JPS62122034A - X-ray source unit for x-ray exposure - Google Patents

X-ray source unit for x-ray exposure

Info

Publication number
JPS62122034A
JPS62122034A JP60263545A JP26354585A JPS62122034A JP S62122034 A JPS62122034 A JP S62122034A JP 60263545 A JP60263545 A JP 60263545A JP 26354585 A JP26354585 A JP 26354585A JP S62122034 A JPS62122034 A JP S62122034A
Authority
JP
Japan
Prior art keywords
voltage electrode
electrode
plasma
ray
high voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60263545A
Other languages
Japanese (ja)
Inventor
Norihiko Ninomiya
二宮 紀彦
Toshio Kato
俊夫 加藤
Ikuo Okada
岡田 育夫
Yasunao Saito
斉藤 保直
Hideo Yoshihara
秀雄 吉原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Nichicon Corp
Original Assignee
Nichicon Capacitor Ltd
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nichicon Capacitor Ltd, Nippon Telegraph and Telephone Corp filed Critical Nichicon Capacitor Ltd
Priority to JP60263545A priority Critical patent/JPS62122034A/en
Publication of JPS62122034A publication Critical patent/JPS62122034A/en
Pending legal-status Critical Current

Links

Landscapes

  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

PURPOSE:To realize a long service life and stabilize the radiation of X-rays, by applying a tungsten alloy for an electrode material in a plasma generating chamber. CONSTITUTION:A plasma generating chamber 3 is composed by furnishing a high voltage electrode 4 and a low voltage electrode 5 with the electrode end applying a high melting point material. On both conditions when a hole is not made at the center of the high voltage electrode in an ordinary case (A), and when a hole is made there (B), a metal plate of a high melting point, such as a copper-tungsten alloy or a silver-tungsten alloy, is fixed to the end 4a of the high voltage electrode 4 and the opposite low voltage electrode 5 at the discharge generating electrode ends, in soldering, shrinkage fit, or bolting. Although it is most favorable to form the whole bodies of the high voltage electrode 4 and the low voltage electrode 5 with unitary tungsten alloys, such an alloy may be used only for the ends for the purpose of economy because it is expensive.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は高温、高密度プラズマのピンチ効果を応用した
軟X線発生の動作安定に関するもので、超LSIの製造
時に使用されるX線露光用線源装置に関するものである
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to stable operation of soft X-ray generation by applying the pinch effect of high-temperature, high-density plasma. This relates to the source device.

従来の技術 従来のX線露光用線源装置は2極の電極間にコンデンサ
の放電によって、パルス的な大電流を流してアークプラ
ズマを生成させ、その後自己磁場によってプラズマをピ
ンチさせて軟X線を発生させていた。
Conventional technology A conventional radiation source device for X-ray exposure generates arc plasma by passing a large pulsed current between two electrodes by discharging a capacitor, and then pinching the plasma using a self-magnetic field to generate soft X-rays. was occurring.

この種の装置は通常コンデンサに蓄えたエネルギーを低
インピーダンス回路でプラズマ生成室の放電電極へ供給
することから、その電流は数百kAにも達し、アークプ
ラズマは2龍φ以下にも及ぶ極度なピンチ効果を示す。
This type of device usually supplies the energy stored in a capacitor to the discharge electrode in the plasma generation chamber through a low impedance circuit, so the current reaches several hundred kA, and the arc plasma has an extremely high temperature of less than 2 φ. Showing the pinch effect.

発明が解決しようとする問題点 しかしながら、高温、高密度のプラズマは放電電極を極
度に溶解し、局部的に穴をあけるような消耗現象を示し
て不安定なプラズマ生成を生じ、そのために再現性の悪
いかつ安定したスポットのX′4iA源ができない欠点
があり、現在産業用磁器には殆ど使用されていない。
Problems to be Solved by the Invention However, high-temperature, high-density plasma extremely melts the discharge electrode and exhibits a consumption phenomenon that creates holes locally, resulting in unstable plasma generation, which makes reproducibility difficult. It has the drawbacks of poor quality and the inability to produce a stable spot X'4iA source, and is currently hardly used for industrial porcelain.

問題点を解決するための手段 本発明は上記の欠点を除去したX線露光用線源装置を堤
供しようとするものである。
Means for Solving the Problems The present invention seeks to provide a source device for X-ray exposure that eliminates the above-mentioned drawbacks.

一対の高圧電極と低圧電極の間に大電流を流して生成す
るプラズマによりX線を発生させるX線露光用線源装置
において、プラズマ生成室の高圧電極と低圧電極または
その一部に融点の高いタングステンまたはタングステン
に銀あるいは銅を組合せたタングステン合金を用いるも
のである。
In an X-ray exposure source device that generates X-rays by plasma generated by passing a large current between a pair of high-voltage electrodes and a low-voltage electrode, the high-voltage electrode and low-voltage electrode or a part thereof in the plasma generation chamber have a high melting point. Tungsten or a tungsten alloy that is a combination of tungsten and silver or copper is used.

作用 高圧電極と低圧電極の電極面の消耗を少なくすることが
でき、その結果、長期間にわたって再現性の良いX線を
発生することができる。
Wear of the electrode surfaces of the working high-voltage electrode and the low-voltage electrode can be reduced, and as a result, X-rays can be generated with good reproducibility over a long period of time.

実施例 第1図は本発明のX線露光用線源装置に使用するプラズ
マ生成室の一実施例を示す。
Embodiment FIG. 1 shows an embodiment of a plasma generation chamber used in the X-ray exposure source device of the present invention.

■はコンデンサ、2はスイッチ、3はプラズマ生成室、
4は高圧電極、5は低圧電極、6は絶縁物、7はX線取
り出し窓8を気密に具備した容器、9は電流、10はピ
ンチプラズマ、11はX線である。
■ is a capacitor, 2 is a switch, 3 is a plasma generation chamber,
4 is a high voltage electrode, 5 is a low voltage electrode, 6 is an insulator, 7 is a container airtightly equipped with an X-ray extraction window 8, 9 is an electric current, 10 is a pinch plasma, and 11 is an X-ray.

高圧電極4、低圧電極5、絶縁物6ならびに容器7は図
示してないが各々バッキングを介してボルト締付けによ
り気密に保持され、プラズマ生成室3を形成する。また
コンデンサエはスイッチ2を介して絶縁物6により絶縁
された高圧電極4と低圧電極5に接続されている。
Although not shown, the high voltage electrode 4, the low voltage electrode 5, the insulator 6, and the container 7 are each held airtight through a backing by tightening bolts to form the plasma generation chamber 3. Further, the capacitor is connected via a switch 2 to a high voltage electrode 4 and a low voltage electrode 5 which are insulated by an insulator 6.

次に動作について説明する。Next, the operation will be explained.

図示しない直流電源よりコンデンサ1に電荷を供給して
所定の電圧まで充電する。
Charge is supplied to the capacitor 1 from a DC power source (not shown) to charge it to a predetermined voltage.

図示しない外的要因によってスイッチ2を閉じてプラズ
マ生成室3の高圧電極4と低圧電極5に電圧を印加して
アーク放電を起こさせると、電流9は徐々に増加し、1
0μs以下で数百kAにも達する。このような衝撃大電
流が流れると自己磁場によりそのアークプラズマは急速
にピンチ効果(自己収束)を生じ、2flφ以下のピン
チプラズマ10を生成し、温度は1keV、密度は10
18CI11−3以上にも達し、プラズマの相互作用に
より強いX線を放出する。その後、電流9は徐々に減衰
をはじめ、ピンチしたプラズマはプラズマ圧力に自己磁
場圧力が負けて崩壊していく。
When the switch 2 is closed by an external factor (not shown) and a voltage is applied to the high-voltage electrode 4 and low-voltage electrode 5 of the plasma generation chamber 3 to cause arc discharge, the current 9 gradually increases to 1
It reaches several hundred kA in less than 0 μs. When such a large impact current flows, the arc plasma rapidly causes a pinch effect (self-convergence) due to its self-magnetic field, generating a pinch plasma 10 of less than 2 flφ, with a temperature of 1 keV and a density of 10
It reaches more than 18CI11-3 and emits strong X-rays due to plasma interaction. Thereafter, the current 9 gradually begins to attenuate, and the pinched plasma collapses as the self-magnetic field pressure is overcome by the plasma pressure.

さて、このようにして得られたX線11は>l透過性の
良好な材料で作られたX線取り出し窓8を介して外部へ
取り出され、図示しないが超LSIのX線露光を行うた
めに、X線マスクを介してレジスト(高分子膜)を塗布
したウェハーに照射して露光(転写)を行う。
Now, the X-rays 11 obtained in this way are taken out to the outside through the X-ray extraction window 8 made of a material with good transparency, and although not shown, is used for X-ray exposure of the VLSI. Next, exposure (transfer) is performed by irradiating the wafer coated with resist (polymer film) through an X-ray mask.

従来のX線露光用線源装置においては、プラズマ生成室
3内での放電は当初比較的安定な状態で生じるが、回数
の増加と共にプラズマのピンチ効果による局部的な損傷
が高圧電極4の高圧電極端4aの中央部に生じる。強い
X線を得ようとして数μsで数百kAに達するパルス電
流を流すと、そのプラズマのピンチされた2龍φ以下に
まで細くなり、その高温、高密度プラズマは高圧電極4
、低圧電極5を容易に溶かす欠点がある。
In the conventional X-ray exposure source device, the discharge in the plasma generation chamber 3 initially occurs in a relatively stable state, but as the number of discharges increases, local damage due to the pinch effect of the plasma occurs and the high voltage of the high voltage electrode 4 increases. This occurs at the center of the electrode end 4a. In an attempt to obtain strong X-rays, when a pulse current reaching several hundred kA is passed in a few μs, the plasma becomes thinner than the pinched 2 φ, and the high-temperature, high-density plasma passes through the high-voltage electrode 4.
However, it has the disadvantage that the low voltage electrode 5 is easily melted.

本発明はこのような従来の欠点を除去した電極端部に融
点の高い材料を用いた高圧電極と低圧電極を備えたX線
露光用線源装置で、第2図はプラズマ生成室を形成する
高圧電極と低圧電極の要部を示し、(イ)は高圧電極の
中央部に孔を設けない一般的な場合、(IIりは高圧電
極の中央部に孔を設けた場合で、いずれも放電を生じる
電極端部に融点の高い銅−タングステン合金や銀−タン
グステン合金のような金属板を高圧電極端4aと、これ
と対向する低圧電極5にろう付、やきばめ、ボルト締付
なとの方法で固着する。
The present invention is an X-ray exposure source device that eliminates such conventional drawbacks and is equipped with a high voltage electrode and a low voltage electrode using a material with a high melting point at the end of the electrode. The main parts of high-voltage electrodes and low-voltage electrodes are shown. (A) shows the general case where no hole is provided in the center of the high-voltage electrode, and (II) shows the case where a hole is provided in the center of the high-voltage electrode. A metal plate such as a copper-tungsten alloy or a silver-tungsten alloy with a high melting point is attached to the high voltage electrode end 4a and the low voltage electrode 5 facing it by brazing, blind fitting, or bolting. Fix it using the following method.

高圧電極、低圧電極ともタングステン合金の一体物で造
れば最良であるが、高価で経済性を考慮すれば電極端部
にのみ使用するのが良い。
It would be best if both the high-voltage electrode and the low-voltage electrode were made of a single piece of tungsten alloy, but considering the cost and economy, it is better to use it only at the end of the electrode.

第2図(イ)の構造において、電流9の増加に伴い自己
電流による自己磁場の圧力によりプラズマは徐々に高圧
電極端4aの中央部へと収束をはじめ、このピンチ効果
はきわめて細い高温、高密度のピンチプラズマ10を生
成する。このピンチプラズマ10は電極を溶かすが、上
述した銅電極の場合は100回の放電で直径約5鰭のく
さび状の孔が高圧電極端4aの中央部に約10鶴にも達
し、かつ低圧電極5の中央孔部を溶かしたのに対し、本
発明では同一条件で電極表面が若干荒れた程度に留まり
、プラズマの安定性に何ら悪影響を及ぼさなかった。そ
して断続して10,000回の放電を行っても電極の消
耗は軽微で、実用上X線の放出は安定し有効であった。
In the structure shown in Fig. 2 (A), as the current 9 increases, the plasma gradually begins to converge toward the center of the high-voltage electrode end 4a due to the pressure of the self-magnetic field caused by the self-current. A dense pinch plasma 10 is generated. This pinch plasma 10 melts the electrode, but in the case of the above-mentioned copper electrode, a wedge-shaped hole with a diameter of about 5 fins reaches about 10 holes in the center of the high voltage electrode end 4a after 100 discharges, and the low voltage electrode In contrast, in the present invention, the electrode surface was only slightly roughened under the same conditions, and there was no adverse effect on the stability of the plasma. Even when the discharge was performed 10,000 times intermittently, the wear of the electrodes was slight, and the emission of X-rays was stable and effective in practice.

電極の形状には種々のものが考えられるが、−例として
第2図(ロ)の構造の場合、高圧電極端4aのプラズマ
の発生する部分に最初から孔を設は士おく。プラズマは
集中して生成するが、一部のプラズマは円筒状の内面へ
と移行し、電極面の電流密度は孔なしと比較して温かに
小さくなり、長寿命化に有益であり、本発明を加味する
ことによってさらに長寿命を達成することができる。
Various electrode shapes are possible; for example, in the case of the structure shown in FIG. 2(b), a hole is provided from the beginning in the part of the high-voltage electrode end 4a where plasma is generated. Plasma is generated in a concentrated manner, but some of the plasma migrates to the inner surface of the cylindrical shape, and the current density on the electrode surface becomes warmer and smaller than that without holes, which is beneficial for extending the life of the electrode. By taking this into account, even longer life can be achieved.

第3図は本発明のX線露光用線源装置に使用するプラズ
マ生成室の他の実施例を示す。
FIG. 3 shows another embodiment of the plasma generation chamber used in the X-ray exposure source device of the present invention.

構成は低圧電極5の先端部の形状を除いて第1図と同一
であり、また符号についても相当部分には同一符号を付
しているので説明を省略する。
The configuration is the same as that in FIG. 1 except for the shape of the tip of the low-voltage electrode 5, and the same reference numerals are given to corresponding parts, so a description thereof will be omitted.

動作原理は第1図とほぼ同じであるが、プラズマの生成
過程が異なる。高圧電極4と低圧電極5の間に電圧が印
加されると、絶縁物6の沿面6aで初期放電すなわちプ
ラズマを生成して初期電流9aが流れる。電流の増加と
ともにこの電流が作る自己磁場とプラズマとの相互作用
により、プラズマは電磁力によって徐々に外側(第3図
では下部方向)へ移動し、電流9も同様に移動し、いず
れ強力な自己磁場によって高圧電極4の外側でピンチプ
ラズマ10を生成して強力なXwAを放出する。
The operating principle is almost the same as that in FIG. 1, but the plasma generation process is different. When a voltage is applied between the high voltage electrode 4 and the low voltage electrode 5, an initial discharge or plasma is generated on the creeping surface 6a of the insulator 6, and an initial current 9a flows. As the current increases, the plasma gradually moves outward (toward the bottom in Figure 3) due to electromagnetic force due to the interaction between the self-magnetic field created by this current and the plasma, and the current 9 moves in the same way, eventually forming a strong self-magnetic field. Pinch plasma 10 is generated outside the high-voltage electrode 4 by the magnetic field, and strong XwA is emitted.

この種のX線発生装置においても、電極の消耗が激しい
ので、本発明のタングステン合金を使用すると消耗が著
しく軽減される。
Even in this type of X-ray generator, the electrodes are subject to severe wear, so use of the tungsten alloy of the present invention significantly reduces the wear.

高融点のタングステン合金は高電導度の銀や銅を主成分
として組合わせた焼結材が良く、また炭化タングステン
と銀を組合わせたものも良好である。これらは大電流域
ですぐれた耐アーク性、耐溶融性を示し、消耗の少ない
信頬性の高い電極材として使用できる。しかしタングス
テンに対し銀または銅の配合比が多すぎると消耗は激し
くなり、また配合比が少なすぎるとクラックが生じるな
どの欠点があることから、その成分比は (!艮または銅:タングステン) =(2:8)〜(5
:5)の範囲にあるものが効果的であった。
As for the high melting point tungsten alloy, a sintered material which is a combination of high conductivity silver or copper as the main component is good, and a combination of tungsten carbide and silver is also good. These exhibit excellent arc resistance and melting resistance in a large current range, and can be used as electrode materials with low wear and high reliability. However, if the ratio of silver or copper to tungsten is too high, wear will be severe, and if the ratio is too low, cracks will occur. (2:8)~(5
:5) were effective.

電極の消耗は極性効果や両電極の構造によることから、
必ずしも両電極にタングステン合金を使用する必要はな
く、消耗の激しい片方の電極に使用しても効果がある。
Since electrode wear is due to polarity effects and the structure of both electrodes,
It is not necessarily necessary to use tungsten alloy for both electrodes, and it is effective to use it for one electrode, which is subject to severe wear.

発明の効果 叙上のように本発明のX線露光用線源装置はプラズマ生
成室の電極材としてタングステン合金を使用することに
よって、従来の銅や黄銅の電極に比べて100倍以上の
長寿命化を達成することができ、X線の放出もきわめて
安定し、産業上実用化へ寄与するところ大である。
Effects of the Invention As described above, the X-ray exposure source device of the present invention uses a tungsten alloy as the electrode material in the plasma generation chamber, so it has a lifespan more than 100 times longer than conventional copper or brass electrodes. The present invention is capable of achieving a high degree of stability, and the emission of X-rays is extremely stable, making it a great contribution to industrial practical application.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明のX線露光用線源装置に使用するプラズ
マ生成室の一実施例の説明用断面図、第2図は本発明に
係るプラズマ生成室を形成する高圧電極と低圧電極の要
部の説明用断面図で、(イ)は高圧電極の中央部に孔を
設けない場合、(ロ)は高圧電極の中央部に孔を設けた
場合、第3図は本発明のX線露光用線源装置に使用する
プラズマ生成室の他の実施例の説明用断面図である。 l:コンデンサ 2:スイッチ
FIG. 1 is an explanatory cross-sectional view of one embodiment of a plasma generation chamber used in the X-ray exposure source device of the present invention, and FIG. 2 is a cross-sectional view of a high-voltage electrode and a low-voltage electrode forming the plasma generation chamber according to the present invention. These are explanatory cross-sectional views of the main parts, (A) shows the case where no hole is provided in the center of the high voltage electrode, (B) shows the case where the hole is provided in the center of the high voltage electrode, and FIG. 3 shows the case where the hole is provided in the center of the high voltage electrode. FIG. 7 is an explanatory cross-sectional view of another embodiment of a plasma generation chamber used in an exposure radiation source device. l: Capacitor 2: Switch

Claims (2)

【特許請求の範囲】[Claims] (1)一対の高圧電極と低圧電極の間に大電流を流して
生成されるプラズマによりX線を発生するX線露光用線
源装置において、上記電極の一部または全部にタングス
テン合金を用いたことを特徴とするX線露光用線源装置
(1) In an X-ray exposure source device that generates X-rays by plasma generated by passing a large current between a pair of high-voltage electrodes and a low-voltage electrode, a tungsten alloy is used for some or all of the electrodes. A radiation source device for X-ray exposure characterized by the following.
(2)タングステン合金の組合せが銀または銅であって
、その成分比が(銀または銅:タングステン)=(2:
8)〜(5:5)であることを特徴とする特許請求の範
囲第1項記載のX線露光用線源装置。
(2) The combination of tungsten alloy is silver or copper, and the component ratio is (silver or copper: tungsten) = (2:
8) to (5:5), the radiation source device for X-ray exposure according to claim 1.
JP60263545A 1985-11-21 1985-11-21 X-ray source unit for x-ray exposure Pending JPS62122034A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60263545A JPS62122034A (en) 1985-11-21 1985-11-21 X-ray source unit for x-ray exposure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60263545A JPS62122034A (en) 1985-11-21 1985-11-21 X-ray source unit for x-ray exposure

Publications (1)

Publication Number Publication Date
JPS62122034A true JPS62122034A (en) 1987-06-03

Family

ID=17391025

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60263545A Pending JPS62122034A (en) 1985-11-21 1985-11-21 X-ray source unit for x-ray exposure

Country Status (1)

Country Link
JP (1) JPS62122034A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60133644A (en) * 1983-12-21 1985-07-16 Hitachi Ltd Plasma x-ray generator
JPS60175351A (en) * 1984-02-14 1985-09-09 Nippon Telegr & Teleph Corp <Ntt> X rays generation device and x rays exposure method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60133644A (en) * 1983-12-21 1985-07-16 Hitachi Ltd Plasma x-ray generator
JPS60175351A (en) * 1984-02-14 1985-09-09 Nippon Telegr & Teleph Corp <Ntt> X rays generation device and x rays exposure method

Similar Documents

Publication Publication Date Title
US5502354A (en) Direct current energized pulse generator utilizing autogenous cyclical pulsed abnormal glow discharges
Bochkov et al. Sealed-off pseudospark switches for pulsed power applications (current status and prospects)
WO2001078469A3 (en) Z-pinch plasma x-ray source using surface discharge preionization
JPH03500109A (en) Plasma switch with disordered chromium cold cathode
US5828176A (en) Planar crossed-field plasma switch and method
US5014289A (en) Long life electrodes for large-area x-ray generators
US4360757A (en) Electrode activating compound for gas discharge tube
JP2564390B2 (en) Vacuum switch
JPH06215700A (en) Compact high current crossing electric field plasma switch
JPS62122034A (en) X-ray source unit for x-ray exposure
KR100912334B1 (en) Gas discharge tube
US2452626A (en) Electron emitter
US3723783A (en) Gaseous discharge high intensity lamp with fluid cooled electrode
JPS6226879A (en) Metal vapor laser oscillation tube
US2845324A (en) Gas discharge tube
Hsu et al. A high‐power electron beam source based on the superemissive cathode
Weber et al. Plasma-filled rod-pinch diode experiment on Gamble II
JPS6394535A (en) Electron beam sheet former
US3198968A (en) Thermoelectric conversion process and apparatus
Kirkman‐Amemiya et al. High current back lighted thyratron switch
JPH02288386A (en) Gas laser oscillator
JPS5949149A (en) Plasma cathode electron beam generator and generating method
JP3122348U (en) Discharge tube
Frants et al. Ceramic-metal sealed-off pseudospark switch with a trigger unit based on flashover
JP3123309U (en) Discharge tube