JPS6212183B2 - - Google Patents

Info

Publication number
JPS6212183B2
JPS6212183B2 JP5110581A JP5110581A JPS6212183B2 JP S6212183 B2 JPS6212183 B2 JP S6212183B2 JP 5110581 A JP5110581 A JP 5110581A JP 5110581 A JP5110581 A JP 5110581A JP S6212183 B2 JPS6212183 B2 JP S6212183B2
Authority
JP
Japan
Prior art keywords
salt
glass plate
alloy film
water
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP5110581A
Other languages
Japanese (ja)
Other versions
JPS57166338A (en
Inventor
Takayuki Kobayashi
Akira Tamamura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP5110581A priority Critical patent/JPS57166338A/en
Publication of JPS57166338A publication Critical patent/JPS57166338A/en
Publication of JPS6212183B2 publication Critical patent/JPS6212183B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Surface Treatment Of Glass (AREA)
  • Chemically Coating (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は熱線反射性能が高く、かつ耐久性にも
優れた高性能な熱線反射ガラス及びその熱線反射
ガラスを低公害で製造する方法に関するものであ
る。 ガラス板表面に銀、ニツケル、金、アルミニウ
ムなどの金属の薄い透明乃至半透明の被膜を設
け、太陽光線あるいは輻射光線中の熱線部を反射
し遮断する様にしたガラス板は、熱線反射ガラス
板として知られ、建造物、交通車輛あるいは各種
装置、器具に単板ガラスとして、あるいは複数ガ
ラスとして、あるいは合せガラスとして使用され
ている。かかる金属被覆熱線反射ガラスの中で
Cu被膜を形成したものは、熱線反射性能が最も
優れているが、耐食性が不十分であり耐久性に問
題がある。一方ニツケル被膜を形成したものは耐
食性が十分であり耐久性も問題が少ないが、熱線
反射性能がCuに比べ劣つているという欠点があ
る。 本発明は、上記した様な欠点のない熱線反射ガ
ラスを提供することを目的として研究の結果、
Ni及びCuとを組み合わせ、更にこれらにBも組
み合わせることによりNi及びCuのそれぞれの長
所が発揮され、及び熱線反射性能、即ち、熱貫流
率(Kvalue)が2.0以下で遮蔽係数(SC)が0.20
以下を有し、かつ高い耐久性をも有する熱線反射
ガラスが得られることを見出し、本発明として提
案するに到つたものである。 即ち、本発明は、ガラス面に透明性Ni―Cu―
B合金膜を形成してなる熱線反射ガラスに関する
ものである。 即ち、本発明は、Ni塩及びCu塩、並びにNi塩
及びCu塩を還元する還元剤としてホウ水素化ア
ルカリ類、あるいはアミンボラン類とをガラス板
面に作用させてNi塩及びCu塩を化学的に還元さ
せてNi―Cu―B合金膜を形成することを特徴と
する熱線反射ガラスの製法に関するものである。 以下、本発明を更に詳細に説明する。 本発明における透明性Ni―Cu―B合金膜は、
充分な熱線反射性能と耐食性を高めるためにNi
とCuとBとを合金化したものであり、透明性Ni
―Cu―B合金膜の各成分の組成はNiを1wt%〜
20wt%、Cuを75wt%〜99wt%、Bを5wt%以
下、更に好ましくはNiを1wt%〜10wt%、Cuを
89wt%〜99wt%、Bを0.001wt%〜1wt%とする
のが最適である。Niの割合が20%より大となる
と、熱線反射性能が低下し好ましくなく、又1%
より小となると耐食性が不十分となり好ましくな
い。 又Cuの割合が99%より大となると耐食性が不
十分となり好ましくなく、又75%より小となると
熱線反射性能が低下し好ましくない。 又、Bの割合が5%より大となると、熱線反射
性能が低下し好ましくない。 この透明性Ni―Cu―B合金膜の膜厚は、透明
乃至半透明性と所望の熱線反射率、透過率等の光
学特性が得られる様に、10Å〜1000Åの範囲が適
当であり、更には100Å〜700Åの範囲とするのが
特に好ましい。 なお、本発明のNi―Cu―B合金膜の色調は、
Ni含有率を変えることにより中性〜銅色の間で
コントロールすることが可能である。例えばNi
含有率を高めれば中性色が得られ、一方Ni…含
有率を下げれば銅色が得られる。 かかる透明性Ni―Cu―B合金膜をガラス板面
に形成する方法としては、Ni塩とCu塩と、Ni,
Cu塩を還元する還元剤としてホウ水素化アルカ
リ類あるいはアミンボラン類をガラス板面に作用
させてNi塩及びCu塩を化学的に還元させてNi―
Cu―B合金膜を形成する方法が採用される。更
に具体的には、例えば次の工程によりNi―Cu―
B合金膜が形成される。 (1) ガラス板の被膜形成面を水洗、あるいは洗浄
剤洗浄、あるいは又酸化セリウムなどの研磨剤
を用いた研磨洗浄などにより清浄化する。 (2) ガラス板面を室温付近の温度において短時間
塩化第一錫などの希薄錫塩溶液と接触させ、次
いで水、好ましくは蒸留水又は脱イオン水で洗
浄する。 (3) 必要に応じ更に希薄錫塩溶液にて処理を行
い、次いで水洗する。 (4) 次いでガラス板面にNi塩とCu塩と、Ni,Cu
塩を還元させる還元剤としてホウ水素化アルカ
リ類、あるいはアミンボラン類とを作用させて
化学的にNi塩とCu塩とをほぼ同時に還元させ
てNi―Cu―B合金膜と沈着させる。 (5) Ni―Cu―B合金膜の形成されたガラス板を
洗浄する。 上記したガラス板面にNi塩とCu塩と還元剤と
を作用させる方法としては、Ni塩溶液とCu塩溶
液、あるいは、Ni塩―Cu塩の混合溶液と還元剤
を含んだ溶液をそれぞれ同時にスプレーする方
法、あるいはスプレー前に前記溶液の2種あるい
は3種を混合してスプレーする方法、あるいは3
種の混合溶液をガラス板面にロールコートなどに
より被覆する方法、あるいは、Ni塩溶液とCu塩
溶液、あるいはこれらの混合溶液をスプレーガン
の中で混合して単一溶液としてスプレーする方法
あるいはこれらの類以方法が最も代表的な例とし
て挙げられる。Ni―Cu―B被膜を形成するのに
使用されるNi塩及びCu塩溶液としては、従来よ
り無電解メツキ法に使用されている各種Ni塩、
Cu塩及び各種液組成のものが使用できる。例え
ば、Ni塩溶液としては、無機酸又は有機酸のニ
ツケル塩、例えば塩化ニツケル、硫酸ニツケル、
酢酸ニツケルあるいはニツケル塩の2種以上の混
合物と、ロツシエル塩、EDTA、クエン酸ナトリ
ウム、グルコン酸ナトリウム等の錯化剤とPH緩衝
剤とPH調節剤と更に必要に応じて適宜の添加剤を
含有する溶液、特に水溶液が最も代表的な例とし
て挙げられる。 又、Cu塩溶液としては、例えば、硝酸銅、硫
酸銅、酢酸銅などの銅塩あるいは混合銅塩とニツ
ケル塩溶液の場合と同様な錯化剤、PH緩衝剤、PH
調節剤および必要に応じて適宜の添加剤を含有す
る溶液、特に水溶液が最も代表的な例として挙げ
られる。 又、Ni―Cu―B合金膜のNi含有比率を高める
ためにPdを添加することもできる。この場合、
Pdの含有割合としては、1ppm〜100ppmの範囲
が適当である。なお、Pdの含有割合が100ppmを
超えるとNi含有率が過大となり好ましくなく、
又1ppm以下となるとNi含有率が低下するので好
ましくない。Pdを含有させる方法としてはNi―
Cu―B合金膜を化学的メツキ法により形成する
際に、Pd塩の型で作用させ、還元反応によりNi
―Cu―B合金膜の形に含有させる方法が採用さ
れる。 又、Ni―Cu―B合金膜の色調を中性にしたい
場合には、Ni塩溶液及び/又はCu塩溶液にアン
モニア水を添加すると効果的である。 上記したNi塩溶液のNi塩の濃度は0.01%〜1%
が適当であり、又Cu塩溶液のCu塩の濃度は0.02
%〜2%が適当である。 又、還元液としては、Ni塩とCu塩とを還元さ
せてNi―Cu―B合金膜を形成するのに効果的に
作用し、Ni―Cu被膜にBを含有させるのに効果
的なホウ水素化アルカリ類、あるいはアミンボラ
ン類が最適である。ホウ水素化アルカリ類として
は、例えば、水素化ホウ素、ナトリウム、水素化
ホウ素カリウム、水素化ホウ素リチウム等が挙げ
られ、又アミンボラン類としては、アミンボラ
ン、ジメチルアミンボラン、ジエチルアミンボラ
ン、トリメチルアミンボラン等が挙げられる。 このように化学的メツキ方法において還元剤と
して通常用いられている有害なホルマリンの代り
にホウ水素化アルカリ類、あるいはアミンボラン
類を用いているので、低公害でNi―Cu―B合金
膜を形成することができる。 又、本発明によりNi―Cu―B合金被膜を無電
解メツキにより析出させる際のメツキ時間は30秒
〜20分、好ましくは1分〜10分程度が最適であ
る。又無電解メツキする際のNi又はCuと還元
液、又はこれら塩と還元液を含む溶液の温度は、
10℃〜60℃の範囲、例えば30℃前後が最適であ
る。なお、無電解メツキ時の温度変化により
Ni,Cuの析出速度が異なるため、無電解メツキ
時の温度を一定に、例えば±3℃に保つことが色
ムラの発生を防止する上で重要である。又、無電
解メツキ時の基板の温度も10℃〜60℃、更に好ま
しくは室温付近が適当である。又、スプレー量、
メツキ時間などは、所望の膜厚が得られる様に適
宜選択される。 なお、本発明にあつては、ガラス板面に形成さ
れたNi―Cu―B合金膜の上層に保護コート、そ
の他の各種機能性薄膜を施こすこと、あるいは化
成処理すること、あるいは又、下層に接着性向上
コートその他の各種機能性薄膜を施こすことも可
能である。 ガラス板の種類としては、普通板ガラス、熱線
吸収ガラス、その他各種のガラス板が使用でき、
又、ポリカーボネート、メタアクリレート樹脂な
どのいわゆる有機ガラスも使用できる。 次に、本発明の実施例について説明する。 実施例 1 セリアで研磨した後、水洗したガラス板(300
mm×300mm×5mm)の表面に塩化第一錫水溶液
(濃度:SnCl20.8g/水1)をガラス板1m2
り5の割合の流量でスプレーして鋭敏化処理
し、水洗後直ちに塩化パラジウム水溶液(濃度:
PdCl25ml/水1)を同上の割合の流量でスプ
レーして活性化処理し、次いで水洗したその後こ
の処理したガラス板面にまだ湿潤状態において、
下記組成割合のA1液及びB1液を別々のスプレー
ガンからそれぞれ重なり合う様に各液の容量比約
1:1の割合でそれぞれガラス板1m2当り5の
割合の流量で同時にスプレーし、6分間保持して
ガラス板面に無電解メツキ法によりNi―Cu―B
合金膜を析出させた。 A1液 硫酸ニツケル 8.3g/ 硫酸銅 1.7g/ ロツセル塩 20g/ 苛性ソーダ 10g/ 塩化パラジウム(1%溶液) 2ml/ アンモニア水(29%溶液) 0.5ml/ 水 1 B1液 苛性ソーダ 0.25g/ 水素化ホウ素ナトリウム 0.125g/ 水 1 この様にして形成されたNi―Cu―B合金膜
は、500Åの膜厚で、Niを3.4wt%、Cuを96.5wt
%、Bを0.1wt%を含む組成の合金膜であつた。
この膜の耐久性試験結果は、第1表の通りであ
り、又光学特性曲線は第1図のcに示した様にな
つた。 実施例 2 下記A2液とB2液を用いて実施例1と同様な方
法によりNi―Cu―B合金膜を形成した。 A2液 硫酸ニツケル 8.3g/ 硫酸銅 1.7g/ ロツセル塩 20g/ 苛性ソーダ 10g/ 塩化パラジウム(1%溶液) 1ml/ 水 1 B2液 苛性ソーダ 0.25g/ 水素化ホウ素ナトリウム 0.125g/ 水 1 この様にして形成されたNi―Cu―B合金膜は
500Åの膜厚で、Niを2.0wt%、Cuを97.9wt%、
Bを0.1wt%を含む組成の合金膜であつた。この
膜の耐久性試験結果は第1表の通りであつた。 実施例 3 下記A3液とB3液を用いて実施例1と同様な方
法によりNi―Cu―B合金膜を形成した。 A3液 硫酸ニツケル 8.3g/ 硫酸銅 1.7g/ ロツセル塩 20g/ 苛性ソーダ 10g/ 塩化パラジウム(1%溶液) 2ml/ アンモニア水 0.5ml/ 水 1 B3液 苛性ソーダ 0.25g/ アミンボラン 5g/ 水 1 この様にして形成されたNi―Cu―B合金膜は
500Åの膜厚で、Niを3.2wt%、Cuを96.6wt%、
Bを0.2wt%を含む組成の合金膜であつた。この
膜の耐久性試験結果は第1表の通りであつた。 比較例 1 セリアで研磨した後、水洗したガラス板(300
mm×300mm×5mm)の表面に塩化第一錫水溶液
(濃度:SnCl20.8g/水1)をガラス板1m2
り5の割合の流量でスプレーして鋭敏化処理
し、水洗後直ちに塩化パラジウム水溶液(濃度:
PdCl25ml/水1)を同上の割合の流量でスプ
レーして活性化処理し次いで水洗した。その後、
この処理したガラス板面にまだ湿潤状態におい
て、下記組成割合のA4液及びB4液を別々のスプ
レーガンからそれぞれ重なり合う様に各液の容量
比約1:1の割合でそれぞれガラス板1m2当り5
の割合の流量でスプレーし、6分間保持してガ
ラス板面に無電解メツキ法によりNi―B合金膜
を析出させた。 A4液 酢酸ニツケル 5.0g/ グルコン酸ナトリウム 9.0g/ アンモニア水(39%) 2.0ml/ ホウ酸 2.5g/ 水 1 B4液 水素化ホウ素ナトリウム 0.5g/ 苛性ソーダ 0.2g/ 水 1 この様にして形成されたNi―B合金被膜は500
Åの膜厚であつた。又このNi―B合金被膜の性
能測定結果は第1表の通りであつた。 比較例 2 比較例1と同様な方法により処理したガラス板
面に下記組成割合のA5液、B5液を別々のスプレ
ーガンからそれぞれ重なり合う様にA5液、B5
を容量比で約1:1の割合で、かつガラス板1m2
当り5の割合の流量でスプレーし、2分間保持
してガラス板面に無電解メツキ法によりCu―B
合金膜を析出させた。 A5液 硫酸銅 5.0g/ グルコン酸ナトリウム 9.0g/ アンモニア水(39%) 2.0ml/ ホウ酸 2.5g/ 水 1 B5液 水素化ホウ素ナトリウム 0.5g/ 苛性ソーダ 0.2g/ 水 1 この様にして形成されたCu―B合金被膜は500
Åの膜厚であつた。又このCu―B合金被膜の性
能測定結果は第1表の通りであつた。 比較例 3 比較例1と同様な方法により処理したガラス板
面に下記組成割合のA6液、B6液を別々のスプレ
ーガンからそれぞれ重なり合う様に各液の容量比
約1:1の割合でそれぞれガラス板1m2当り5
の割合の流量でスプレーし、6分間保持してガラ
ス板面に無電解メツキ法によりNi―Cu合金膜を
析出させた。 A6液 硫酸銅 1g/ 硫酸ニツケル 2g/ ホルマリン(38%) 43ml/ 塩化パラジウム溶液(1%) 2ml/ 水 1 B6液 ロツセル塩 20g/ 苛性ソーダ 10g/ 水 1 この様にして形成された被膜は、500Åの膜厚
で、Niが7wt%、Cuが93wt%のNi―Cu合金膜で
あつた。又この膜の性能測定結果および色調は第
1表の通りであつた。
The present invention relates to a high-performance heat-ray reflective glass that has high heat-ray reflective performance and excellent durability, and a method for manufacturing the heat-ray reflective glass with low pollution. A glass plate that has a thin transparent or semi-transparent coating of metal such as silver, nickel, gold, or aluminum on its surface to reflect and block the heat rays of sunlight or radiant rays is called a heat-reflective glass plate. It is used as single glazing, multiple glazing, or laminated glass in buildings, transportation vehicles, and various devices and appliances. In such metal coated heat reflective glass
Those with a Cu coating have the best heat ray reflection performance, but have insufficient corrosion resistance and have durability problems. On the other hand, those with a nickel coating have sufficient corrosion resistance and have fewer problems with durability, but have the disadvantage that their heat ray reflection performance is inferior to that of Cu. The present invention was developed as a result of research aimed at providing a heat ray reflective glass that does not have the above-mentioned drawbacks.
By combining Ni and Cu, and further combining them with B, the respective advantages of Ni and Cu are exhibited, and the heat ray reflection performance, that is, the heat transmission coefficient (Kvalue) is 2.0 or less and the shielding coefficient (SC) is 0.20.
We have discovered that a heat ray reflective glass having the following properties and also high durability can be obtained, and have proposed the present invention. That is, the present invention provides transparent Ni--Cu-- on the glass surface.
This invention relates to a heat ray reflective glass formed by forming a B alloy film. That is, in the present invention, Ni salts and Cu salts, and borohydride alkalis or amineboranes as reducing agents for reducing the Ni salts and Cu salts are applied to the glass plate surface to chemically reduce the Ni salts and Cu salts. The present invention relates to a method for producing heat ray reflective glass, which is characterized by forming a Ni--Cu--B alloy film by reducing the Ni--Cu--B alloy film. The present invention will be explained in more detail below. The transparent Ni-Cu-B alloy film in the present invention is
Ni to increase sufficient heat ray reflection performance and corrosion resistance
It is an alloy of Cu and B, and transparent Ni
-The composition of each component of the Cu-B alloy film is 1wt% Ni ~
20wt%, Cu 75wt% to 99wt%, B 5wt% or less, more preferably Ni 1wt% to 10wt%, Cu
It is optimal that B is 89wt% to 99wt% and B is 0.001wt% to 1wt%. If the proportion of Ni is greater than 20%, the heat ray reflection performance will deteriorate, which is undesirable;
If it is smaller, the corrosion resistance will be insufficient, which is not preferable. Moreover, if the proportion of Cu is greater than 99%, the corrosion resistance will be insufficient, which is undesirable, and if the proportion of Cu is less than 75%, the heat ray reflection performance will be degraded, which is not preferable. Moreover, if the proportion of B is greater than 5%, the heat ray reflection performance will deteriorate, which is not preferable. The thickness of this transparent Ni-Cu-B alloy film is suitably in the range of 10 Å to 1000 Å so as to obtain transparency or semi-transparency and desired optical properties such as heat reflectance and transmittance. is particularly preferably in the range of 100 Å to 700 Å. The color tone of the Ni-Cu-B alloy film of the present invention is as follows:
By changing the Ni content, it is possible to control the color between neutral and copper. For example, Ni
If the Ni content is increased, a neutral color can be obtained, while if the Ni content is decreased, a copper color can be obtained. As a method for forming such a transparent Ni-Cu-B alloy film on the glass plate surface, Ni salt, Cu salt, Ni,
Ni-
A method of forming a Cu--B alloy film is adopted. More specifically, for example, Ni-Cu-
A B alloy film is formed. (1) Clean the coating surface of the glass plate by washing with water, cleaning with a cleaning agent, or polishing with an abrasive such as cerium oxide. (2) The glass plate surface is briefly contacted with a dilute tin salt solution, such as stannous chloride, at a temperature near room temperature, and then washed with water, preferably distilled or deionized water. (3) If necessary, further treat with dilute tin salt solution and then wash with water. (4) Next, Ni salt, Cu salt, and Ni, Cu salt were applied to the glass plate surface.
A borohydride alkali or an amine borane is used as a reducing agent to reduce the salt, and the Ni salt and Cu salt are chemically reduced almost simultaneously and deposited as a Ni--Cu--B alloy film. (5) Clean the glass plate on which the Ni-Cu-B alloy film is formed. The method of applying Ni salt, Cu salt, and reducing agent to the glass plate surface described above is to simultaneously apply a Ni salt solution and a Cu salt solution, or a mixed solution of Ni salt and Cu salt and a solution containing a reducing agent. A method of spraying, or a method of mixing two or three of the above solutions before spraying, or a method of spraying by mixing two or three of the above solutions before spraying.
A method of coating a glass plate with a mixed solution of seeds by roll coating, or a method of mixing a Ni salt solution and a Cu salt solution, or a mixed solution of these in a spray gun and spraying them as a single solution. The most typical example is the similar method. The Ni salt and Cu salt solution used to form the Ni-Cu-B film include various Ni salts conventionally used in electroless plating methods,
Cu salts and various liquid compositions can be used. For example, the Ni salt solution includes nickel salts of inorganic or organic acids, such as nickel chloride, nickel sulfate,
Contains a mixture of two or more types of nickel acetate or nickel salts, a complexing agent such as Rothsiel's salt, EDTA, sodium citrate, sodium gluconate, a PH buffer, a PH regulator, and appropriate additives as necessary. The most typical example is a solution, especially an aqueous solution. In addition, as the Cu salt solution, for example, the same complexing agent, PH buffer, PH
The most typical example is a solution, especially an aqueous solution, containing a regulator and, if necessary, appropriate additives. Furthermore, Pd can be added to increase the Ni content ratio of the Ni--Cu--B alloy film. in this case,
The appropriate content ratio of Pd is in the range of 1 ppm to 100 ppm. Note that if the Pd content exceeds 100 ppm, the Ni content will become excessive, which is not desirable.
Further, if it is less than 1 ppm, the Ni content will decrease, which is not preferable. As a method of incorporating Pd, Ni-
When forming Cu-B alloy film by chemical plating method, Pd salt type is used to form Ni by reduction reaction.
- A method is adopted in which Cu-B is contained in the form of an alloy film. Moreover, when it is desired to make the color tone of the Ni--Cu--B alloy film neutral, it is effective to add ammonia water to the Ni salt solution and/or the Cu salt solution. The concentration of Ni salt in the above Ni salt solution is 0.01% to 1%
is appropriate, and the concentration of Cu salt in the Cu salt solution is 0.02
% to 2% is appropriate. In addition, as a reducing solution, borohydride is used, which is effective in reducing Ni salt and Cu salt to form a Ni-Cu-B alloy film, and is effective in incorporating B into the Ni-Cu film. Alkali hydrides or amineboranes are most suitable. Examples of alkali borohydrides include borohydride, sodium, potassium borohydride, lithium borohydride, and examples of amineboranes include amineborane, dimethylamineborane, diethylamineborane, and trimethylamineborane. It will be done. In this way, borohydride alkalis or amineboranes are used instead of the harmful formalin normally used as a reducing agent in chemical plating methods, so a Ni-Cu-B alloy film can be formed with low pollution. be able to. Further, when the Ni--Cu--B alloy film is deposited by electroless plating according to the present invention, the plating time is optimally about 30 seconds to 20 minutes, preferably about 1 minute to 10 minutes. In addition, the temperature of Ni or Cu and the reducing solution during electroless plating, or the solution containing these salts and reducing solution, is as follows:
A temperature range of 10°C to 60°C, for example around 30°C, is optimal. Please note that due to temperature changes during electroless plating,
Since the precipitation rates of Ni and Cu are different, it is important to keep the temperature constant during electroless plating, for example at ±3°C, in order to prevent color unevenness. Further, the temperature of the substrate during electroless plating is preferably 10°C to 60°C, more preferably around room temperature. Also, the amount of spray,
The plating time and the like are appropriately selected so as to obtain the desired film thickness. In addition, in the present invention, applying a protective coat or other various functional thin films to the upper layer of the Ni-Cu-B alloy film formed on the glass plate surface, or applying a chemical conversion treatment to the lower layer It is also possible to apply an adhesion-enhancing coat or other various functional thin films to the surface. The types of glass plates that can be used include ordinary plate glass, heat-absorbing glass, and various other types of glass plates.
Furthermore, so-called organic glasses such as polycarbonate and methacrylate resin can also be used. Next, examples of the present invention will be described. Example 1 A glass plate (300
mm x 300 mm x 5 mm) was sensitized by spraying an aqueous solution of stannous chloride (concentration: SnCl 2 0.8 g/1 water) at a flow rate of 5 parts per square meter of glass plate, and immediately after washing with water, palladium chloride was applied. Aqueous solution (concentration:
Activation treatment was performed by spraying 5 ml of PdCl 2 /water 1) at the same flow rate as above, and after washing with water, the treated glass plate surface was still wet.
1 liquid A and 1 liquid B having the following composition ratios were sprayed simultaneously from separate spray guns so that they overlapped with each other at a volume ratio of approximately 1:1 at a flow rate of 5 parts per 1 m2 of glass plate, and 6 After holding for a minute, Ni-Cu-B was applied to the glass plate surface by electroless plating method.
An alloy film was deposited. A 1- part nickel sulfate 8.3g / Copper sulfate 1.7g / Rotussel salt 20g / Caustic soda 10g / Palladium chloride (1% solution) 2ml / Aqueous ammonia (29% solution) 0.5ml / Water 1 B 1- part caustic soda 0.25g / Hydrogenation Sodium boron 0.125g/Water 1 The Ni-Cu-B alloy film formed in this way has a thickness of 500 Å and contains 3.4wt% Ni and 96.5wt% Cu.
The alloy film had a composition containing 0.1 wt% of B.
The durability test results for this film are shown in Table 1, and the optical characteristic curve was as shown in c in FIG. Example 2 A Ni--Cu--B alloy film was formed in the same manner as in Example 1 using the following two solutions A and B. A 2- part nickel sulfate 8.3g / Copper sulfate 1.7g / Rotussel salt 20g / Caustic soda 10g / Palladium chloride (1% solution) 1ml / Water 1 B 2- part caustic soda 0.25g / Sodium borohydride 0.125g / Water 1 In this way The Ni-Cu-B alloy film formed by
With a film thickness of 500 Å, Ni is 2.0wt%, Cu is 97.9wt%,
The alloy film contained 0.1 wt% of B. The durability test results for this film are shown in Table 1. Example 3 A Ni--Cu--B alloy film was formed in the same manner as in Example 1 using the following 3 liquids A and 3 liquids B. A 3- part nickel sulfate 8.3g / copper sulfate 1.7g / Rotussel salt 20g / caustic soda 10g / palladium chloride (1% solution) 2ml / ammonia water 0.5ml / water 1 B 3- part caustic soda 0.25g / amineborane 5g / water 1 Like this The Ni-Cu-B alloy film formed by
500Å film thickness, 3.2wt% Ni, 96.6wt% Cu,
The alloy film had a composition containing 0.2 wt% of B. The durability test results for this film are shown in Table 1. Comparative Example 1 Glass plate polished with ceria and washed with water (300
mm x 300 mm x 5 mm) was sensitized by spraying an aqueous solution of stannous chloride (concentration: SnCl 2 0.8 g/1 water) at a flow rate of 5 parts per square meter of glass plate, and immediately after washing with water, palladium chloride was applied. Aqueous solution (concentration:
Activation treatment was carried out by spraying PdCl 2 5 ml/water 1) at the same flow rate as above, followed by washing with water. after that,
While the surface of the treated glass plate is still wet, apply 4 liquids A and 4 liquids B with the following composition ratios to each glass plate 1m 2 using separate spray guns so that they overlap each other at a volume ratio of approximately 1:1. Hit 5
The Ni--B alloy film was sprayed at a flow rate of 100 ml and held for 6 minutes to deposit a Ni--B alloy film on the glass plate surface by electroless plating. A 4 -liquid nickel acetate 5.0g / sodium gluconate 9.0g / aqueous ammonia (39%) 2.0ml / boric acid 2.5g / water 1 B 4 -liquid sodium borohydride 0.5g / caustic soda 0.2g / water 1 In this way The formed Ni-B alloy film is 500
The film thickness was 1.5 Å. The performance measurement results of this Ni--B alloy film are shown in Table 1. Comparative Example 2 On the surface of a glass plate treated in the same manner as Comparative Example 1 , 5 liquids A and 5 liquids B with the following composition ratio were applied from separate spray guns so that they overlapped each other in a volume ratio of approximately 1:1 ratio and 1 m 2 of glass plate
Spray at a flow rate of 5% per 100ml and hold for 2 minutes to coat the glass plate with Cu-B by electroless plating.
An alloy film was deposited. A 5 -liquid copper sulfate 5.0g / sodium gluconate 9.0g / aqueous ammonia (39%) 2.0ml / boric acid 2.5g / water 1 B 5 -liquid sodium borohydride 0.5g / caustic soda 0.2g / water 1 In this way The formed Cu-B alloy film is 500
The film thickness was 1.5 Å. Furthermore, the performance measurement results of this Cu--B alloy film were as shown in Table 1. Comparative Example 3 6 liquids A and 6 liquids B having the following composition ratio were applied to the surface of a glass plate treated in the same manner as in Comparative Example 1 using separate spray guns so that they overlapped each other at a volume ratio of approximately 1:1. 5 per 1m2 glass plate each
The Ni--Cu alloy film was deposited on the glass plate surface by an electroless plating method by spraying at a flow rate of 100 ml and holding it for 6 minutes. A 6 -liquid copper sulfate 1 g / nickel sulfate 2 g / formalin (38%) 43 ml / palladium chloride solution (1%) 2 ml / water 1 B 6 -liquid Rothsell's salt 20 g / caustic soda 10 g / water 1 The film formed in this way is The film was a Ni-Cu alloy film with a film thickness of 500 Å and a Ni content of 7 wt% and a Cu content of 93 wt%. The performance measurement results and color tone of this film were as shown in Table 1.

【表】 第1表から明らかな様に本発明の熱線反射ガラ
スはNi―B合金膜、あるいはNi―Cu合金膜の形
成された熱線反射ガラスよりも熱貫流率(2.00以
下)、遮蔽係数(0.20以下)の熱特性が優れてお
り、又Ni―Cu―B合金膜と比べ熱線反射性能が
同等のCu―B膜よりも耐久性が優れていること
が認められる。しかも、色調が中性であり、熱線
反射ガラスとして好まれるものである。 ● 耐久性は、30℃70%RH中で1ケ月保持した
後の侵食度を目視観察により判定した。(〇は
侵れない、×は侵れる) ● 可視光透過率(Tv)は、厚さ6m/mの普
通ガラス板に皮膜を形成した試料について皮膜
側より光入射し測定したものである。 ● 熱貫流率(K)および遮へい係数(Sc)は
上記膜構成のガラス板と厚さ6m/mの普通ガ
ラス板とを12m/mの空気層をおいて複層ガラ
ス化したものについて測定したものである。
[Table] As is clear from Table 1, the heat ray reflective glass of the present invention has a higher thermal transmittance (2.00 or less) and shielding coefficient ( It is recognized that the thermal properties of the film are excellent (less than 0.20), and the durability is superior to that of the Cu-B film, which has the same heat ray reflection performance as the Ni-Cu-B alloy film. Moreover, it has a neutral color tone and is preferred as a heat-reflecting glass. ● Durability was determined by visual observation of the degree of erosion after being kept at 30°C and 70% RH for one month. (〇 means no damage, × means damage is possible) ● Visible light transmittance (Tv) is measured using a sample with a film formed on a 6m/m thick ordinary glass plate, with light incident on the film side. ● Thermal transmission coefficient (K) and shielding coefficient (Sc) were measured on a glass plate with the above membrane structure and a regular glass plate with a thickness of 6 m/m, which were made into double-glazed glass with an air gap of 12 m/m. It is something.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、実施例1により得られた本発明の熱
線反射ガラスの光学特性図を示す。
FIG. 1 shows an optical characteristic diagram of the heat ray reflective glass of the present invention obtained in Example 1.

Claims (1)

【特許請求の範囲】 1 Cu塩の濃度が0.02%〜2%でキレート剤を
含むCu塩水溶液と、Ni塩の濃度が0.01%〜1%
でキレート剤を含むNi塩水溶液と、Cu塩及びNi
塩を還元する還元剤としてホウ水素化アルカリ類
あるいはアミンボラン類を含む還元剤水溶液と、
有効量のPd塩水溶液とを温度10℃〜60℃の条件
下においてガラス板面に作用させ、Niを1wt%〜
20wt%,Cuを75wt%〜99wt%,Bを0.01wt%〜
5wt%含む透明性Ni―Cu―B合金層を上記ガラス
板面に無電解メツキ反応により形成することを特
徴とする熱線反射ガラスの製造方法。 2 ホウ素化アルカリ類として、水素化ホウ素ナ
トリウムを用いることを特徴とする特許請求の範
囲第1項記載の熱線反射ガラスの製造方法。
[Claims] 1. A Cu salt aqueous solution containing a chelating agent with a Cu salt concentration of 0.02% to 2% and a Ni salt concentration of 0.01% to 1%.
Ni salt aqueous solution containing chelating agent, Cu salt and Ni
an aqueous reducing agent solution containing an alkali borohydride or an amine borane as a reducing agent for reducing salt;
An effective amount of Pd salt aqueous solution is applied to the glass plate surface at a temperature of 10℃ to 60℃, and Ni is added to 1wt% or more.
20wt%, Cu 75wt%~99wt%, B 0.01wt%~
A method for producing heat ray reflective glass, characterized in that a transparent Ni--Cu--B alloy layer containing 5 wt% is formed on the surface of the glass plate by electroless plating reaction. 2. The method for producing heat ray reflective glass according to claim 1, characterized in that sodium borohydride is used as the borated alkali.
JP5110581A 1981-04-07 1981-04-07 Hot ray reflecting glass and its preparation Granted JPS57166338A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5110581A JPS57166338A (en) 1981-04-07 1981-04-07 Hot ray reflecting glass and its preparation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5110581A JPS57166338A (en) 1981-04-07 1981-04-07 Hot ray reflecting glass and its preparation

Publications (2)

Publication Number Publication Date
JPS57166338A JPS57166338A (en) 1982-10-13
JPS6212183B2 true JPS6212183B2 (en) 1987-03-17

Family

ID=12877521

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5110581A Granted JPS57166338A (en) 1981-04-07 1981-04-07 Hot ray reflecting glass and its preparation

Country Status (1)

Country Link
JP (1) JPS57166338A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS648762U (en) * 1987-07-07 1989-01-18
JPH01105971U (en) * 1987-12-29 1989-07-17
JPH033276A (en) * 1989-05-31 1991-01-09 Nippon Denyo Kk Led lamp
JPH0517680U (en) * 1991-08-13 1993-03-05 日本信号株式会社 Light emitting diode indicator

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6077151A (en) * 1983-09-30 1985-05-01 Asahi Glass Co Ltd Metal-coated glass fiber, production thereof and frp product using said fiber
JP2002348673A (en) * 2001-05-24 2002-12-04 Learonal Japan Inc Electroless copper plating method without using formaldehyde, and electroless copper plating solution therefor
FR2981646B1 (en) * 2011-10-21 2013-10-25 Saint Gobain SOLAR CONTROL GLAZING COMPRISING A LAYER OF AN ALLOY NICU

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS648762U (en) * 1987-07-07 1989-01-18
JPH01105971U (en) * 1987-12-29 1989-07-17
JPH033276A (en) * 1989-05-31 1991-01-09 Nippon Denyo Kk Led lamp
JPH0517680U (en) * 1991-08-13 1993-03-05 日本信号株式会社 Light emitting diode indicator

Also Published As

Publication number Publication date
JPS57166338A (en) 1982-10-13

Similar Documents

Publication Publication Date Title
US3935351A (en) Multiple glazed windows including selective reflecting metal/metal oxide coatings
US3944440A (en) Selective reflecting metal/metal oxide coatings using surfactant to promote uniform oxidation
US4368223A (en) Process for preparing nickel layer
US3846152A (en) Selective reflecting metal/metal oxide coatings
DK174699B1 (en) Formation of a silver coating on a glass substrate
US5006418A (en) Decorative mirror
US3671291A (en) Electroless process for forming thin metal films
US4005229A (en) Novel method for the rapid deposition of gold films onto non-metallic substrates at ambient temperatures
US4091172A (en) Uniform gold films
CN101102972A (en) Substrate with antimicrobial properties
US20100239754A1 (en) Mirror
JPS6212183B2 (en)
US3660137A (en) Heat-reflecting glass and method for manufacturing the same
US4065626A (en) Gold-appearing films of copper, nickel and copper oxide layers
US3978271A (en) Thin metallic nickel-silver films by chemical replacement
US8623460B2 (en) Adhesion promoter
EP0067257B1 (en) Heat radiation reflecting glass and preparation thereof
US3674517A (en) Solution for depositing transparent metal films
US20090153988A1 (en) Mirror
US7559662B2 (en) Mirror with epoxy paint layer having good resistance to handling
JPS6016379B2 (en) A new manufacturing method for heat-reflecting glass
US3723155A (en) Wet chemical method of producing transparent metal films
EP1577277A1 (en) Mirror
EP0066656B1 (en) Process for preparing nickel layer
US4400436A (en) Direct electroless deposition of cuprous oxide films