air near the hearth and excess air in the upper part of the furnace.

このようにして燃焼した黒液は有機分が燃焼生成熱とな
り、ポンプ3から導入したボイラ用給水は熱交換器4を
経てボイラ2に供給され、発生蒸気は管5から所定の箇
所へ送出され、燃焼排ガスは電気収U機6でダストが除
かれたのちブロア7を経て熱交換器11に入り、ボイラ
給水を加熱し、自らは冷却され煙突8より大気へ放出さ
れる。
The organic content of the black liquor burned in this way becomes the heat produced by combustion, the boiler feed water introduced from the pump 3 is supplied to the boiler 2 via the heat exchanger 4, and the generated steam is sent out from the pipe 5 to a predetermined location. After the dust is removed from the combustion exhaust gas by the electric collecting unit 6, it passes through the blower 7 and enters the heat exchanger 11, which heats the boiler feed water, which is then cooled and released into the atmosphere from the chimney 8.

上記の装置において、ソーダ回収ボイラて濃縮黒液が燃
焼分解し、無機分を炭酸ソーダソーダと硫化ソーダとし
て回収するとともに有機分の燃焼生成熱を蒸気として回
収する際に黒液の分解と一部燃焼により硫酸ナトリウム
及び炭酸ソーダ又は硫酸カリウム等のダス1−を含むS
Ox、Has及びIIc/!等の排ガスは、前記熱交換
器4に導入される。
In the above equipment, the concentrated black liquor is combusted and decomposed in the soda recovery boiler, and the inorganic components are recovered as soda carbonate and soda sulfide, and the heat produced by combustion of the organic components is recovered as steam. S containing das 1- such as sodium sulfate and sodium carbonate or potassium sulfate by combustion
Ox, Has and IIc/! The exhaust gases such as the above are introduced into the heat exchanger 4.

そして、前記熱交換器4において、両管板10゜11間
に装架された伝熱管束9を、Tieの伝熱管を多数本配
設したものに構成するか、Ti−Pd等のTi基会合金
製伝熱管を多数本配設したものに構成することにより、
SOx 、H!Sによる通常の腐食が更に硫酸す1−リ
ウム及び炭酸ソーダ又は硫酸カリウムの存在によって著
しく抑制され、Ti製の伝熱管又はTi−Pd等の゛r
i基合金製伝熱管の使用は、前記腐食防止に有効な硫酸
ナトリウム及び炭酸ソーダ又は硫酸カリウムを含むダス
トの存在と相俟って長期間の使用が可能となるのである
。なお、図中符号12は、各伝熱管の中程部を支持する
支持板を示す。
In the heat exchanger 4, the heat exchanger tube bundle 9 installed between the tube plates 10 and 11 is configured to have a large number of Tie heat exchanger tubes, or is made of a Ti base such as Ti-Pd. By configuring a large number of alloy heat exchanger tubes,
SOx,H! The normal corrosion caused by S is further significantly inhibited by the presence of sodium sulfate and sodium carbonate or potassium sulfate, and the
The use of heat exchanger tubes made of i-based alloys, together with the presence of dust containing sodium sulfate, sodium carbonate, or potassium sulfate, which are effective in preventing corrosion, enables long-term use. Note that reference numeral 12 in the figure indicates a support plate that supports the middle portion of each heat exchanger tube.

また、他の実施例においては、前記F1ハ交換器4にお
ける伝熱管束9を、第3図に示すように当該熱交換器4
に対する排ガスの入口4aに近い高温側における伝熱管
束9aと、排ガスの出口4bに近い低温側における伝熱
管束9bとに分けて、高温側の伝熱管束9aにおける各
伝熱管をTi製の伝熱管に、低温側の伝熱管束9bにお
ける各伝熱管をTi−Pd等のTi基会合金製伝熱管に
て各々構成する。
In another embodiment, the heat exchanger tube bundle 9 in the F1 exchanger 4 is replaced with the heat exchanger tube bundle 9 in the heat exchanger 4 as shown in FIG.
The heat exchanger tube bundle 9a on the high temperature side near the exhaust gas inlet 4a and the heat exchanger tube bundle 9b on the low temperature side near the exhaust gas outlet 4b are divided, and each heat exchanger tube in the heat exchanger tube bundle 9a on the high temperature side is made of Ti. Each of the heat exchanger tubes in the heat exchanger tube bundle 9b on the low temperature side is constructed of a Ti-based alloy heat exchanger tube such as Ti-Pd.

このように構成することにより、伝熱管束9における総
ての伝熱管に、Ti−Pd等のTi基会合金製伝熱管を
使用することに伴う価格の上昇を回避できると共に、低
温側において伝熱管の表面で蒸気が凝縮した場合に両管
板10.11及び支持IFi 12との間の隙間に起こ
る隙間腐食、並びにこの凝縮水が11Cβ熔液になるこ
とによって発生する腐食を低減できる一方、伝熱管束に
おける全部の伝熱管に、Ti−r’d等のTi基会合金
製伝熱管を使用することによる高温側での腐食を低減で
きるのである。
With this configuration, it is possible to avoid the increase in price associated with using Ti-based alloy heat exchanger tubes such as Ti-Pd for all the heat exchanger tubes in the heat exchanger tube bundle 9, and it is possible to avoid the increase in price due to the use of Ti-based alloy heat exchanger tubes such as Ti-Pd. While it is possible to reduce crevice corrosion that occurs in the gap between both tube sheets 10.11 and the support IFi 12 when steam condenses on the surface of the heat tube, and corrosion that occurs when this condensed water becomes 11Cβ melt, Corrosion on the high temperature side can be reduced by using Ti-based alloy heat exchanger tubes such as Ti-r'd for all the heat exchanger tubes in the heat exchanger tube bundle.

また、高温側の伝熱管束9aに対する支持板及び管機を
Tipに、低温側の伝熱管束9bに対する支持板及び管
機をTi−Pd等のTi基合金裂にすることにより、価
格の上昇をより低減できると共に、支持板及び青天の耐
腐食性をも向上することができる。
In addition, by using Tip as the support plate and tube machine for the heat exchanger tube bundle 9a on the high temperature side, and using a Ti base alloy such as Ti-Pd as the support plate and tube machine for the heat exchanger tube bundle 9b on the low temperature side, the price can be increased. It is possible to further reduce the corrosion resistance, and also improve the corrosion resistance of the support plate and the blue sky.

【図面の簡単な説明】[Brief explanation of drawings]

図は本発明の実施例であって、第1図はそのフローシー
ト、第2図は熱交換器の縦断正面図、第3図は他の実施
例による熱交換器の縦断正面図である。 1・・・・管、2・・・・ソーダ回収ボイラ、3・・・
・ポンプ、熱交換器、5・・・・管、6・・・・電気収
塵機、7・・・・ブロア、8・・・・煙突、9・・・・
伝熱管束、9a・・・・高温側伝熱管束、9b・・・・
低温側伝熱管束。 特許出願人  株式会社 笹倉機械傅作所手得7ぞ市正
書”(自発)1 昭和61年 6月 5日 特許庁長官 宇 賀 道 rIB  殿1、$171の
表示 特廓昭61−107861号 2、発明の名称 排ガス熱交換方法 3、補正をする者 事件との関係     特 許 出 朝 人住所   
        大阪市西淀用区御幣島6丁目7番5号
名称          株式会社 ′r!1倉鍜械製
作所明   細   書 6、補正の内容 手蹟?l1li正書(自発) 昭和61年 6月30日 特唾昭61−107861号 2、発明の名称 排ガス熱交換方法 3、補正をする打 事件との関係     特 許 出 顎 人住所   
       大阪市西淀用区御幣島6丁目7番5号名
称           株式会社 笹倉機械製作所明
   細   書 6、補正の内容 (1)、願書に最初に添付した明細書、第11頁6行目
「収塵機」を「集塵機」に訂正する。 (2)、同上、第13頁13行目の後に次の文章を加入
する。 [なお、本発明は、硫酸ナトリウム及び炭酸ソーダを含
む高温排ガス雰囲気において、Ti又はTi基合金の伝
熱管を使用する排ガス熱交換方法であるから、熱交換器
の伝熱管として、伝熱管の外面Ti又はTt基合金であ
り、内面が鋼管又はステンレス鋼管の二重管を使用する
ことで、伝熱管の外面に高温の排ガスを、内面にボイラ
給水を各々供給するようにしても良く、このようにすれ
ば、伝熱管の総てをTi又はTi基合金よりも、強度面
において優れ、しかも、伝熱管を安価に農作できる利点
がある。」 (3)、同上、第13頁20行目「収塵機」を「集塵機
」に訂正する。
The figures show an embodiment of the present invention; FIG. 1 is a flow sheet thereof, FIG. 2 is a longitudinal sectional front view of a heat exchanger, and FIG. 3 is a longitudinal sectional front view of a heat exchanger according to another embodiment. 1...Pipe, 2...Soda recovery boiler, 3...
・Pump, heat exchanger, 5...pipe, 6...electric dust collector, 7...blower, 8...chimney, 9...
Heat exchanger tube bundle, 9a...High temperature side heat exchanger tube bundle, 9b...
Low temperature side heat exchanger tube bundle. Patent Applicant Sasakura Kikai Fusakusho Co., Ltd. Tetoku 7 Zoshi Seisho” (Spontaneous) 1 June 5, 1985 Commissioner of the Patent Office Michi Uga rIB Tono 1, $171 Indication Special Shop No. 1988-107861 2. Name of the invention Exhaust gas heat exchange method 3. Relationship with the case of the person making the amendment
6-7-5 Goheijima, Nishiyodo-ku, Osaka City Name: 'r! 1 Kuramaki Seisakusho Specification Book 6, Contents of the amendment? l1li official manuscript (spontaneous) June 30, 1985 Tokushi Shou 61-107861 No. 2, title of the invention Exhaust gas heat exchange method 3, relationship with the amendment case Patent Issue Person Address
6-7-5 Goheijima, Nishiyodo-ku, Osaka City Name: Sasakura Machinery Works Co., Ltd. Specification Document 6, Contents of Amendment (1), Specification originally attached to the application, page 11, line 6, “Dust collector " should be corrected to "dust collector." (2), same as above, add the following sentence after page 13, line 13. [In addition, since the present invention is an exhaust gas heat exchange method using a Ti or Ti-based alloy heat exchanger tube in a high-temperature exhaust gas atmosphere containing sodium sulfate and soda carbonate, the outer surface of the heat exchanger tube is used as a heat exchanger tube of a heat exchanger. By using a double tube made of Ti or Tt-based alloy and having a steel tube or stainless steel tube on the inner surface, high temperature exhaust gas may be supplied to the outer surface of the heat transfer tube and boiler feed water to the inner surface. This has the advantage that all of the heat exchanger tubes are superior in strength to Ti or Ti-based alloys, and the heat exchanger tubes can be produced at low cost. (3), same as above, page 13, line 20, ``dust collector'' is corrected to ``dust collector''.

Claims (9)

【特許請求の範囲】[Claims] (1)、硫酸ナトリウム及び炭酸ソーダを含む高温排ガ
ス雰囲気において、Ti製の伝熱管又はTi基合金製の
伝熱管を使用することを特徴とする排ガス熱交換方法。
(1) An exhaust gas heat exchange method characterized by using a heat exchanger tube made of Ti or a heat exchanger tube made of a Ti-based alloy in a high-temperature exhaust gas atmosphere containing sodium sulfate and soda carbonate.
(2)、高温排ガス雰囲気が製紙用ソーダ回収ボイラか
らの排ガスである特許請求の範囲第1項記載の排ガス熱
交換方法。
(2) The exhaust gas heat exchange method according to claim 1, wherein the high-temperature exhaust gas atmosphere is exhaust gas from a soda recovery boiler for paper manufacturing.
(3)、Ti基合金製の伝熱管がTi−Pd合金製の伝
熱管である特許請求の範囲第1項記載の排ガス熱交換方
法。
(3) The exhaust gas heat exchange method according to claim 1, wherein the heat exchanger tube made of a Ti-based alloy is a heat exchanger tube made of a Ti-Pd alloy.
(4)、硫酸ナトリウム及び硫酸カリウムを含む高温排
ガス雰囲気において、Ti製の伝熱管又はTi基合金製
の伝熱管を使用することを特徴とする排ガス熱交換方法
(4) An exhaust gas heat exchange method characterized by using a heat exchanger tube made of Ti or a heat exchanger tube made of a Ti-based alloy in a high-temperature exhaust gas atmosphere containing sodium sulfate and potassium sulfate.
(5)、高温排ガス雰囲気が製紙用ソーダ回収ボイラか
らの排ガスである特許請求の範囲第4項記載の排ガス熱
交換方法。
(5) The exhaust gas heat exchange method according to claim 4, wherein the high-temperature exhaust gas atmosphere is exhaust gas from a soda recovery boiler for paper manufacturing.
(6)、Ti基合金製の伝熱管がTi−Pd合金製の伝
熱管である特許請求の範囲第4項記載の排ガス熱交換方
法。
(6) The exhaust gas heat exchange method according to claim 4, wherein the heat exchanger tube made of a Ti-based alloy is a heat exchanger tube made of a Ti-Pd alloy.
(7)、硫酸ナトリウム及び炭酸ソーダ又は硫酸カリウ
ムを含む高温排ガス雰囲気において、その高温側にTi
製の伝熱管を使用し、低温側にTi基合金製の伝熱管を
使用することを特徴とする排ガス熱交換方法。
(7) In a high-temperature exhaust gas atmosphere containing sodium sulfate, soda carbonate, or potassium sulfate, Ti is placed on the high-temperature side.
An exhaust gas heat exchange method characterized in that a heat exchanger tube made of a Ti-based alloy is used on the low temperature side.
(8)、高温排ガス雰囲気が製紙用ソーダ回収ボイラか
らの排ガスである特許請求の範囲第7項記載の排ガス熱
交換方法。
(8) The exhaust gas heat exchange method according to claim 7, wherein the high-temperature exhaust gas atmosphere is exhaust gas from a soda recovery boiler for paper manufacturing.
(9)、Ti基合金製の伝熱管がTi−Pd合金製の伝
熱管である特許請求の範囲第4項記載の排ガス熱交換方
法。
(9) The exhaust gas heat exchange method according to claim 4, wherein the heat exchanger tube made of a Ti-based alloy is a heat exchanger tube made of a Ti-Pd alloy.
JP10786186A 1985-08-10 1986-05-12 Exhaust gas heat exchanging method Pending JPS62123296A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP60-176161 1985-08-10
JP17616185 1985-08-10

Publications (1)

Publication Number Publication Date
JPS62123296A true JPS62123296A (en) 1987-06-04

Family

ID=16008729

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10786186A Pending JPS62123296A (en) 1985-08-10 1986-05-12 Exhaust gas heat exchanging method

Country Status (1)

Country Link
JP (1) JPS62123296A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04129695U (en) * 1991-05-15 1992-11-27 株式会社昭和鉛鉄 Heat exchange equipment for pickling process line

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5744237U (en) * 1980-08-27 1982-03-11

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5744237U (en) * 1980-08-27 1982-03-11

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04129695U (en) * 1991-05-15 1992-11-27 株式会社昭和鉛鉄 Heat exchange equipment for pickling process line

Similar Documents

Publication Publication Date Title
US20190024990A1 (en) Heat exchanger having enhanced corrosion resistance
CN100443847C (en) Tube type heating furnace
CN103486603B (en) A kind of flue gas processing device and processing method
JP2002364801A (en) Waste heat utilization system
JPS62123296A (en) Exhaust gas heat exchanging method
CN202902950U (en) Anticorrosion high-efficient waste heat recovery device
CN205592967U (en) A waste heat power generation system for dangerous waste disposal trade of industry
CN105402760A (en) Fluoroplastic-steel air preheater with anti-corrosive and anti-blockage functions
CN204513362U (en) A kind of power economized boiler with waste heat recovery
JP2001280863A (en) Heat exchanger and electric power generator comprising it
CN207262407U (en) One kind is exempted to use the low nitrogen condensed type combustion gas steam boiler of formality
JP2005061712A (en) Latent heat recovering economizer with enhanced corrosion resistance
CN205332235U (en) Sulfur recovery waste heat utilization tail gas treatment combination unit
CN205388305U (en) Novel low temperature second grade economizer
JP2007017029A (en) Waste heat recovery device for industrial furnace
CN204213956U (en) A kind of boiler smoke step waste heat recovery economizer
CN104315872B (en) Boiler flue gas waste heat recycling and energy-saving device with boiler flue gas dust removing effect
CN206274230U (en) A kind of superconduction fluidised form heat exchanger
CN208365813U (en) A kind of condensate vacuum hot-water boiler
CN209399816U (en) A kind of enamel pipe GGH
CN205208614U (en) Fluorine plastic steel air heater with anticorrosively prevent stifled function
CN205279031U (en) Dangerous for waste incineration exhaust -heat boiler who can be used to electricity generation
CN109210779A (en) A kind of large capacity horizontal water pipe burner hearth fire tube convection heating surface room-fired boiler
CN105066092B (en) A kind of dustless steam boiler of novel smokeless
CN212584994U (en) Device for improving corrosive wear of steel pipe at low temperature section of tubular air preheater