JPS62123264A - Air-cooled heat pump type refrigeration cycle device - Google Patents

Air-cooled heat pump type refrigeration cycle device

Info

Publication number
JPS62123264A
JPS62123264A JP26241785A JP26241785A JPS62123264A JP S62123264 A JPS62123264 A JP S62123264A JP 26241785 A JP26241785 A JP 26241785A JP 26241785 A JP26241785 A JP 26241785A JP S62123264 A JPS62123264 A JP S62123264A
Authority
JP
Japan
Prior art keywords
heat exchanger
flow path
air
refrigeration cycle
refrigerant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26241785A
Other languages
Japanese (ja)
Inventor
孝 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP26241785A priority Critical patent/JPS62123264A/en
Publication of JPS62123264A publication Critical patent/JPS62123264A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、空冷ヒートポンプ式冷凍サイクル装置に係り
、特に、暖房時の着崩の抑制、暖房の快適性向上および
低外気温冷房運転範囲の向上に好適な空冷ヒートポンプ
式冷凍サイクル装置に関するものである。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to an air-cooled heat pump type refrigeration cycle device, and in particular, the present invention relates to an air-cooled heat pump type refrigeration cycle device, and in particular, to suppress build-up during heating, improve heating comfort, and improve cooling operation range at low outside temperatures. The present invention relates to an air-cooled heat pump type refrigeration cycle device suitable for.

〔発明の背景〕[Background of the invention]

従来、空冷ヒートポンプ式冷凍サイクル1tvcおいて
は、暖房時に、室外熱交換器にN霜し、これを逆サイク
ル除霜方式などで除霜を行っていた。しかし、除1運転
時には、室内熱交換器は蒸発器として作用することにな
り、室内への冷風吹き出し、暖房能力低下などの問題が
あった。
Conventionally, in the air-cooled heat pump type refrigeration cycle 1tvc, during heating, N frost is formed on the outdoor heat exchanger, and this is defrosted by a reverse cycle defrosting method or the like. However, during normal operation, the indoor heat exchanger acts as an evaporator, causing problems such as blowing cold air into the room and reducing heating capacity.

従来の冷凍サイクルを第3図に示す。A conventional refrigeration cycle is shown in FIG.

第3図は、従来の空冷ヒートポンプ式空気調和機の冷凍
サイクル系統図である。
FIG. 3 is a refrigeration cycle system diagram of a conventional air-cooled heat pump type air conditioner.

第3図において、1は圧縮機、2は四方弁、3は室内熱
交換器、4は室外熱交換器、5V′i室外フアン、61
″tアキユムレータ、7,8は逆止弁、9.10け膨脹
器に係るキャピラリチューブである暖房時は、冷媒は実
線矢印の方向に流れ、室内熱交換器3け凝縮器として作
用し、放熱により室内を暖房し、室外熱交換器4け蒸発
器として作用する。
In Fig. 3, 1 is a compressor, 2 is a four-way valve, 3 is an indoor heat exchanger, 4 is an outdoor heat exchanger, 5V'i outdoor fan, 61
``T accumulator, 7 and 8 are check valves, and 9. Capillary tubes related to the 10-piece expander.During heating, the refrigerant flows in the direction of the solid arrow, acting as an indoor heat exchanger and 3-piece condenser, and dissipating heat. The indoor heat exchanger acts as a 4-place evaporator and an outdoor heat exchanger.

一方、除霜運転時は、冷房時と同様に暖房時の逆サイク
ルとなり、冷媒は破線矢印の方向に流れ、室外熱交換器
4は凝縮器として作用しホヴトガスによる除霜がなされ
、室内熱交換器3け蒸発器として作用するものである。
On the other hand, during defrosting operation, the cycle is the same as during cooling, which is the reverse cycle of heating, the refrigerant flows in the direction of the dashed arrow, the outdoor heat exchanger 4 acts as a condenser, defrosting is performed by Hovt gas, and indoor heat exchange is performed. It functions as a three-piece evaporator.

また従来、例えば特開昭59−69667号公報記載の
ように、冷凍サイクル流路上にバイパス回路を設け、暖
房時の余熱を利用して暖房運転をしながら、室外熱交換
器の除霜を行う空冷ヒートポンプ式空気調和機が知られ
ている。
Conventionally, for example, as described in Japanese Patent Application Laid-Open No. 59-69667, a bypass circuit is provided on the refrigeration cycle flow path, and the outdoor heat exchanger is defrosted while performing heating operation using residual heat from heating. Air-cooled heat pump type air conditioners are known.

しかし、室内の暖房を行った残シの熱を利用しての除霜
では、除霜能力に限度があり、除霜運転時間が長くなる
という問題があった。
However, defrosting using the heat left over from indoor heating has a problem in that the defrosting ability is limited and the defrosting operation time becomes long.

また、着霜は、熱交換器フィンの風上側から進行し、風
上側の着霜量が多いことに対する、除霜時の、サイクル
上の構成については配慮されていなかった。
Further, frosting progresses from the windward side of the heat exchanger fins, and consideration has not been given to the structure of the cycle during defrosting, since the amount of frosting on the windward side is large.

〔発明の目的〕[Purpose of the invention]

不発明け、前述の従来技術の問題点を解決するためにな
されたもので、暖房時の着霜を抑制するサイクル、除霜
時にも暖房運転を継続するサイクル、および低外気温冷
房運転範囲を拡大するサイクルを可能にした、機械的に
優れた空冷ヒートポンプ式冷凍サイクル装置の提供を、
その目的としている。
Uninvented, this was done to solve the problems of the conventional technology mentioned above, and it has a cycle that suppresses frost formation during heating, a cycle that continues heating operation even during defrosting, and an expansion of the range of cooling operation at low outside temperatures. We provide mechanically superior air-cooled heat pump refrigeration cycle equipment that enables cycles such as
That is the purpose.

〔発明の概要〕[Summary of the invention]

本発明に係る空冷ヒートポンプ式冷凍サイクル装置の構
成は、少なくとも、圧縮機、室外熱交換器、室内熱交換
器、膨脹器およびこれら機器を接続する冷媒流路からな
る空冷ヒートポンプ式冷凍すイクル装fVcおいて、前
記室外熱交換器を、空気流に対して上流側と下流側との
熱交換器に分割し、それぞれの熱交換器に冷媒を分流す
る流路を接続し、前記上流側熱交換器の、暖房時に冷媒
入口側となる流路に第1の電磁弁を設けるとともに、圧
縮機吐出ガス流路から、前記上流側熱交換器の暖房時に
冷媒入口側となる流路の、前記第1の電磁弁の下流側に
接続する分岐流路を設け、この分岐流路に第2の電磁弁
を設けたものである。
The configuration of the air-cooled heat pump type refrigeration cycle device according to the present invention includes at least a compressor, an outdoor heat exchanger, an indoor heat exchanger, an expander, and a refrigerant flow path connecting these devices. The outdoor heat exchanger is divided into an upstream heat exchanger and a downstream heat exchanger with respect to the air flow, and a flow path for dividing the refrigerant is connected to each heat exchanger, and the upstream heat exchange A first electromagnetic valve is provided in the flow path that is on the refrigerant inlet side during heating, and a first electromagnetic valve is provided in the flow path that is on the refrigerant inlet side during heating of the upstream heat exchanger from the compressor discharge gas flow path. A branch flow path connected to the downstream side of the first solenoid valve is provided, and a second solenoid valve is provided in this branch flow path.

なお、本発明を開発した考え方を付記すると、次のとお
りである。
Additionally, the idea behind developing the present invention is as follows.

従来の冷凍サイクルでは、除霜運転時は、室内暖房に対
し、常に逆作用となっていたため、本発明では、まず、
室外熱交換器への着霜を抑制し、次に、循環冷媒を分流
して、暖房運転を行いながら、室外熱交換器の除霜を行
うことができるような、熱交換器と冷凍サイクルの構成
を考えたものである。
In the conventional refrigeration cycle, the defrosting operation always had a negative effect on indoor heating, so in the present invention, first,
The heat exchanger and refrigeration cycle are designed to suppress frost formation on the outdoor heat exchanger, and then divide the circulating refrigerant to defrost the outdoor heat exchanger while performing heating operation. The composition was considered.

本発明の構成では、室外熱交換器の容量制御により、冷
房運転においても、低外気温運転時の、冷凍サイクル調
整が、可能となっている。
In the configuration of the present invention, by controlling the capacity of the outdoor heat exchanger, it is possible to adjust the refrigeration cycle during low outside temperature operation even in cooling operation.

すなわち、室外熱交換器への着霜が、一般に風上側から
進行し、着霜量が風上側に多くなるということに着目し
て、室外側熱交換器を、空気流に対し、上流側と下流側
に分割し、これら分割したそれぞれの熱交換器に対し、
循環冷媒を分流するよう冷媒流路を構成して、冷媒を両
分側熱交換器に対し、並行して流すとともに、圧縮機か
らの吐出ガスを、一部、上流側熱交換器に導びくことに
より、ホブトガス除精回路を構成し、これら冷媒流路を
、電磁弁を用いて、暖房運転、除霜運転、冷房運転時に
、最適流路を形成するよう制御することにしたものであ
る。
In other words, focusing on the fact that frost buildup on outdoor heat exchangers generally progresses from the windward side, and the amount of frost buildup increases on the windward side, the outdoor heat exchanger is placed on the upstream side with respect to the air flow. Divided into the downstream side, and for each of these divided heat exchangers,
The refrigerant flow path is configured to divide the circulating refrigerant so that the refrigerant flows in parallel to both heat exchangers, and part of the gas discharged from the compressor is guided to the upstream heat exchanger. As a result, a hobut gas defrosting circuit is constructed, and these refrigerant flow paths are controlled using electromagnetic valves to form optimal flow paths during heating operation, defrosting operation, and cooling operation.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の各実施例を第1図、第2図、および第4
図ないし第10図を参照して説明する。
Embodiments of the present invention will be described below with reference to FIGS. 1, 2, and 4.
This will be explained with reference to FIGS. 10 to 10.

まず、本発明の一実施例を第1図、第4図、第6図、第
7図および第8図によシ説明する。
First, an embodiment of the present invention will be explained with reference to FIGS. 1, 4, 6, 7, and 8.

第1図は、本発明の一実施例に係る空気調和機の冷凍サ
イクル系統図、第4図は、第1図、第2図の各実施例に
おける室外熱交換器部の詳細構成図、第6図は、各実施
例の機能部品作動説明図、第7図は、各実施例の室外熱
交換器部の空気温度分布説明図、第8図は、第7図の空
気状態変化を示す空気線図である。
FIG. 1 is a refrigeration cycle system diagram of an air conditioner according to an embodiment of the present invention, FIG. 4 is a detailed configuration diagram of an outdoor heat exchanger section in each embodiment of FIGS. 1 and 2, and FIG. 6 is an explanatory diagram of the functional parts operation of each embodiment, FIG. 7 is an explanatory diagram of air temperature distribution in the outdoor heat exchanger section of each embodiment, and FIG. It is a line diagram.

第1図の実施例は、暖房専用の空気調和機の例で、比較
的高外気温範囲使用のユニットに適するものである。図
中、第3図と同一符号のものは、従来技術と同等部分を
示している。
The embodiment shown in FIG. 1 is an example of an air conditioner exclusively for heating, and is suitable for a unit used in a relatively high outside temperature range. In the figure, the same reference numerals as in FIG. 3 indicate parts equivalent to the prior art.

第1図において、11.12は、室外熱交換器を、白い
矢印で示す空気流に対して上流側(風上側)と下流側(
風下側)とに分割したもので、11は上流側の第1熱交
換器、12は下流側の第2熱交換器である。13.14
は、前記第1熱交換器11、第2熱交換器12に冷媒を
分流するための流路である。
In Fig. 1, 11.12 indicates that the outdoor heat exchanger is connected to the upstream side (windward side) and the downstream side (upward side) with respect to the air flow indicated by the white arrow.
11 is a first heat exchanger on the upstream side, and 12 is a second heat exchanger on the downstream side. 13.14
is a flow path for dividing the refrigerant into the first heat exchanger 11 and the second heat exchanger 12.

16f′i、流路13に配設した第1の電磁弁で、第1
熱交換器11に対し、暖房時に冷媒入口側となる流路に
位置している。
16f'i, a first solenoid valve disposed in the flow path 13;
It is located in a flow path that is on the refrigerant inlet side with respect to the heat exchanger 11 during heating.

15は、圧縮機吐出ガス流路から分岐し、前記流路13
の前記第1の電磁弁16と第1熱交換器11との間(暖
房時に第1の電磁弁16の下流側)に接続する分岐流路
、17は、この分岐流路15に配設した第2の電磁弁、
18.19は、流路+3.14に設けた膨脹器に係るキ
ャピラリチューブ、20は、分岐流路15に設けた流量
調整キャピラリチューブである。
15 is branched from the compressor discharge gas flow path, and is connected to the flow path 13
A branch flow path 17 connected between the first solenoid valve 16 and the first heat exchanger 11 (downstream side of the first solenoid valve 16 during heating) is disposed in this branch flow path 15. a second solenoid valve;
18.19 is a capillary tube related to the expander provided in the flow path +3.14, and 20 is a flow rate adjustment capillary tube provided in the branch flow path 15.

室外熱交換器の構成の詳細を第4図に示す。第1熱交換
器11Y′i、多数のフィンIlaにパイプ11bを貫
通してなるフィンアンドチューブタイプの熱交換器であ
シ、第2熱交換器12は、多数のフィン12aにパイプ
12bを貫通してなるフィンアンドチェーブタイブの熱
交換器である。
The details of the configuration of the outdoor heat exchanger are shown in FIG. The first heat exchanger 11Y'i is a fin-and-tube type heat exchanger having a large number of fins Ila passing through a pipe 11b, and the second heat exchanger 12 is a fin-and-tube type heat exchanger having a large number of fins 12a passing through a pipe 12b. This is a fin-and-chave type heat exchanger.

第4図に示すように、第1熱交換器11fi、白い矢印
に示す空気流に対し上流側に、第2熱交換器12は、下
流側に位置し、ドレンバフ25上に配設されている。2
3は、第1熱交換器11VC着趨した霜を示す。
As shown in FIG. 4, the first heat exchanger 11fi is located upstream with respect to the air flow indicated by the white arrow, and the second heat exchanger 12 is located downstream and disposed on the drain buff 25. . 2
3 shows frost that has built up on the first heat exchanger 11VC.

このような構成によれば、第7図に示すように、暖房運
転時、蒸発器として作用する室外熱交換器の第1熱交換
器11で冷却減湿(■−■)され、さらに第2熱交換器
12で冷却減湿(■→■)される。これを、横軸に乾球
温度、縦軸に絶対湿度をとった第8図の空気線図上に示
せば、第1熱交換器11での冷却(tl)、減湿(χ1
)、すなわち着霜量が大きく(■→■)、第2熱交換器
12での冷却(tl)、減湿(χ2)では、減湿すなわ
ち着霜作用が小さい(■−■)。
According to such a configuration, as shown in FIG. 7, during heating operation, the first heat exchanger 11 of the outdoor heat exchanger that functions as an evaporator performs cooling and dehumidification (■-■), and the second The heat exchanger 12 cools and dehumidifies (■→■). If this is shown on the psychrometric diagram of FIG. 8, with dry bulb temperature on the horizontal axis and absolute humidity on the vertical axis, cooling (tl) and dehumidification (χ1) in the first heat exchanger 11 are shown.
), that is, the amount of frost formation is large (■→■), and the cooling (tl) and dehumidification (χ2) in the second heat exchanger 12 has a small dehumidification or frost formation effect (■-■).

したがって、除霜は、第1熱交換器11に対して行えば
よく、第1図に示す除霜サイクルとなっている。
Therefore, defrosting can be performed on the first heat exchanger 11, resulting in the defrosting cycle shown in FIG. 1.

次に、このような構成の冷凍サイクルの作用を説明する
Next, the operation of the refrigeration cycle having such a configuration will be explained.

暖房運転時VCは、冷媒は実線矢印の方向に流れる。During heating operation VC, the refrigerant flows in the direction of the solid arrow.

圧縮機1から吐出された高温高圧の冷媒ガスは室内熱交
換器3で凝縮し、室内暖房を行う。凝縮した冷媒は、室
外熱交換器入口側で流路13,14vc分流し、流路1
3の方は、第1の電磁弁16を経てキャピラリチューブ
18により膨張し、第1熱交換器11に入り蒸発し、流
路14の方はキャピラリチューブ19により膨張し、第
2熱交換器12Vc入り蒸発する。
The high-temperature, high-pressure refrigerant gas discharged from the compressor 1 is condensed in the indoor heat exchanger 3 to heat the room. The condensed refrigerant is divided into flow paths 13 and 14vc on the outdoor heat exchanger inlet side, and then flows into flow path 1.
3 is expanded by the capillary tube 18 through the first electromagnetic valve 16, enters the first heat exchanger 11 and evaporated, and the flow path 14 is expanded by the capillary tube 19 and is transferred to the second heat exchanger 12Vc. enters and evaporates.

蒸発した冷媒ガスは、アキエムレータ6を経て圧縮機1
に戻りサイクルを形成する。このとき、第2の電磁弁1
7け閉じている。
The evaporated refrigerant gas passes through the Akiemulator 6 to the compressor 1.
to form a cycle. At this time, the second solenoid valve 1
7 is closed.

除霜運転時には、冷媒は破線矢印の方向に流れる。During defrosting operation, the refrigerant flows in the direction of the dashed arrow.

圧縮機1からの吐出冷媒ガスは、室内熱交換器3と分岐
流路15とに分流し、一方は室内熱交換器3で凝縮して
室内暖房を行い、キャピラリチューブ19IF−て膨張
し第2熱交換器12に入り蒸発し、もう一方は、分岐流
路15の流量調整キャピラリチューブ20を経て、第2
の電磁弁17を通って第1熱交換器11にて除霜を行っ
たのち、合流してアキュムレータ6を経て圧縮機IK戻
る。
The refrigerant gas discharged from the compressor 1 is divided into the indoor heat exchanger 3 and the branch flow path 15, one of which is condensed in the indoor heat exchanger 3 to heat the room, and expanded through the capillary tube 19IF- to the second The other one enters the heat exchanger 12 and evaporates, and the other one passes through the flow rate adjustment capillary tube 20 of the branch flow path 15 to the second
After passing through the electromagnetic valve 17 and defrosting in the first heat exchanger 11, it joins and returns to the compressor IK via the accumulator 6.

第1図の実施例による除霜時の室外熱交換器上の空気温
度分布け、第7図の(ホプトガス除霜十暖房)の線図に
示すように、第1熱交換器11では、除霜のため昇温し
でいるが、第2熱交換器12では、暖房運転を続行して
おシ冷却されている前述の運転状態における各構成部品
の動作、作用を第6図に示す。なお、第6図に関する詳
細な説明は他の実施例の説明で後述する。
The air temperature distribution on the outdoor heat exchanger during defrosting according to the embodiment of FIG. Although the temperature has risen due to frost, the second heat exchanger 12 continues its heating operation and is being cooled. The operations and functions of each component in the above-mentioned operating state are shown in FIG. 6. Note that a detailed explanation regarding FIG. 6 will be given later in the explanation of other embodiments.

第1図の空冷ヒートポンプ式空気調和機では、比較的、
高外気温での運転範囲において、循環冷媒の一部を、除
霜用に利用することによシ、暖房運転を断続することな
く、続行できるので、快適性向上をはかれるとともに、
暖房専用の空気調和機としては、従来の逆サイクル除霜
方式に見られるような、4方弁や逆止弁を不用とする。
In the air-cooled heat pump type air conditioner shown in Figure 1, comparatively,
By using part of the circulating refrigerant for defrosting in the operating range at high outside temperatures, heating operation can be continued without interruption, improving comfort and
As an air conditioner dedicated to heating, it does not require a four-way valve or check valve, which is found in conventional reverse cycle defrosting systems.

簡素な冷凍サイクルを構成でき、原価低減、信頼性向上
の効果が得られる。
A simple refrigeration cycle can be constructed, resulting in lower costs and improved reliability.

次に、本発明の他の実施例について、第2図、第4図、
第5図、第6図、第7図、第9図および第10図を参照
して説明する。
Next, regarding other embodiments of the present invention, FIGS. 2, 4,
This will be explained with reference to FIGS. 5, 6, 7, 9, and 10.

ここに第2図は、本発明の他の実施例に係る空冷ヒート
ポンプ式空気調和機の冷凍サイクル系統図、第5図は、
各実施例における制御回路の略伝回路図、第9図は、第
2図の冷凍サイクルの冷房運転時のサイクル説明図、第
10図は、第9図の運転時の運転状態を説明する外気温
度−吐出圧力線図である。
Here, FIG. 2 is a refrigeration cycle system diagram of an air-cooled heat pump type air conditioner according to another embodiment of the present invention, and FIG.
A schematic circuit diagram of the control circuit in each embodiment, FIG. 9 is a cycle explanatory diagram during cooling operation of the refrigeration cycle of FIG. 2, and FIG. 10 is an outside air temperature explaining the operating state during operation of FIG. 9. - It is a discharge pressure diagram.

第2図の実施例は、冷、暖房兼用の空冷ヒートポンプ式
空気調和機の例で、運転範囲の広いユニットVC適する
ものである。図中、第3図と同一符号のものけ従来技術
と同等部分であり、また、第1図と同一符号のものは、
先の第1図の実施例と同等部分であるから、それらの説
明を省略する。
The embodiment shown in FIG. 2 is an example of an air-cooled heat pump type air conditioner for both cooling and heating, and is suitable for a unit VC with a wide operating range. In the figure, parts with the same numbers as in Fig. 3 are equivalent to the prior art, and parts with the same numbers as in Fig. 1 are as follows.
Since these parts are equivalent to those of the embodiment shown in FIG. 1, their explanation will be omitted.

第2図において、21ri、流路13のキャピラリチュ
ーブ18に並列に設けた逆止弁、22は、流路14のキ
ャピラリチューブ19に並列に設けた逆上弁であり、こ
れ以外のサイクル機器の構成は、第3図に示した従来技
術、あるいは第1図に示した実施例と同等である。
In FIG. 2, 21ri is a check valve provided in parallel to the capillary tube 18 of the flow path 13, and 22 is a reverse valve provided in parallel to the capillary tube 19 of the flow path 14. The configuration is equivalent to the prior art shown in FIG. 3 or the embodiment shown in FIG.

本実施例の室外熱交換器の構成は、第4図に示す通りで
あり、除霜運転制御用の冷媒蒸発温度またはパイプ表面
温度感知用の第1サーミスタ31と第2サーミスタ32
が、それぞれ、第1熱交換器11のバイブ11bと第2
熱交換器12のパイプ12bに取付けられている。
The configuration of the outdoor heat exchanger of this embodiment is as shown in FIG. 4, and includes a first thermistor 31 and a second thermistor 32 for sensing refrigerant evaporation temperature or pipe surface temperature for defrosting operation control.
are the vibrator 11b of the first heat exchanger 11 and the second vibrator, respectively.
It is attached to the pipe 12b of the heat exchanger 12.

第5図は、除霜運転制御の回路構成を示すもので、26
は、第1の電磁弁のAコイ/I/(SvA )、27は
、第2の電磁弁のBコイル(SvB)、28は、室外フ
ァンモータコンタクタ(CF )、29f′i、四方弁
コイル(Rv)、30d7’!7/ト基板を示す。
Figure 5 shows the circuit configuration of the defrosting operation control.
is the A coil/I/(SvA) of the first solenoid valve, 27 is the B coil (SvB) of the second solenoid valve, 28 is the outdoor fan motor contactor (CF), 29f'i is the four-way valve coil (Rv), 30d7'! 7/ shows the board.

プリント基板30には、第1サーミスタ31と第2チー
ミスタ32から入力信号が入シ、プリント基板30に接
続された第1の電磁弁のAコイル26、第2の電磁弁の
Bコイル27、室外ファンモータコンタクタ28、およ
び四方弁コイル29を制御するようになっている。
The printed circuit board 30 receives input signals from the first thermistor 31 and the second thermistor 32, and the A coil 26 of the first solenoid valve connected to the printed circuit board 30, the B coil 27 of the second solenoid valve, and the outdoor A fan motor contactor 28 and a four-way valve coil 29 are controlled.

次に、このような構成の冷凍サイクルの作用を説明する
Next, the operation of the refrigeration cycle having such a configuration will be explained.

、暖房運転時Vcは、冷媒は実線矢印の方向に流れる。, during heating operation Vc, the refrigerant flows in the direction of the solid arrow.

圧縮機1からの吐出冷媒ガスは、四方弁2を経て室内熱
交換器3で凝縮し、室内暖房を行う。凝縮した冷媒は、
逆上弁7を通シ、室外熱交換器入口側で流路13.14
に分流し、一方は第1の電磁弁16を経てキャピラリチ
ューブ18により膨張し、第1熱交換器11VC入シ蒸
発し、もう一方は、キャピラリチューブ19により膨張
し、第2熱交換器12に入シ蒸発する。
Refrigerant gas discharged from the compressor 1 passes through a four-way valve 2 and is condensed in an indoor heat exchanger 3 to heat the room. The condensed refrigerant is
Pass through the reverse valve 7 and connect the flow path 13.14 on the outdoor heat exchanger inlet side.
One part passes through the first electromagnetic valve 16 and is expanded by the capillary tube 18, enters the first heat exchanger 11VC and evaporates, and the other part expands by the capillary tube 19 and enters the second heat exchanger 12. It evaporates when it enters.

蒸発した冷媒ガスは、四方弁2、アキエムレータ6を経
て圧縮機1に戻りサイクルを形成する。
The evaporated refrigerant gas returns to the compressor 1 via the four-way valve 2 and the achievator 6, forming a cycle.

このとき、第2の電磁弁17は閉じている。At this time, the second solenoid valve 17 is closed.

次に、暖房を行いながらのホブトガス除霜運転時には、
冷媒は一点鎖線矢印の方向に流れる。
Next, during hobto gas defrosting operation while heating,
The refrigerant flows in the direction of the dash-dot arrow.

圧縮機1からの吐出冷媒ガスのうち、暖房作用を行う冷
媒ガスは、暖房運転時と同様に流れ、室内熱交換器3で
室内暖房を行って凝縮し、流路14、キャピラリチュー
ブ19を経て第2熱交換器12で蒸発する。除霜作用を
行う冷媒ガスは、圧縮機吐出ガス流路から分岐流路15
に分流し、流量調整キャピラリチューブ20、第2の電
磁弁17を経て第1熱交換器11Vc入り除霜を行う。
Of the refrigerant gas discharged from the compressor 1, the refrigerant gas that performs the heating action flows in the same manner as during heating operation, performs indoor heating in the indoor heat exchanger 3, condenses, and passes through the flow path 14 and the capillary tube 19. It is evaporated in the second heat exchanger 12. The refrigerant gas that performs the defrosting action flows from the compressor discharge gas flow path to the branch flow path 15.
After passing through the flow rate adjusting capillary tube 20 and the second electromagnetic valve 17, the air enters the first heat exchanger 11Vc for defrosting.

このとき、第1の電磁弁16は閉じている。At this time, the first solenoid valve 16 is closed.

第1熱交換器11と第2熱交換器12との出口側で合流
した冷媒ガスは、暖房運転時と同様に流れ、圧縮機1に
房る。
The refrigerant gas that joins the first heat exchanger 11 and the second heat exchanger 12 on the outlet side flows in the same manner as during heating operation and is concentrated in the compressor 1.

さらに、外気条件が厳しく、除霜能力金多く必要とする
場合などの逆サイクル除霜時には、冷媒は破線矢印の方
向に流れる。なお、破線矢印のサイクルは冷房運転のと
きも同じである。
Furthermore, during reverse cycle defrosting, such as when outside air conditions are severe and a large amount of defrosting capacity is required, the refrigerant flows in the direction of the dashed arrow. Note that the cycle indicated by the dashed arrow is the same during cooling operation.

圧縮機1からの吐出冷媒ガスは、四方弁2を経て、第1
熱交換器11と第2熱交換器+21C入り、除霜を行っ
て冷媒自らは凝縮する。凝縮した冷媒は、一方は逆上弁
21、第1の電磁弁16を通υ、池方は逆止弁22を通
って合流したのち、キャビラリチェーブ9にて膨張し、
室内熱交換器3で蒸発する。蒸発した冷媒ガスは四方弁
2、アキュムレータ6を経て圧縮機1に戻りサイクルを
形成する。このとき、第2の電磁弁17は閉じている。
The refrigerant gas discharged from the compressor 1 passes through the four-way valve 2 and then into the first
The refrigerant enters the heat exchanger 11 and the second heat exchanger +21C, performs defrosting, and condenses itself. The condensed refrigerant passes through the reversal valve 21 and the first electromagnetic valve 16 on one side, and the other side passes through the check valve 22 and joins together, and then expands in the cavity chamber 9.
It evaporates in the indoor heat exchanger 3. The evaporated refrigerant gas returns to the compressor 1 via the four-way valve 2 and the accumulator 6, forming a cycle. At this time, the second solenoid valve 17 is closed.

第6図は、前述の運転制御における各機能部品の作動を
表示した図面であシ、第2.4図と対応して、その作動
を説明する。
FIG. 6 is a drawing showing the operation of each functional component in the above-mentioned operation control, and the operation will be explained in correspondence with FIG. 2.4.

第1.第2サーミスタ31.32が検知するサーミスタ
部の温度が設定値以上であるときは、第1の電磁弁16
は開き、第2の電磁弁17は閉じていて、室外ファン5
は回転、四方弁2は暖房位置となって、室外熱交換器の
第1.第2熱交換器11.12とも蒸発器として作用し
暖房運転が行われる。
1st. When the temperature of the thermistor section detected by the second thermistor 31, 32 is higher than the set value, the first solenoid valve 16
is open, the second solenoid valve 17 is closed, and the outdoor fan 5
is rotated, the four-way valve 2 is in the heating position, and the first one of the outdoor heat exchanger is turned on. The second heat exchangers 11 and 12 also act as evaporators and perform heating operation.

次に、第1熱交換器++Vc着霜し、第1サーミスタ3
1部の温度が設定値以下となって、入力信号により、ホ
プトガス除霜制圓が作動したときには、第1の電磁弁1
6は閉じ、第2の電磁弁17は開いて、第1熱交換器1
1ではホヅトガス除霜、第2熱交換器12では蒸発器、
すなわち暖房運転を継続している。このとき、室外ファ
ン5は回転、4方弁2け暖房位置である。
Next, the first heat exchanger ++Vc is frosted, and the first thermistor 3
When the temperature of part 1 falls below the set value and the hop gas defrost control is activated by the input signal, the first solenoid valve 1
6 is closed, the second solenoid valve 17 is open, and the first heat exchanger 1
1 is a hot gas defrost, the second heat exchanger 12 is an evaporator,
In other words, heating operation continues. At this time, the outdoor fan 5 is rotating and the two four-way valves are in the heating position.

さらに、外気条件が厳しい場合、あるいは、運転時間が
長くなυ、第2熱交換器12にも着霜して、第2サーミ
スタ320入力信号によυ、逆サイクル除霜制御が作動
したときには、第1の電磁弁16は開き、第2の電磁弁
17t/′i閉じて、室外ファン5は停止、四方弁2は
除婦位置となって、第1.第2熱交換器11.12とも
除霜を行う。
Furthermore, when outside air conditions are severe, or when the operation time is long υ, frost has formed on the second heat exchanger 12, and reverse cycle defrost control is activated by the second thermistor 320 input signal υ. The first electromagnetic valve 16 is opened, the second electromagnetic valve 17t/'i is closed, the outdoor fan 5 is stopped, the four-way valve 2 is in the unmasking position, and the first electromagnetic valve 17t/'i is closed. The second heat exchangers 11 and 12 are also defrosted.

第7図、第8図に示す空気温度変化は、暖房運転および
ホプトガス除霜運転時については、前述の第1図の実施
例と同じであり、第2図の逆サイクル除n運転時には、
室外熱交換器の第1.第2熱交換器11.12上の温度
分布は、第7図の、(逆サイクル除霜)の図に示すよう
になっているまた、本冷凍サイクルでは、第9図、第1
0図に示すように、第1の電磁弁16の開閉を制御する
ことによシ、室外熱交換器の容量を調整し、低外気温に
おける冷房運転の範囲を拡大することができる。
The air temperature changes shown in FIGS. 7 and 8 are the same as in the embodiment shown in FIG. 1 above during heating operation and hopt gas defrosting operation, and during reverse cycle removal operation shown in FIG.
The first part of the outdoor heat exchanger. The temperature distribution on the second heat exchanger 11 and 12 is as shown in the diagram (reverse cycle defrosting) in Figure 7.
As shown in FIG. 0, by controlling the opening and closing of the first solenoid valve 16, the capacity of the outdoor heat exchanger can be adjusted and the range of cooling operation at low outside temperatures can be expanded.

すなわち、従来の冷房運転では、外気温度がT工からT
。に下れば、第10図で明らかなように、吐出圧力がP
lからP2に下って、サイクル温度も破線のように低下
し、圧縮機1への冷媒液戻シ等の問題があるので、運転
下限は外気温度T0であった。
In other words, in conventional cooling operation, the outside temperature varies from T to T.
. As is clear from Fig. 10, when the discharge pressure decreases to P
As the cycle temperature decreases from 1 to P2, the cycle temperature also decreases as shown by the broken line, and there are problems such as the return of refrigerant to the compressor 1, so the lower limit of operation was the outside air temperature T0.

第2図の実施例では、第1の電磁弁16を閉じ、第1熱
交換器11への冷媒流れを閉止して、凝縮器として作用
する室外熱交換器を第2熱交換器12のみとすることに
より、第10図の実線に示すように外気温度がT。を越
え、T2まで下っても、吐出圧力をP2に維持して、冷
房運転下限を外気温度T2まで拡大することができる。
In the embodiment shown in FIG. 2, the first solenoid valve 16 is closed and the flow of refrigerant to the first heat exchanger 11 is closed, so that only the second heat exchanger 12 is used as the outdoor heat exchanger that acts as a condenser. As a result, the outside air temperature becomes T as shown by the solid line in FIG. Even if the temperature exceeds P2 and drops to T2, the discharge pressure can be maintained at P2 and the lower limit of cooling operation can be expanded to the outside temperature T2.

本実施例により、比較的、高外気温、あるいは短時間の
暖房運転においては、除霜のための暖房運転停止時間は
無く、暖房運転を継続することができるので、室内への
冷風吹き込みがなく、快適性、積算暖房能力向上の効果
がある。
According to this embodiment, when the outside temperature is relatively high or during heating operation for a short time, there is no need to stop heating operation for defrosting, and heating operation can be continued, so there is no need to blow cold air into the room. This has the effect of improving comfort and cumulative heating capacity.

また、低外気温、あるいけ長時間の暖房運転においても
、逆サイクル除霜方式による除霜運転で、除霜不完全と
なることもなく、機能的に優れたユニットとすることが
できる。
Further, even in low outside temperatures and heating operation for a long time, the defrosting operation using the reverse cycle defrosting method prevents incomplete defrosting, making it possible to provide a functionally superior unit.

このように、原価的にみても、特に高価な機能部品を使
用することなくサイクルを構成することが可能で、多面
にわたシ、機能の向上をはかることができ、製品力向上
に効果がある。
In this way, from a cost perspective, it is possible to configure a cycle without using particularly expensive functional parts, and it is possible to improve functionality in many ways, which is effective in improving product quality. .

なお、前述の各実施例は、空気調和機の例を説明したが
、本発明は、空気調和機に限るものではなく、同様の効
果が期待される範囲で空冷ヒートポンプ式冷凍サイクル
装置に汎用的に適用されるものである。
Although each of the above-mentioned embodiments describes an example of an air conditioner, the present invention is not limited to air conditioners, but can be applied generally to air-cooled heat pump type refrigeration cycle devices to the extent that similar effects are expected. This applies to

〔発明の効果〕〔Effect of the invention〕

以上述べたように、本発明によれば、暖房時の着霜を抑
制するサイクル、除霜時にも暖房運転を継続するサイク
ル、および低外気温冷房運転範囲を拡大するティクルを
可能にした、機能的に優れた空冷ヒートポンプ式冷凍サ
イクル装置を提供することができる。
As described above, according to the present invention, there are functions that enable a cycle that suppresses frost formation during heating, a cycle that continues heating operation even during defrosting, and a tickle that expands the range of cooling operation at low outside temperatures. Therefore, it is possible to provide an air-cooled heat pump type refrigeration cycle device that is excellent in terms of performance.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の一実施例に係る空気調和機の冷凍サ
イクル系統図、第2図は、本発明の他の実施例に係る空
冷ヒートポンプ式空気調和機の冷凍サイクル系統図、第
3図は、従来の空冷ヒートポンプ式空気調和機の冷凍サ
イクル系統図、第4図は、第1図、第2図の各実施例に
おける室外熱交換器部の詳細構成図、第5図は各実施例
における制御回路の略伝回路図、第6図は、各実施例の
機能部品作動説明図、第7図は、各実施例の室外熱交換
器部の空気温度分布説明図、第8図は、第7図の空気状
態変化を示す空気線図、第9図は、第2図の冷凍サイク
ルの冷房運転時のサイクル説明図、第10図は、第9図
の運転時の運転状態を説明する外気温度−吐出圧力線図
である。 1・・・圧縮機  3・・・室内熱交換器  11・・
・第1熱交換器  12・・・第2熱交換器  13,
14・・・流路  15・・・分岐流路  16・・・
第1の電磁弁  17・・・第2の電磁弁  9,18
.19・・・キャピラリチューブ  20・・・流量調
整キャピラリチューブ。 第5瓜 77寸 寥1回 一−ゴ 席2団 ニー=ジ 竿す図 娼工    蓼tom →房 −一一÷
FIG. 1 is a refrigeration cycle system diagram of an air conditioner according to one embodiment of the present invention, FIG. 2 is a refrigeration cycle system diagram of an air-cooled heat pump type air conditioner according to another embodiment of the present invention, and FIG. The figure is a refrigeration cycle system diagram of a conventional air-cooled heat pump type air conditioner, Figure 4 is a detailed configuration diagram of the outdoor heat exchanger section in each embodiment of Figures 1 and 2, and Figure 5 is a diagram of each implementation. A schematic circuit diagram of the control circuit in the example, FIG. 6 is an explanatory diagram of functional parts operation of each embodiment, FIG. 7 is an explanatory diagram of air temperature distribution in the outdoor heat exchanger section of each embodiment, and FIG. Fig. 7 is an psychrometric diagram showing changes in air conditions, Fig. 9 is a cycle explanatory diagram of the refrigeration cycle shown in Fig. 2 during cooling operation, and Fig. 10 is an explanation of the operating state during operation of Fig. 9. It is an outside temperature - discharge pressure diagram. 1...Compressor 3...Indoor heat exchanger 11...
・First heat exchanger 12...Second heat exchanger 13,
14... Channel 15... Branch channel 16...
First solenoid valve 17...Second solenoid valve 9,18
.. 19... Capillary tube 20... Flow rate adjustment capillary tube. 5th melon 77th size 1st time 1st seat 2nd group knee = Ji rod picture prostitute 蓼tom → tassel -11÷

Claims (1)

【特許請求の範囲】[Claims] 少なくとも、圧縮機、室外熱交換器、室内熱交換器、膨
脹器およびこれら機器を接続する冷媒流路からなる空冷
ヒートポンプ式冷凍サイクル装置において、前記室外熱
交換器を、空気流に対して上流側と下流側との熱交換器
に分割し、それぞれの熱交換器に冷媒を分流する流路を
接続し、前記上流側熱交換器の、暖房時に冷媒入口側と
なる流路に第1の電磁弁を設けるとともに、圧縮機吐出
ガス流路から、前記上流側熱交換器の暖房時に冷媒入口
側となる流路の、前記第1の電磁弁の下流側に接続する
分岐流路を設け、この分岐流路に第2の電磁弁を設けた
ことを特徴とする空冷ヒートポンプ式冷凍サイクル装置
In an air-cooled heat pump type refrigeration cycle device comprising at least a compressor, an outdoor heat exchanger, an indoor heat exchanger, an expander, and a refrigerant flow path connecting these devices, the outdoor heat exchanger is placed on the upstream side with respect to the air flow. A flow path for dividing the refrigerant is connected to each heat exchanger, and a first electromagnetic conductor is connected to the flow path that becomes the refrigerant inlet side during heating of the upstream heat exchanger. In addition to providing a valve, a branch flow path is provided that connects the compressor discharge gas flow path to the downstream side of the first electromagnetic valve of the flow path that becomes the refrigerant inlet side during heating of the upstream heat exchanger. An air-cooled heat pump type refrigeration cycle device characterized in that a second solenoid valve is provided in a branch flow path.
JP26241785A 1985-11-25 1985-11-25 Air-cooled heat pump type refrigeration cycle device Pending JPS62123264A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26241785A JPS62123264A (en) 1985-11-25 1985-11-25 Air-cooled heat pump type refrigeration cycle device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26241785A JPS62123264A (en) 1985-11-25 1985-11-25 Air-cooled heat pump type refrigeration cycle device

Publications (1)

Publication Number Publication Date
JPS62123264A true JPS62123264A (en) 1987-06-04

Family

ID=17375491

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26241785A Pending JPS62123264A (en) 1985-11-25 1985-11-25 Air-cooled heat pump type refrigeration cycle device

Country Status (1)

Country Link
JP (1) JPS62123264A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004219060A (en) * 2003-01-13 2004-08-05 Lg Electronics Inc Multiple air conditioner with defrost device
JP2009156472A (en) * 2007-12-25 2009-07-16 Mitsubishi Electric Corp Air conditioner
WO2014083867A1 (en) * 2012-11-29 2014-06-05 三菱電機株式会社 Air-conditioning device
WO2016046927A1 (en) * 2014-09-25 2016-03-31 三菱電機株式会社 Refrigeration cycle device and air-conditioning device
WO2016113851A1 (en) * 2015-01-13 2016-07-21 三菱電機株式会社 Refrigeration cycle device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4881151A (en) * 1972-01-31 1973-10-30
JPS5187842A (en) * 1975-01-30 1976-07-31 Mitsubishi Heavy Ind Ltd Hiitohonpuniokeru defurosutosochi

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4881151A (en) * 1972-01-31 1973-10-30
JPS5187842A (en) * 1975-01-30 1976-07-31 Mitsubishi Heavy Ind Ltd Hiitohonpuniokeru defurosutosochi

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7716941B2 (en) 2003-01-13 2010-05-18 Lg Electronics Inc. Multi-type air conditioner with defrosting device
JP2004219060A (en) * 2003-01-13 2004-08-05 Lg Electronics Inc Multiple air conditioner with defrost device
JP2009156472A (en) * 2007-12-25 2009-07-16 Mitsubishi Electric Corp Air conditioner
JPWO2014083867A1 (en) * 2012-11-29 2017-01-05 三菱電機株式会社 Air conditioner
WO2014083867A1 (en) * 2012-11-29 2014-06-05 三菱電機株式会社 Air-conditioning device
US10001317B2 (en) 2012-11-29 2018-06-19 Mitsubishi Electric Corporation Air-conditioning apparatus providing defrosting without suspending a heating operation
JP6021940B2 (en) * 2012-11-29 2016-11-09 三菱電機株式会社 Air conditioner
GB2545112A (en) * 2014-09-25 2017-06-07 Mitsubishi Electric Corp Refrigeration cycle device and air-conditioning device
WO2016046927A1 (en) * 2014-09-25 2016-03-31 三菱電機株式会社 Refrigeration cycle device and air-conditioning device
GB2545112B (en) * 2014-09-25 2020-05-20 Mitsubishi Electric Corp Refrigeration cycle apparatus and air-conditioning apparatus
WO2016113851A1 (en) * 2015-01-13 2016-07-21 三菱電機株式会社 Refrigeration cycle device
JPWO2016113851A1 (en) * 2015-01-13 2017-06-29 三菱電機株式会社 Refrigeration cycle equipment
CN107110547A (en) * 2015-01-13 2017-08-29 三菱电机株式会社 Refrigerating circulatory device
EP3246635A4 (en) * 2015-01-13 2018-09-05 Mitsubishi Electric Corporation Refrigeration cycle device
CN107110547B (en) * 2015-01-13 2019-08-20 三菱电机株式会社 Refrigerating circulatory device
US10508826B2 (en) 2015-01-13 2019-12-17 Mitsubishi Electric Corporation Refrigeration cycle apparatus

Similar Documents

Publication Publication Date Title
US7013658B2 (en) Refrigerant subcooling by condensate
JPWO2018047416A1 (en) Air conditioner
WO1997044625A1 (en) Heat pump systems and methods incorporating subcoolers for conditioning air
US6338254B1 (en) Refrigeration sub-cooler and air conditioning dehumidifier
JPH05332630A (en) Air conditioner
KR19980084034A (en) Air conditioner
JPS62123264A (en) Air-cooled heat pump type refrigeration cycle device
US6883348B2 (en) Indoor unit in air conditioner and air conditioner therewith
JPH0420764A (en) Air conditioner
JPH10205933A (en) Air conditioner
JPH08159621A (en) Air conditioner
JP2877552B2 (en) Air conditioner
JPH10220893A (en) Heat pump device
JP3511161B2 (en) Air conditioner
JP2889762B2 (en) Air conditioner
JP2998740B2 (en) Air conditioner
JPH10196984A (en) Air conditioner
JP2923166B2 (en) Air conditioner
JP2765970B2 (en) Air conditioner
JP3059886B2 (en) Refrigeration equipment
JP2000234818A (en) Refrigerant supercooling mechanism of air conditioner
JPH08320172A (en) Air conditioner
JPS6136659A (en) Heat pump type air conditioner
JP2000146315A (en) Refrigerating device and air conditioner
JP2002089934A (en) Air conditioner