JPS6212173B2 - - Google Patents

Info

Publication number
JPS6212173B2
JPS6212173B2 JP4194482A JP4194482A JPS6212173B2 JP S6212173 B2 JPS6212173 B2 JP S6212173B2 JP 4194482 A JP4194482 A JP 4194482A JP 4194482 A JP4194482 A JP 4194482A JP S6212173 B2 JPS6212173 B2 JP S6212173B2
Authority
JP
Japan
Prior art keywords
precipitate
temperature
magnesium
carbonate
sintered body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP4194482A
Other languages
Japanese (ja)
Other versions
JPS58161918A (en
Inventor
Shinichi Matsuda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KAGAKU GIJUTSUCHO MUKIZAISHITSU KENKYUSHOCHO
Original Assignee
KAGAKU GIJUTSUCHO MUKIZAISHITSU KENKYUSHOCHO
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KAGAKU GIJUTSUCHO MUKIZAISHITSU KENKYUSHOCHO filed Critical KAGAKU GIJUTSUCHO MUKIZAISHITSU KENKYUSHOCHO
Priority to JP4194482A priority Critical patent/JPS58161918A/en
Publication of JPS58161918A publication Critical patent/JPS58161918A/en
Publication of JPS6212173B2 publication Critical patent/JPS6212173B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F5/00Compounds of magnesium
    • C01F5/02Magnesia
    • C01F5/06Magnesia by thermal decomposition of magnesium compounds

Description

【発明の詳細な説明】 本発明は高純度マグネシア粉末の製造法に関
し、特に理論密度に近い嵩密度を持つたマグネシ
ア焼結体を添加物なしに1400℃の低温で得ること
ができる高純度のマグネシア粉末の製造法に関す
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing high-purity magnesia powder, and in particular to a method for producing high-purity magnesia powder, in which a magnesia sintered body having a bulk density close to the theoretical density can be obtained without additives at a low temperature of 1400°C. This invention relates to a method for producing magnesia powder.

マグネシアは高温において耐塩基性及び電気絶
縁性に優れ、熱膨張係数及び熱伝導度が大きく、
しかも赤外線や可視光線の透過性がよく、且つ安
価である特徴を有する。そのため、高温耐熱材
料、高温絶縁材料、高温照明材料等として広く使
用され、また最近フアインセラミツクス材料とし
ても注目されている。そして高温耐熱用マグネシ
ア焼結体は緻密質で熱間強度が大きいこと。高温
絶縁用マグネシア焼結体は水和性に対する抵抗性
が大きいこと。高温照明用マグネシア焼結体は高
緻密質で、且つ透明性に優れていること等が要求
される。
Magnesia has excellent base resistance and electrical insulation at high temperatures, and has a large coefficient of thermal expansion and thermal conductivity.
Moreover, it has the characteristics of good transmittance to infrared rays and visible light, and low cost. Therefore, it is widely used as a high-temperature heat-resistant material, a high-temperature insulating material, a high-temperature lighting material, etc., and has recently attracted attention as a fine ceramic material. The magnesia sintered body for high-temperature heat resistance is dense and has high hot strength. Magnesia sintered bodies for high-temperature insulation have high resistance to hydration. Magnesia sintered bodies for high-temperature lighting are required to be highly dense and have excellent transparency.

従来の工業用マグネサイト(95〜98重量%
MgO)または海水から得られた水酸化マグネシ
ウム(97〜99重量%MgO)では、1600℃焼成で
嵩密度95%の焼結体が得られるに過ぎない。ま
た、(1)マグネシウムアルコラートの加水分解によ
る水酸化マグネシウムを熱分解して得られるマグ
ネシアは、1400℃焼成で理論密度の98〜99%まで
緻密化cm2きるが、アルコールを使用するため高価
となりまた操業も特別の注意を払う等の大きな欠
点がある。(2)イオン交換法や溶媒抽出法で高純度
のマグネシアが得られるが、これも極めて高価と
なる欠点があるばかりでなく、嵩密度を95%程度
まで緻密化させるためには1800℃以上の高温焼成
が必要である。
Conventional industrial magnesite (95-98% by weight
MgO) or magnesium hydroxide (97-99 wt% MgO) obtained from seawater, a sintered body with a bulk density of only 95% can be obtained by firing at 1600°C. In addition, (1) magnesia obtained by thermally decomposing magnesium hydroxide by hydrolysis of magnesium alcoholate can be densified to 98-99% of the theoretical density by firing at 1400℃, but it is expensive because it uses alcohol. There are also major drawbacks, such as the need for special care in operation. (2) Highly pure magnesia can be obtained using the ion exchange method or solvent extraction method, but this also has the drawback of being extremely expensive, and in order to densify the bulk density to about 95%, it is necessary to High temperature firing is required.

理論密度に近い高緻密質焼結体を得るために従
来、ホツトプレスや、添加剤等が利用されてき
た。ホツトプレス法では、大型または複雑形状の
ものは製造が困難であるばかりでなく、焼結後の
熱処理を必要とし、生産性が低い等で高価となる
欠点がある。
Conventionally, hot pressing, additives, etc. have been used to obtain a highly dense sintered body with a density close to the theoretical density. In the hot pressing method, it is not only difficult to manufacture large-sized or complicated-shaped products, but also requires heat treatment after sintering, which has the drawback of low productivity and high cost.

また、添加剤法では、焼結体の純度が低下し、
熱間強度、高温絶縁性などの特性が損われる等の
欠点がある。
In addition, with the additive method, the purity of the sintered body decreases,
It has drawbacks such as loss of properties such as hot strength and high temperature insulation.

本発明の目的は、高温耐熱材料、高温絶縁材
料、高温照明材料、フアインセラミツクス材料等
に用いる高緻密質焼結体用の高純度マグネシア粉
末を製造する方法を提供するにある。その第2の
目的は理論密度に近い嵩密度を持つたマグネシア
焼結体を、添加物なしに1400℃程度の温度で得る
ことができる高純度のマグネシア粉末を安価に製
造する方法を提供するにある。
An object of the present invention is to provide a method for producing high-purity magnesia powder for high-density sintered bodies used in high-temperature heat-resistant materials, high-temperature insulating materials, high-temperature lighting materials, fine ceramic materials, and the like. The second purpose is to provide a method for inexpensively manufacturing high-purity magnesia powder that can produce magnesia sintered bodies with a bulk density close to the theoretical density at a temperature of about 1400°C without additives. be.

本発明者は前記目的を達成せんと鋭意研究の結
果、マグネシウム塩と炭酸アルカリとを、低温、
低濃度の水溶液反応によつて準安定な沈澱物を作
り、これを熟成させて安定な沈澱物に変化させ、
これを加水分解させて塩基性炭酸マグネシウムと
なした後〓焼すると、優れた高純度のマグネシウ
ム粉末が得られることを究明した。この究明事実
に基いて本発明を完成した。
As a result of intensive research to achieve the above-mentioned object, the inventors of the present invention have prepared magnesium salt and alkali carbonate at low temperature.
A metastable precipitate is created through a low-concentration aqueous reaction, and this is aged to change into a stable precipitate.
It was discovered that by hydrolyzing this to basic magnesium carbonate and then calcining it, an excellent, highly pure magnesium powder could be obtained. The present invention was completed based on this finding.

本発明の要旨は、マグネシウム塩と炭酸アルカ
リから塩基性炭酸マグネシウムを合成する反応に
おいて、両水溶液の初濃度を共に0.3〜1.0モル/
とし、反応温度を20〜40℃、母塩のPHを9.6〜
10.3の条件下で反応させて準安定な沈殿物を作
り、該沈殿物を30〜45℃、母塩のPHが8.3以下に
なるまで熟成して安定な沈殿物に変化させ、これ
を液のPHが10.6〜10.8になるまで加水分解して
塩基性炭酸マグネシウムとした後、空気中または
酸素雰囲気中で700〜1100℃で仮焼することを特
徴とする高純度マグネシア粉末の製造法にある。
The gist of the present invention is that in the reaction of synthesizing basic magnesium carbonate from magnesium salt and alkali carbonate, the initial concentration of both aqueous solutions is 0.3 to 1.0 mol/
Set the reaction temperature to 20-40℃, and the pH of the mother salt to 9.6-40℃.
A metastable precipitate is produced by reacting under the conditions of 10.3, and the precipitate is aged at 30 to 45°C until the pH of the mother salt becomes 8.3 or less to transform it into a stable precipitate. A method for producing high-purity magnesia powder, which is characterized by hydrolyzing it to basic magnesium carbonate until the pH becomes 10.6 to 10.8, and then calcining it at 700 to 1100°C in air or an oxygen atmosphere.

本発明に用いるマグネシウム塩としては、塩化
マグネシウム、硫酸マグネシウム、硝酸マグネシ
ウム、弗化マグネシウム、等が使用されるが、塩
化マグネシウム及び硫酸マグネシウムが好まし
い。炭酸アルカリとしては、炭酸アンモニウム、
重炭酸アルカリ等の塩基沈澱剤では、最初から安
定な沈澱物が生成するので使用できなく、炭酸ナ
トリウムまた炭酸カリウム等の炭酸アルカリまた
はそれらの混合物であることが必要である。
Magnesium salts used in the present invention include magnesium chloride, magnesium sulfate, magnesium nitrate, magnesium fluoride, and the like, with magnesium chloride and magnesium sulfate being preferred. Examples of alkali carbonates include ammonium carbonate,
A basic precipitant such as alkali bicarbonate cannot be used because a stable precipitate is formed from the beginning, and it is necessary to use an alkali carbonate such as sodium carbonate or potassium carbonate, or a mixture thereof.

マグネシウム塩と炭酸アルカリ両水溶液の初濃
度は、0.3〜1.0モル/の濃度、好ましくは0.4〜
0.5モル/の範囲であることが必要である。1.0
モル%濃度を越えると準安定な沈澱物の性状が不
均一になり、且つ残留不純物(特にNa)が多く
なる欠点が生じ、0.3モル/未満では最初から
安定な非晶質の沈澱物が共存してくるので使用で
きない。
The initial concentration of both the magnesium salt and the aqueous alkali carbonate solution is 0.3 to 1.0 mol/concentration, preferably 0.4 to 1.0 mol/concentration.
It is necessary that the amount is in the range of 0.5 mol/. 1.0
If the concentration exceeds mol%, the properties of the metastable precipitate will become non-uniform and residual impurities (especially Na) will increase.If the concentration is less than 0.3 mol/%, stable amorphous precipitates will coexist from the beginning. I can't use it because it does.

この両溶液の初濃度は同じがよい。これが逆に
なると残留不純物が多くなる欠点が生ずる。
The initial concentrations of both solutions should be the same. If this is reversed, there will be a disadvantage that residual impurities will increase.

またこの両溶液の混合割合はマグネシウム塩が
50容量%でよい。
Also, the mixing ratio of both solutions is that magnesium salt is
50% by volume is sufficient.

マグネシウム塩と炭酸アルカリ水溶液の添加法
はマグネシウム塩水溶液に炭酸アルカリ水溶液を
添加してもよく、またその逆でもよい。前者の添
加法では粒径の小さい微構造の焼結体が得られ、
後者の添加法では粒径の大きい微構造の焼結体が
得られる。この添加する際の母液温度は20〜40
℃、好ましくは25〜35℃に、準安定な沈澱物と共
存する母液のPHの最高値が9.6〜10.3であること
が必要である。母液温度が40℃を超えると安定な
沈澱物が最初から共生する。また20℃未満では
過性が著しく低下し、且つ残留不純物が多くなる
欠点が生ずる。母液のPHが9.6〜10.3の範囲以外
になると異種化合物が混入するようになる。
The magnesium salt and the aqueous alkali carbonate solution may be added by adding the alkali carbonate aqueous solution to the aqueous magnesium salt solution, or vice versa. With the former addition method, a sintered body with a small grain size and microstructure can be obtained.
The latter addition method yields a sintered body with a large grain size and microstructure. The mother liquor temperature when adding this is 20 to 40
℃, preferably 25-35℃, and the maximum pH value of the mother liquor coexisting with the metastable precipitate is 9.6-10.3. When the mother liquor temperature exceeds 40℃, stable precipitates coexist from the beginning. Further, if it is lower than 20°C, there will be a disadvantage that the transient property will be significantly lowered and residual impurities will be increased. If the pH of the mother liquor falls outside the range of 9.6 to 10.3, different compounds will be mixed in.

このようにして得られた準安定な沈澱物を30〜
45℃に40〜10時間、好ましくは、33〜37℃に24〜
18時間保持して熟成する。熟成温度が30℃より低
いと熟成が十分進行しなく、過性が悪いばかり
でなく不純物(特にSi,Na)が多く含まれる。
45℃を超えると不純物が多くなると共に焼結性が
悪くなる。熟成温度と熟成時間の関係はおよそ次
の式で表わされる。
The metastable precipitate thus obtained is
40-10 hours at 45℃, preferably 24-10 hours at 33-37℃
Hold and mature for 18 hours. If the ripening temperature is lower than 30°C, ripening will not proceed sufficiently, and not only will the maturation be poor, but also a large amount of impurities (particularly Si and Na) will be contained.
When the temperature exceeds 45°C, impurities increase and sinterability deteriorates. The relationship between aging temperature and aging time is approximately expressed by the following equation.

log t(min)=2.353−T(℃)/34 熟成により安定した沈澱物を洗浄する際、液
のPHが10.6〜10.8になるまで加水分解して塩基性
炭酸マグネシウムとする。液のPHが10.6〜10.8
以外になると、異種化合物が残留して沈澱物が不
均一となる。
log t(min)=2.353-T(°C)/34 When washing the precipitate stabilized by aging, the precipitate is hydrolyzed to basic magnesium carbonate until the pH of the liquid becomes 10.6 to 10.8. The pH of the liquid is 10.6-10.8
Otherwise, different compounds will remain and the precipitate will be non-uniform.

次にこの塩基性炭酸マグネシウムを空気中また
は酸素雰囲気中で700〜1100℃で加熱処理する。
ただし、300〜400℃で結晶水を完全に飛ばした
後、熱分解(脱炭酸)を行い、更に900℃で〓焼
すると、均一な性状を持つた焼結性のよい粉末が
得られる点で更に好ましい。
Next, this basic magnesium carbonate is heat treated at 700 to 1100°C in air or oxygen atmosphere.
However, if the water of crystallization is completely evaporated at 300 to 400℃, followed by thermal decomposition (decarboxylation) and further sintering at 900℃, a powder with uniform properties and good sinterability can be obtained. More preferred.

得られたマグネシア粉末の加圧成型は、通常の
金型を用いる方法で十分であるが、好ましくはこ
れを更にハイドロスタチツクプレスする。金型の
成型圧は100Kg/cm2以上成型体が破損しない範囲
であればよい。
Pressure molding of the obtained magnesia powder using a conventional mold is sufficient, but preferably it is further hydrostatic pressed. The molding pressure of the mold may be 100 kg/cm 2 or more so that the molded product is not damaged.

本発明の方法で得られるマグネシア粉末は、理
論密度に近い嵩密度を持つたマグネシア焼結体を
添加物なしに1400℃の低温で焼結し得られる優れ
た特性を有する。これにより焼結炉の材料の選択
が容異となり、またその構造も簡単化し得られる
と共に熱エネルギーを低減し得られる。
The magnesia powder obtained by the method of the present invention has excellent properties obtained by sintering a magnesia sintered body having a bulk density close to the theoretical density at a low temperature of 1400°C without additives. This makes it possible to select different materials for the sintering furnace, simplify the structure, and reduce thermal energy.

また、その製造も原料母塩の沈澱条件、熟成、
加水分解条件を制御するのみで容易であるばかり
でなく、沈澱物の過性もよく、また純度も
99.99重量%までも高め得られ、有機溶媒の吸着
性の高いものが安価で容易に得られる効果を有す
る。
In addition, its production also depends on the precipitation conditions of the raw material mother salt, aging,
Not only is it easy to control the hydrolysis conditions, but also the precipitate has good permeability and purity.
It can be obtained up to 99.99% by weight, and has the effect of easily obtaining a product with high adsorption properties for organic solvents at a low cost.

実施例 1 塩化マグネシウム0.4モル/水溶液1000mlを
炭酸ナトリウム0.4モル/水溶液1000mlに滴下
し、25℃で30分間反応させて準安定な沈澱物(PH
10.6)を得た。この沈澱物を35℃で24時間熟成さ
せて安定な沈澱物(PH8.3)を得た。この沈澱物
を1.2の蒸留水で6回洗浄及び過を繰返し、
加水分解(PH10.5)を経た塩基性炭酸マグネシウ
ムを得た。これを110℃で一昼夜乾燥し、更に400
℃の乾燥空気中で露点が一定になるまで脱水した
後、10℃/minの定速昇温下で熱分解させ900℃
で20時間仮焼してマグネシア粉末を得た。その純
度は99.99重量%(SiO235ppm、CaO30ppm)で
あつた。
Example 1 0.4 mol of magnesium chloride/1000 ml of an aqueous solution was added dropwise to 0.4 mol of sodium carbonate/1000 ml of an aqueous solution and reacted at 25°C for 30 minutes to form a metastable precipitate (PH
10.6) was obtained. This precipitate was aged at 35°C for 24 hours to obtain a stable precipitate (PH8.3). This precipitate was washed and filtered 6 times with distilled water in step 1.2.
Basic magnesium carbonate was obtained through hydrolysis (PH10.5). This was dried at 110℃ for a day and night, and then dried at 400℃.
After dehydrating in dry air at ℃ until the dew point becomes constant, it is thermally decomposed at a constant temperature increase of 10℃/min to 900℃.
The powder was calcined for 20 hours to obtain magnesia powder. Its purity was 99.99% by weight (SiO 2 35ppm, CaO 30ppm).

得られたマグネシア粉末0.3gを150Kg/cm2の圧
力で金型成型して8φ×3mmの成形体を作り、
更に2トン/cm2の圧力でハイドロスタチツクプレ
スした。得られた成形体を空気中で10℃/minの
定速昇温度で加熱し、1400℃で2時間焼成した。
焼結体の嵩密度は3.549g/cm3(99.02%)、粒径
9μであり、不純物はSiO2が35ppm、CaOが
30ppmであつた。
0.3 g of the obtained magnesia powder was molded with a pressure of 150 kg/cm 2 to make a molded body of 8φ x 3 mm.
Further hydrostatic pressing was carried out at a pressure of 2 tons/cm 2 . The obtained molded body was heated in air at a constant rate of temperature increase of 10° C./min and baked at 1400° C. for 2 hours.
The bulk density of the sintered body is 3.549g/cm 3 (99.02%), the particle size is 9μ, and the impurities are 35ppm of SiO 2 and 35ppm of CaO.
It was 30ppm.

なお、前記の方法において、熟成温度を変えて
塩基性炭酸マグネシウムを製造し、他の条件は同
一条件で得られたマグネシア粉末を焼結したとこ
ろ、焼結体の嵩密度及びPHは第1図に示す通りで
あつた。1は嵩密度、2はPHの曲線である。これ
により、熟成温度が25〜45℃が良好な嵩密度のも
のが得られることがわかる。
In addition, in the above method, when basic magnesium carbonate was produced by changing the aging temperature and magnesia powder obtained under the same conditions was sintered, the bulk density and pH of the sintered body were as shown in Figure 1. It was as shown in. 1 is the bulk density curve, and 2 is the PH curve. This shows that a product with good bulk density can be obtained when the aging temperature is 25 to 45°C.

比較例 1 マグネシウム塩、炭酸アルカリの濃度をともに
0.05モル/と1.4モル/と変え、他は実施例
1と同様にして焼結体を作つた。焼結体の嵩密度
は、0.05モル/の場合は3.412g/cm3(95.17
%)1.4モル/の場合は3.450g/cm3(96.23%)
であつた。
Comparative example 1 Both concentrations of magnesium salt and alkali carbonate were
A sintered body was produced in the same manner as in Example 1 except that the amounts were changed to 0.05 mol/ and 1.4 mol/. The bulk density of the sintered body is 3.412 g/cm 3 (95.17
%) 1.4 mol/ is 3.450 g/cm 3 (96.23%)
It was hot.

比較例 2 マグネシウム塩の混合割合を35容量%と70容量
%とし、他は実施例1と同様にして焼結体を作つ
た。その焼結体の嵩密度は、35容量%の場合は
3.349g/cm3、(93.42%)、70容量%の場合は3.432
g/cm3(95.73%)であつた。
Comparative Example 2 A sintered body was produced in the same manner as in Example 1 except that the mixing ratio of magnesium salt was 35% by volume and 70% by volume. The bulk density of the sintered body is 35% by volume.
3.349g/cm 3 , (93.42%), 3.432 for 70% by volume
g/cm 3 (95.73%).

実施例 2 実施例1の方法において、塩化マグネシウムに
代えて硫酸マグネシウムを用いたところ、得られ
た焼結体は粒径が均一な嵩密度3.514g/cm3
(98.02%)であつた。
Example 2 When magnesium sulfate was used in place of magnesium chloride in the method of Example 1, the resulting sintered body had a uniform particle size and a bulk density of 3.514 g/cm 3
(98.02%).

実施例 3 実施例1の方法において、炭酸ナトリウムに代
えて炭酸カリウムを用いたところ、得られた焼結
体は粒径が均一で、嵩密度3.506g/cm3(97.80
%)であつた。
Example 3 When potassium carbonate was used in place of sodium carbonate in the method of Example 1, the resulting sintered body had a uniform particle size and a bulk density of 3.506 g/cm 3 (97.80 g/cm 3 ).
%).

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は準安定な沈澱物を温度を変化させて熟
成した場合における得られたマグネシア粉末の焼
成物の嵩密度及びPHとの関係図である。 1:嵩密度曲線、2:PH曲線。
FIG. 1 is a graph showing the relationship between the bulk density and PH of a calcined product of magnesia powder obtained when a metastable precipitate is aged at varying temperatures. 1: Bulk density curve, 2: PH curve.

Claims (1)

【特許請求の範囲】[Claims] 1 マグネシウム塩と炭酸アルカリから塩基性炭
酸マグネシウムを合成する反応において、両水溶
液の初濃度を共に0.3〜1.0モル/とし、反応温
度を20〜40℃で、母塩のPHを9.6〜10.3の条件下
で反応させて準安定な沈殿物を作り、該沈殿物を
30〜45℃、母塩のPHが8.3以下になるまで熟成し
て安定な沈殿物に変化させ、これを液のPHが
10.6〜10.8になるまで加水分解して塩基性炭酸マ
グネシウムとした後、空気中または酸素雰囲気中
で700〜1100℃で仮焼することを特徴とする高純
度マグネシア粉末の製造法。
1. In the reaction of synthesizing basic magnesium carbonate from magnesium salt and alkali carbonate, the initial concentrations of both aqueous solutions are 0.3 to 1.0 mol/2, the reaction temperature is 20 to 40°C, and the pH of the mother salt is 9.6 to 10.3. to form a metastable precipitate, and the precipitate is
Aged at 30-45℃ until the pH of the mother salt becomes 8.3 or less, turning it into a stable precipitate.
A method for producing high-purity magnesia powder, which comprises hydrolyzing the powder to basic magnesium carbonate to a concentration of 10.6 to 10.8, followed by calcining at 700 to 1100°C in air or an oxygen atmosphere.
JP4194482A 1982-03-17 1982-03-17 Manufacture of high purity magnesia powder Granted JPS58161918A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4194482A JPS58161918A (en) 1982-03-17 1982-03-17 Manufacture of high purity magnesia powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4194482A JPS58161918A (en) 1982-03-17 1982-03-17 Manufacture of high purity magnesia powder

Publications (2)

Publication Number Publication Date
JPS58161918A JPS58161918A (en) 1983-09-26
JPS6212173B2 true JPS6212173B2 (en) 1987-03-17

Family

ID=12622316

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4194482A Granted JPS58161918A (en) 1982-03-17 1982-03-17 Manufacture of high purity magnesia powder

Country Status (1)

Country Link
JP (1) JPS58161918A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10814312B2 (en) 2017-05-25 2020-10-27 Osaka Gas Co., Ltd. Desulfurizing agent for gases and gas desulfurization method

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6311516A (en) * 1986-07-02 1988-01-19 Natl Inst For Res In Inorg Mater Production of high purity magnesia powder having anti-hydration property
CN100431962C (en) * 2002-02-13 2008-11-12 日铁矿业株式会社 Basic magensium carbonate, process for producing the same and utilization thereof
JP4588302B2 (en) * 2003-07-31 2010-12-01 日鉄鉱業株式会社 Method for producing composite oxide particles and composite oxide particles
CN109437258B (en) * 2018-12-05 2021-02-26 河北镁神科技股份有限公司 Preparation method of magnesium oxide powder special for heat-conducting plastic
JP7207082B2 (en) * 2019-03-28 2023-01-18 日本製鉄株式会社 Magnesium oxide and its production method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10814312B2 (en) 2017-05-25 2020-10-27 Osaka Gas Co., Ltd. Desulfurizing agent for gases and gas desulfurization method

Also Published As

Publication number Publication date
JPS58161918A (en) 1983-09-26

Similar Documents

Publication Publication Date Title
JPS6359985B2 (en)
US4863706A (en) Process for producing zirconium sols and gels, and process for producing zirconia using the same
US4367292A (en) Method for manufacture of powder composition for cordierite
JPS6212173B2 (en)
JP2939535B2 (en) Manufacturing method of transparent yttrium oxide sintered body
JP2015006970A (en) Magnesium oxide, production method thereof, and stacked ceramic capacitor containing the same as additive
JP2843909B2 (en) Method for producing yttrium oxide transparent sintered body
JPS6221799A (en) Production of metallic titanate fiber
JPH0692267B2 (en) Cordierite manufacturing method
JP2580532B2 (en) Production method of highly homogeneous and high purity yttrium-containing zirconia powder
JPS6311516A (en) Production of high purity magnesia powder having anti-hydration property
JPH10114519A (en) Production of yttrium aluminum garnet powder
JPH08208238A (en) Cobalt monoxide
JPH0137330B2 (en)
JPH0426543A (en) Translucent cordierite sintered body and its manufacture
JPH05116929A (en) Production of mgo-sio2 type oxide
JPS58181764A (en) Manufacture of high fineness magnesia sintered body
JPS5879869A (en) Cordierite ceramics and manufacture
JPH01275447A (en) Production of titania-silica glass by sol-gel process
JPS5846446B2 (en) Method for producing forsterite clinker
JPS61111961A (en) Manufacture of hydration-resistant high fineness magnesia sintered body
JPH01133973A (en) Manufacture of transparent polycrystalline alumina
JPS5930724A (en) Manufacture of fibrous potassium titanate
Kuznetsov et al. Self-propagating high-temperature synthesis of cerium chromite substituted with alkaline-earth metals
JPH05163061A (en) Production of mgo-al2o3-sio2 based oxide