JPS62122190A - Semiconductor laser - Google Patents

Semiconductor laser

Info

Publication number
JPS62122190A
JPS62122190A JP26283985A JP26283985A JPS62122190A JP S62122190 A JPS62122190 A JP S62122190A JP 26283985 A JP26283985 A JP 26283985A JP 26283985 A JP26283985 A JP 26283985A JP S62122190 A JPS62122190 A JP S62122190A
Authority
JP
Japan
Prior art keywords
layer
type
active layer
barrier
electrons
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26283985A
Other languages
Japanese (ja)
Inventor
Yuichi Ide
雄一 井手
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP26283985A priority Critical patent/JPS62122190A/en
Publication of JPS62122190A publication Critical patent/JPS62122190A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/32Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/32Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures
    • H01S5/323Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser
    • H01S5/32308Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser emitting light at a wavelength less than 900 nm
    • H01S5/32316Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser emitting light at a wavelength less than 900 nm comprising only (Al)GaAs

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To form a semiconductor laser having a sufficient leakage inhibiting effect to both sides of electrons and holes and also, having structure wherein the electrons and the holes are easy to be injected into the active layer by providing a first and second barrier layers for the use of leakage prevention. CONSTITUTION:An n-type Al0.7Ga0.3As clad layer 2, a first undoped Ga0.49In0.51P barrier layer 3, an undoped GaAs active layer 4, a second undoped AlAs barrier layer 5, a p-type Al0.7Ga0.3As clad layer 6 and a p-type GaAs cap layer 7 are laminated in order on an n-type GaAs substrate 1 in a thickness of 1.0mum, 300Angstrom , 0.1mum, 300Angstrom , 1.0mum and 0.5mum respectively by a molecular beam epitaxial method. Moreover, a p-type electrode 8 and an n-type electrode 9 are each provided on the upper surface and back side of this laminated structure and a semiconductor laser is formed. Si is doped to the clad layer 2 in an impurity concentration of 5X10<17>cm<-3>, Be to the clad layer 6 in an impurity concentration of 5X10<17>cm<-3> and Be to the cap layer 7 in an impurity concentration of 1X10<19>cm<-3>. Hereby, the injection of electrons and holes into the active layer 4 is efficiently executed and also, the electrons and holes are prevented from leaking out in the clad layers 2 and 5. As a result, the laser beam is oscillated in a low threshold current, the low threshold current is not increased even at a high temperature and this laser is operated at a low current.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は半導体レーザに関し、特に発振閾値電流の温度
依存性が小さく、高温動作可能な半導体レーザに関する
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a semiconductor laser, and more particularly to a semiconductor laser whose oscillation threshold current has little temperature dependence and can be operated at high temperatures.

(従来の技術) 半導体レーザの発振閾値電流は通常温度上昇とともに増
加するので、実用上重要な高温での動作を可能にするた
め様々な工夫がされてきた。温度上昇とともに閾値電流
が増加するのは活性層に注入されたキャリアがクラッド
層との間のポテンシャルバリアを越えて漏出しやすくな
るのが主な原因と考えられる。これを防ぐため、アプラ
イド・フィツクス・レターズ(Appl。Phys、 
Lett、 38(1981)835)に提案された半
導体レーザを第2図に示す。
(Prior Art) Since the oscillation threshold current of a semiconductor laser usually increases as the temperature rises, various efforts have been made to enable operation at high temperatures, which are important for practical use. The main reason why the threshold current increases with temperature rise is considered to be that carriers injected into the active layer easily leak out across the potential barrier between the active layer and the cladding layer. To prevent this, Applied Fixtures Letters (Appl.Phys,
A semiconductor laser proposed by Lett, 38 (1981) 835) is shown in FIG.

第2図(a)は、従来の半導体レーザの構造を示す断面
図、第2図(b)は、その活性層付近のエネルギー帯図
である。この半導体レーザではn型GaAs基板1上に
n型AlxGa1−xAsクラッド層2、キャリアの漏
れを防ぐためのアンドープAl、Ga1.第1バリア層
3(0<x<y<1)、アンドープのGaAs活性層4
、アンドープのAt2Ga1− 、As第2バリア層5
(0<x<z<1)、p型AlxGa1−xAsクラッ
ド層6、電極のオーム性接触を良くするためのp型Ga
Asキャップ層7が順次積層され、更に、p型GaAs
キャップ層上にp型電極8を、n型GaAs基板1の裏
面にn型電極9を蒸着した構造を有している。ここで第
2図(b)に示されるように各クラッド層は、GaAs
活性層4に対し、禁制帯幅が大きくなっており(0<x
<1)、第1及び第2バリア層はそのAlAs組成y2
zがともにx<y、z<1の範囲で除々に変化するグレ
ーデッドバリアになっている。p型電極8、n型電極9
の間に順方向に電流を印加すると、n型AlxGa1−
xAsクラッド層2からは電子が、p型AlxGa1−
rAsクラッド層6からは正孔が活性層4に注入される
。第2バリア層5は活性層4に?主人された電子が活性
層4のGaAsとp型ALxGa1−xAsクラッド層
6とのへテロ接合界面に形成される伝導帯端の不連続を
超えて漏出するのを防ぐ働きをする。
FIG. 2(a) is a cross-sectional view showing the structure of a conventional semiconductor laser, and FIG. 2(b) is an energy band diagram near its active layer. This semiconductor laser includes an n-type AlxGa1-xAs cladding layer 2 on an n-type GaAs substrate 1, undoped Al to prevent carrier leakage, Ga1. First barrier layer 3 (0<x<y<1), undoped GaAs active layer 4
, undoped At2Ga1-, As second barrier layer 5
(0<x<z<1), p-type AlxGa1-xAs cladding layer 6, p-type Ga to improve ohmic contact of the electrode
As cap layer 7 is sequentially laminated, and p-type GaAs
It has a structure in which a p-type electrode 8 is deposited on the cap layer and an n-type electrode 9 is deposited on the back surface of the n-type GaAs substrate 1. Here, as shown in FIG. 2(b), each cladding layer is made of GaAs.
The forbidden band width is larger than that of active layer 4 (0<x
<1), the first and second barrier layers have an AlAs composition y2
It is a graded barrier in which z gradually changes within the range of x<y and z<1. p-type electrode 8, n-type electrode 9
When a current is applied in the forward direction between
Electrons from the xAs cladding layer 2 become p-type AlxGa1-
Holes are injected into the active layer 4 from the rAs cladding layer 6 . Is the second barrier layer 5 the active layer 4? This serves to prevent the electrons that have been absorbed from leaking beyond the discontinuity at the edge of the conduction band formed at the heterojunction interface between the GaAs of the active layer 4 and the p-type ALxGa1-xAs cladding layer 6.

また、第1バリア層3は、正孔が n型AlxGa1−xAsクラッド層2とGaAs活性
層4との間の価電子帯の不連続を超えてn型クラッド層
2へ漏出するのを防止する働きをする。
The first barrier layer 3 also prevents holes from leaking into the n-type cladding layer 2 across the valence band discontinuity between the n-type AlxGa1-xAs cladding layer 2 and the GaAs active layer 4. do the work.

(発明が解決しようとする問題点) 以上のように、従来の半導体レーザでは、第2バリア層
5によって電子の漏出が、第1バリア層3によって正孔
の漏出が抑止される。しかし第1バリア層3は伝導帯側
に突き出た障壁を形成しているためn型クラッド層2か
ら活性層4への電子の注入が妨げられる欠点がある。ま
た正孔の漏れに着目すると、第1バリア層3とGaAs
活性層4との価電子帯端の不連続は余り大きくなく、正
孔の漏出を防止するには不充分なものである。
(Problems to be Solved by the Invention) As described above, in the conventional semiconductor laser, the second barrier layer 5 prevents leakage of electrons, and the first barrier layer 3 prevents leakage of holes. However, since the first barrier layer 3 forms a barrier protruding toward the conduction band side, there is a drawback that injection of electrons from the n-type cladding layer 2 to the active layer 4 is hindered. Also, focusing on hole leakage, the first barrier layer 3 and the GaAs
The discontinuity at the valence band edge with the active layer 4 is not very large and is insufficient to prevent leakage of holes.

本発明の目的は、上記の欠点がない、電子、正孔双方に
対して充分な漏出抑止効果を有し、かつ電子、正孔が活
性層4に注入され易い構造の半導体レーザを提供するこ
とにある。
An object of the present invention is to provide a semiconductor laser which does not have the above-mentioned drawbacks, has a sufficient leakage prevention effect for both electrons and holes, and has a structure in which electrons and holes are easily injected into the active layer 4. It is in.

(問題点を解決するための手段) 第1図に本発明の半導体レーザを示す。第1図(a)は
本発明の半導体レーザの断面図、第1図(b)は、その
活性層4付近のエネルギー帯図である。
(Means for Solving the Problems) FIG. 1 shows a semiconductor laser of the present invention. FIG. 1(a) is a sectional view of the semiconductor laser of the present invention, and FIG. 1(b) is an energy band diagram near the active layer 4 thereof.

本発明の半導体レーザは、活性層4とこの活性層4を両
側から挟むこの活性層4よりも禁制帯幅の大きいp型ク
ラッド層6とn型クラッド層2を有し、かつ正孔の漏出
防止用にn型クラッド層2と活性層4の間に価電子帯上
端の電子エネルギーが活性層4とn型クラッド層の何れ
よりも小さい第1バリア層を、電子の漏出防止用にp型
クラッド層6と活性層4の間に電子親知力が活性層4と
p型クラッド層6の阿れよりも小さい第2バリア層を有
する構成となっている。
The semiconductor laser of the present invention has an active layer 4, a p-type cladding layer 6 and an n-type cladding layer 2 sandwiching the active layer 4 from both sides and having a larger forbidden band width than the active layer 4, and has hole leakage. A first barrier layer is provided between the n-type cladding layer 2 and the active layer 4 for preventing electron leakage, and a first barrier layer is provided between the n-type cladding layer 2 and the active layer 4, the electron energy of which is smaller at the upper end of the valence band than that of either the active layer 4 or the n-type cladding layer. The structure includes a second barrier layer between the cladding layer 6 and the active layer 4, the electron affinity of which is smaller than the gap between the active layer 4 and the p-type cladding layer 6.

(作用) 本発明の半導体レーザでは第1図(b)に示すようなエ
ネルギー帯図が得られる。従ってn型クラッド層2から
は活性層4へ容易に電子が注入され、またその電子は、
第2バリア層5の形成する障壁によってp型クラッド層
6への漏出が抑止される。また、p型クラッド層6から
は活性層4へ正孔が容易に注入され、第1バリア層3の
形成する障壁によってそのn型クラッド層2への漏出が
抑止される。これらの結果、注入された電子及び正孔は
活性層4内に有効に閉じ込められ、高温時においても低
い閾値電流で発振し、低電流で動作させることが可能と
なる。
(Function) In the semiconductor laser of the present invention, an energy band diagram as shown in FIG. 1(b) can be obtained. Therefore, electrons are easily injected from the n-type cladding layer 2 to the active layer 4, and the electrons are
The barrier formed by the second barrier layer 5 prevents leakage to the p-type cladding layer 6. Furthermore, holes are easily injected from the p-type cladding layer 6 into the active layer 4 , and their leakage to the n-type cladding layer 2 is suppressed by the barrier formed by the first barrier layer 3 . As a result, the injected electrons and holes are effectively confined within the active layer 4, allowing oscillation with a low threshold current even at high temperatures, and operation with a low current.

(実施例) 以下、第1図を参照して、本発明の一実施例について述
べる。本実施例ではn型GaAs基板1上にn型Alo
、7Gao、3Asクラッド層2を1.0pm、アンド
ープGao、49Ino、sxPバリア層3を300人
、アンドープGaAs活性層4を0.1pm、アンドー
プAlAs第2バリア層5を300人、p型Alo、7
Gao、aAsクラッド層6を1.0pm、 p型Ga
Asキャップ層7を0.5pm分子線エピタキシ法によ
り順次積層し、さらにこの積層構造にp型電極8、n型
電極9を設けて半導体レーザを形成している。
(Example) An example of the present invention will be described below with reference to FIG. In this example, an n-type Al
, 7Gao, 3As cladding layer 2 with a thickness of 1.0 pm, undoped Gao, 49Ino, sxP barrier layer 3 with a thickness of 300, undoped GaAs active layer 4 with a thickness of 0.1 pm, undoped AlAs second barrier layer 5 with a thickness of 300, p-type Alo, 7
Gao, aAs cladding layer 6 with a thickness of 1.0 pm, p-type Ga
An As cap layer 7 is sequentially laminated by a 0.5 pm molecular beam epitaxy method, and a p-type electrode 8 and an n-type electrode 9 are further provided in this laminated structure to form a semiconductor laser.

n型Alo、7Gao、3Asクラッド層2は、Siを
不純物濃度5X1017cm=ドープし、p型Alo7
Gao、aAsクラッド層6にはBeを不純物濃度5X
1017am ”ドープし、p型GaAsキャップ層7
にはBeを不純物濃度I X 1019cm−3ドープ
した。
The n-type Alo, 7Gao, 3As cladding layer 2 is doped with Si at an impurity concentration of 5 x 1017 cm, and the p-type Alo7
Gao, aAs cladding layer 6 has Be impurity concentration 5X
1017am” doped p-type GaAs cap layer 7
was doped with Be at an impurity concentration of I.times.10.sup.19 cm.sup.-3.

本実施例によれば、各層の禁制帯幅、価電子・帯端及び
伝導帯幅の不連続は室温において以下のようになる。即
ち、文献によるとn又は p型Alo7Gao、3Asクラッド層2,6、GaA
s活性層4、Gao、49Ino、5tP第1バリア層
3、AlAs第2バリア層5のP点での禁制帯幅は、そ
れぞれ2.368,1.424,1.854,3゜01
8eVである。また、GaAs活性層4とGao49I
no5zP第1バリア層3との間の価電子帯端の不連続
は0.43eV伝導帯端ではOeV、同じ< AlAs
第2バリア層5との間の価電子帯端不連続は0.239
eV伝導帯端の不連続は1.354eVとなっている。
According to this embodiment, the discontinuities of the forbidden band width, valence electron/band edge, and conduction band width of each layer are as follows at room temperature. That is, according to the literature, n- or p-type Alo7Gao, 3As cladding layers 2, 6, GaA
The forbidden band widths at point P of the s active layer 4, Gao, 49Ino, 5tP first barrier layer 3, and AlAs second barrier layer 5 are 2.368, 1.424, 1.854, and 3°01, respectively.
It is 8eV. In addition, GaAs active layer 4 and Gao49I
The discontinuity at the valence band edge between the no5zP first barrier layer 3 is 0.43 eV, and the conduction band edge is OeV, the same < AlAs
The valence band edge discontinuity with the second barrier layer 5 is 0.239
The discontinuity at the eV conduction band edge is 1.354 eV.

ここで本実施例を第2図に示した従来の半導体レーザと
比較しよう。従来においてAl、Ga1−yAs第1バ
リア層3、A12Ga、−、AS第2バリア層5をx 
= 0.7からy=z=1、即ち最も価電子帯及び伝導
帯の不連続が大きくなるAlAsまでグレーデッドに変
化していると仮定すると、GaAs活性層4と第1及び
第2バリア層の間には伝導帯、価電子帯の不連続がそれ
ぞれ1.354eV、及び0.239eV生じているこ
とになる。
Let us now compare this embodiment with the conventional semiconductor laser shown in FIG. Conventionally, the Al, Ga1-yAs first barrier layer 3 and the A12Ga,-, AS second barrier layer 5 are
Assuming that there is a graded change from = 0.7 to y = z = 1, that is, AlAs with the largest discontinuity in the valence band and conduction band, the GaAs active layer 4 and the first and second barrier layers This means that discontinuities in the conduction band and valence band occur at 1.354 eV and 0.239 eV, respectively.

従って本実施例では、電子に対してはポテンシャルバリ
アがなく非常に注入され易すくなり、かつ正孔に対して
は、第1バリア層3の形成するポテンシャルバリア(価
電子帯の不連続)が約80%増加して、活性層4から漏
れ出しにくくなっている。
Therefore, in this embodiment, there is no potential barrier for electrons, making them very easy to be injected, and for holes, the potential barrier (discontinuity of the valence band) formed by the first barrier layer 3 is The amount increases by about 80%, making it difficult to leak out from the active layer 4.

以上述べた実施例では、第1及び第2バリア層2゜5は
、活性層4やクラッド層2,6に格子整合する材料を用
いたが、第1または第2バリア層を薄くすることにより
格子不整合による歪みを吸収できるので必ずしも格子整
合する材料でなくとも良い。ただし、第1及び第2バリ
ア層は、キャリアの漏れをせき止めるのが目的であるか
ら、キャリアがトンネル効果により流れてしまわない程
度の厚さ、即ち30Å以上にした方が効果が高い。
In the embodiments described above, the first and second barrier layers 2.5 are made of materials that are lattice matched to the active layer 4 and the cladding layers 2 and 6, but by making the first or second barrier layers thinner, Since the strain caused by lattice mismatch can be absorbed, the material does not necessarily have to be a lattice matching material. However, since the purpose of the first and second barrier layers is to stop the leakage of carriers, it is more effective to make them thick enough to prevent carriers from flowing due to the tunnel effect, that is, 30 Å or more.

また、従来の半導体レーザの場合のように第1及び第2
バリア層の組成を除々に変えて、正孔の活性層4への注
入を行ない易くしても良い。更に、実施例ではGaAs
活性層4の厚さを0.1¥1mとしたが、厚さが200
人程度量下の量子井戸型レーザであっても本発明の趣旨
は活かせる。
In addition, as in the case of a conventional semiconductor laser, the first and second
The composition of the barrier layer may be gradually changed to facilitate the injection of holes into the active layer 4. Furthermore, in the example, GaAs
The thickness of the active layer 4 was set to 0.1 yen 1 m, but the thickness was 200 yen.
The spirit of the present invention can be applied even to a quantum well type laser with a quantum well volume below that of a human.

上述の実施例では、分子線エピタキシ法で積層構造を形
成したが、これは有機金属熱分解法、あるいはハイドラ
イドまたはハライド気相成長法、液相成長法であっても
良い。
In the above-described embodiments, the layered structure was formed by molecular beam epitaxy, but this may also be by organometallic thermal decomposition, hydride or halide vapor phase growth, or liquid phase growth.

また、GaAs、GaInP、AlGaAs以外のIn
P、InGaAs。
In addition, In other than GaAs, GaInP, and AlGaAs
P, InGaAs.

InGaAsP、AlInAs、AIInP等の他のI
II −V或いはII−VI族化合物半導体材料であっ
ても本発明の要件を満せば得られる効果は同じであるの
は言うまでもない。ストライプ構造には言及しなかった
が、半導体レーザの分野ではストライプ構造を採るのは
あたりまえのことである。本発明は積層構造に特徴があ
り、どのようなストライプ構造にも適用できる。
Other I such as InGaAsP, AlInAs, AIInP, etc.
It goes without saying that the same effects can be obtained even if a II-V or II-VI compound semiconductor material is used as long as it satisfies the requirements of the present invention. Although the stripe structure was not mentioned, it is natural to adopt a stripe structure in the field of semiconductor lasers. The present invention is characterized by its laminated structure, and can be applied to any striped structure.

(発明の効果) 以上のように本発明によれば活性層4への電子及び正孔
の注入が効率良く行なわれ、がっクラッド層2,5へ漏
出することが抑止される。この結果、低閾値電流で発振
し、高温においても閾値電流が上がらず低電流で動作す
る半導体レーザが得られる。
(Effects of the Invention) As described above, according to the present invention, electrons and holes are efficiently injected into the active layer 4, and leakage to the cladding layers 2 and 5 is suppressed. As a result, a semiconductor laser that oscillates at a low threshold current and operates at a low current without increasing the threshold current even at high temperatures can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a)は本発明の半導体レーザの断面図、第1図
(b)はその活性層付近のエネルギー帯図である。 第2図(a)は従来の半導体レーザの断面図、第2図(
b)はその活性層付近のエネルギー帯図である。 図中、1・・・基板、2・・・n型クラッド層、3・・
・第1バリア層、4.・・活性層、5・・・第2バリア
層、6・・・p型クラッド層、7・・・p型キャップ層
、8・・・p型電極、9・−n型電極オ 1 図 (a) (b)
FIG. 1(a) is a cross-sectional view of a semiconductor laser of the present invention, and FIG. 1(b) is an energy band diagram near its active layer. Figure 2(a) is a cross-sectional view of a conventional semiconductor laser;
b) is an energy band diagram near the active layer. In the figure, 1... substrate, 2... n-type cladding layer, 3...
- First barrier layer, 4. ...Active layer, 5. Second barrier layer, 6. P-type cladding layer, 7. P-type cap layer, 8. P-type electrode, 9.-n-type electrode 1. a) (b)

Claims (1)

【特許請求の範囲】[Claims] 活性層と、該活性層を両側から挟み、該活性層よりも禁
制帯幅が大きいp型クラッド層とn型クラッド層とを備
え、前記活性層と前記n型クラッド層の間に、価電子帯
上端の電子エネルギーが該活性層と該n型クラッド層の
どちらよりも小さい第1のバリア層を、前記活性層と前
記p型クラッド層の間には電子親和力が該活性層と該p
型クラッド層のどちらよりも小さい第2のバリア層を有
することを特徴とする半導体レーザ。
An active layer, a p-type cladding layer and an n-type cladding layer sandwiching the active layer from both sides and having a larger forbidden band width than the active layer, and between the active layer and the n-type cladding layer, valence electrons are A first barrier layer in which the electron energy at the upper end of the band is smaller than either the active layer or the n-type cladding layer, and a first barrier layer in which the electron affinity between the active layer and the p-type cladding layer is smaller than that in the active layer and the p-type cladding layer.
A semiconductor laser comprising a second barrier layer smaller than either of the mold cladding layers.
JP26283985A 1985-11-21 1985-11-21 Semiconductor laser Pending JPS62122190A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26283985A JPS62122190A (en) 1985-11-21 1985-11-21 Semiconductor laser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26283985A JPS62122190A (en) 1985-11-21 1985-11-21 Semiconductor laser

Publications (1)

Publication Number Publication Date
JPS62122190A true JPS62122190A (en) 1987-06-03

Family

ID=17381332

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26283985A Pending JPS62122190A (en) 1985-11-21 1985-11-21 Semiconductor laser

Country Status (1)

Country Link
JP (1) JPS62122190A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0513809A (en) * 1991-07-03 1993-01-22 Nec Corp Semiconductor light emitting element
JP2003017813A (en) * 2000-10-04 2003-01-17 Matsushita Electric Ind Co Ltd Semiconductor laser
US20120267641A1 (en) * 2009-12-31 2012-10-25 Huo Dongming Epitaxial wafer for light emitting diode, light emitting diode chip and methods for manufacturing the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0513809A (en) * 1991-07-03 1993-01-22 Nec Corp Semiconductor light emitting element
JP2003017813A (en) * 2000-10-04 2003-01-17 Matsushita Electric Ind Co Ltd Semiconductor laser
US20120267641A1 (en) * 2009-12-31 2012-10-25 Huo Dongming Epitaxial wafer for light emitting diode, light emitting diode chip and methods for manufacturing the same
US9093596B2 (en) * 2009-12-31 2015-07-28 Byd Company Limited Epitaxial wafer for light emitting diode, light emitting diode chip and methods for manufacturing the same

Similar Documents

Publication Publication Date Title
US5321712A (en) Semiconductor light-emitting device having a cladding layer composed of an InGaAlp-based compound
EP0975073B1 (en) Semiconductor laser
JP3360962B2 (en) Semiconductor laser
US4313125A (en) Light emitting semiconductor devices
JPS62122190A (en) Semiconductor laser
JPH07245447A (en) Semiconductor laser
JPH0697592A (en) Semiconductor laser and manufacture thereof
JPH05160504A (en) Semiconductor laser device
US20040136427A1 (en) Semiconductor optical device
JP3403915B2 (en) Semiconductor laser
JP3033333B2 (en) Semiconductor laser device
JP2555984B2 (en) Semiconductor laser and manufacturing method thereof
JP2748570B2 (en) Semiconductor laser device
EP1130722A2 (en) Semiconductor laser device
JP2004111743A (en) Semiconductor optical device
JP3202985B2 (en) Semiconductor laser device
Hagen et al. Experimental determination of the relation between modal gain and current density for AlGaAs single quantum well lasers grown by metalorganic vapor phase epitaxy
JPH0467353B2 (en)
KR0130066B1 (en) Semiconductor laser devices and process for making them
JP2865325B2 (en) Semiconductor laser device
JPS62137893A (en) Semiconductor laser
JPH04150087A (en) Visible light semiconductor laser device
JP3309394B2 (en) Semiconductor light emitting device
JPH01138782A (en) Semiconductor laser device
JPH0590706A (en) Semiconductor laser element