JPH01133973A - Manufacture of transparent polycrystalline alumina - Google Patents

Manufacture of transparent polycrystalline alumina

Info

Publication number
JPH01133973A
JPH01133973A JP63162111A JP16211188A JPH01133973A JP H01133973 A JPH01133973 A JP H01133973A JP 63162111 A JP63162111 A JP 63162111A JP 16211188 A JP16211188 A JP 16211188A JP H01133973 A JPH01133973 A JP H01133973A
Authority
JP
Japan
Prior art keywords
magnesium
oxide
compound
polycrystalline alumina
sulfate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63162111A
Other languages
Japanese (ja)
Other versions
JP2581174B2 (en
Inventor
Hiroshi Umezaki
梅崎 博
Yoshiaki Takeuchi
美明 竹内
Toshiyuki Mizoe
溝江 利之
Hiroshi Takahashi
浩 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP63162111A priority Critical patent/JP2581174B2/en
Publication of JPH01133973A publication Critical patent/JPH01133973A/en
Application granted granted Critical
Publication of JP2581174B2 publication Critical patent/JP2581174B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To obtain the title alumina having excellent translucency, mechanical strength and corrosion resistance by jointly adding small amounts of magnesium oxide and sulfur compound to high purity aluminum oxide powder and calcining the mixture. CONSTITUTION:The mixture consisting of <0.1wt.% (not including zero) magnesium compound, as magnesium oxide 0.005-1wt.% sulfur compound as S and the balance aluminum oxide is molded and calcined at 1700-1950 deg.C in a reducing atmosphere or in a vacuum. As the magnesium compound, e.g., magnesium nitride, magnesium sulfate, magnesium oxide, etc., are shown. As the sulfur compound, e.g., aluminum sulfate, magnesium sulfate, ammonium sulfate, etc., are exemplified.

Description

【発明の詳細な説明】 〈産業上の利用分野) 本発明は透光性多結晶アルミナの製造方法に係り、更に
詳細には透明性、機械的強度に優れた透光性多結晶アル
ミナの製造方法に関するものである。
[Detailed Description of the Invention] <Industrial Application Fields> The present invention relates to a method for producing translucent polycrystalline alumina, and more specifically to a method for producing translucent polycrystalline alumina with excellent transparency and mechanical strength. It is about the method.

〈従来の技術〉 一般に高純度多結晶アルミナは機械的、熱的強度や透光
性に秀れているため、高輝度のナトリウム蒸気放電ラン
プの発光管、高温用窓、メモリー消去用窓等多方面に使
用されている。
<Prior art> Generally, high-purity polycrystalline alumina has excellent mechanical and thermal strength and translucency, so it is used in many applications such as arc tubes of high-intensity sodium vapor discharge lamps, high-temperature windows, and windows for memory erasing. It is used in the direction.

従来、透光性多結晶アルミナは、99.9%以上の高純
度アルミナ粉末に微it(通常0.5重量%以下)の酸
化マグネシウムを加え、これにバインダーを加えた後、
所望の形状に成形し、予じめ酸化雰囲気中で焼成した後
、還元雰囲気中または真空中で1700℃以上、特に1
800〜1950℃で焼成する技術が知られている(例
えば米国特許第3026210号)。
Conventionally, translucent polycrystalline alumina is produced by adding a small amount (usually 0.5% by weight or less) of magnesium oxide to high-purity alumina powder of 99.9% or more, and adding a binder to this.
After molding into a desired shape and firing in an oxidizing atmosphere in advance, it is heated at 1700°C or higher in a reducing atmosphere or in a vacuum, especially at 1
A technique of firing at 800 to 1950°C is known (for example, US Pat. No. 3,026,210).

他方、酸化マグネシウムと併用し、酸化イツトリウム、
酸化ジルコニウム及び酸化ランタンより選ばれた少くと
も1種の酸化物を用いる方法(特公昭46−15304
号)、更には酸化マグネシウムと酸化カルシウムを併用
する方法(特公昭52−19205号)等積々の方法が
知られている。
On the other hand, when used in combination with magnesium oxide, yttrium oxide,
A method using at least one oxide selected from zirconium oxide and lanthanum oxide (Special Publication No. 46-15304)
A number of methods are known, including a method using magnesium oxide and calcium oxide in combination (Japanese Patent Publication No. 19205/1983).

〈発明が解決しようとする課題〉 しかしながら微量の酸化マグネシウムのみを添加する方
法は、優れた透光性を有する焼結体を得る為には高温、
長時間の焼結を必要とするばかりか、焼結過程でアルミ
ナ粒子の結晶成長により機械的強度が低下するとの不都
合がある。
<Problem to be solved by the invention> However, the method of adding only a small amount of magnesium oxide requires high temperatures,
Not only does it require a long sintering time, but it is also disadvantageous in that mechanical strength decreases due to crystal growth of alumina particles during the sintering process.

他方、酸化マグネシウムと酸化カルシウムを併用する場
合には低温、短時間の焼成で良好な透光性を有する多結
晶アルミナは得られるものの、機械的強度の向上が十分
でない。
On the other hand, when magnesium oxide and calcium oxide are used in combination, polycrystalline alumina having good translucency can be obtained by firing at a low temperature for a short time, but the mechanical strength is not sufficiently improved.

また酸化マグネシウムと酸化イツトリウム、酸化ランタ
ン、酸化ジルコニウムを併用する方法の場合には理由は
詳らかでないが、高温ナトリウム蒸気に対する耐食性が
低下し、ナトリウム蒸気放電ランプの発光管に使用し難
いとの欠点を有する。
In addition, methods that use magnesium oxide, yttrium oxide, lanthanum oxide, and zirconium oxide in combination have the disadvantage that, although the reason is not clear, the corrosion resistance against high-temperature sodium vapor decreases, making it difficult to use them in the arc tubes of sodium vapor discharge lamps. have

かかる事情下に鑑み、本発明者らは透光性、機械的強度
に優れかつ耐食性に優れた透光性多結晶アルミナを得る
事を目的とし、鋭意検討した結果高純度酸化アルミニウ
ム粉末に少量の酸化マグネシウムと硫黄化合物を併用し
、焼結する場合には上記目的を全て満足し得る透光性多
結晶アルミナが得られることを見出し、本発明方法を完
成するに至った。
In view of these circumstances, the inventors of the present invention aimed to obtain translucent polycrystalline alumina with excellent translucency, mechanical strength, and corrosion resistance, and as a result of intensive studies, they added a small amount of high-purity aluminum oxide powder to high-purity aluminum oxide powder. The inventors have discovered that when magnesium oxide and a sulfur compound are used in combination and sintered, a translucent polycrystalline alumina that satisfies all of the above objectives can be obtained, and the method of the present invention has been completed.

(課題を解決する為の手段〉 すなわち、本発明方法は酸化マグネシウムに換算した重
量で0.1重量%未満(但し0は含まず)のマグネシウ
ム化合物とSに換算した重量で0.005重量%〜1重
量%の硫黄化合物、残部が酸化アルミニウムよりなる混
合物を成形し、還元雰囲気中または真空中で1700〜
1950℃にて焼成することを特徴とする透光性多結晶
アルミナの製造方法を提供するにある。
(Means for Solving the Problems) In other words, the method of the present invention uses less than 0.1% by weight (however, not including 0) of a magnesium compound in terms of weight in terms of magnesium oxide and 0.005% by weight in terms of S. A mixture consisting of ~1% by weight of a sulfur compound and the balance aluminum oxide is molded and heated to ~1700% by weight in a reducing atmosphere or in vacuum.
The present invention provides a method for producing translucent polycrystalline alumina, which is characterized by firing at 1950°C.

以下、本発明方法を更に詳述する。The method of the present invention will be explained in more detail below.

本発明方法に於いて用いる酸化アルミニウムは透光性多
結晶アルミナ用原料として公知の酸化アルミニウムであ
ればよく、特に制限されるものではないが、通常有機ア
ルミニウム加水分解法、改良バイヤー法、アンモニウム
明ばん熱分解法、アンモニウムドーソナイト熱分解法、
エチレンクロルヒドリン法、水中火花放電法等で得られ
る純度約99.9%以上、平均粒子径約1μm以下、比
表面積約1+yr/g〜約100rrl/g、好ましく
は約3 rd / g〜約6Qm/gのアルミナ粉末が
用いられる。
The aluminum oxide used in the method of the present invention may be any aluminum oxide known as a raw material for transparent polycrystalline alumina, and is not particularly limited. Ammonium dawsonite pyrolysis method, ammonium dawsonite pyrolysis method,
Purity of about 99.9% or more obtained by ethylene chlorohydrin method, underwater spark discharge method, etc., average particle diameter of about 1 μm or less, specific surface area of about 1+yr/g to about 100rrl/g, preferably about 3rd/g to about Alumina powder of 6Qm/g is used.

より好ましくは不純物として硅素、カルシウム及びナト
リウム或いはこれらの化合物がSl。
More preferably, the impurities include silicon, calcium, sodium, or a compound thereof.

Ca、Naとして各々100PP■以下、好適には50
PP曽以下の酸化アルミニウムを用いることが推奨され
る。これら不純物があまり高い場合には異常粒成長や液
相焼結が生起し強度低下や透光性の低下を生じることが
ある。
Each of Ca and Na is 100 PP or less, preferably 50
It is recommended to use aluminum oxide of PP so or less. If these impurities are too high, abnormal grain growth and liquid phase sintering may occur, resulting in a decrease in strength and translucency.

マグネシウム化合物の添加量は酸化マグネシウムに換算
して約0.1重量%未満、好ましくは約0.01重量%
〜約0.08重量%、硫黄化合物はSに換算して約o、
 o o s重量%〜約1重量%、好ましくは約0.0
1重量%〜約0.5重量%添加混合する。
The amount of the magnesium compound added is less than about 0.1% by weight, preferably about 0.01% by weight in terms of magnesium oxide.
~ about 0.08% by weight, sulfur compounds are about o in terms of S,
o o s wt % to about 1 wt %, preferably about 0.0
1% to about 0.5% by weight is added and mixed.

酸化マグネシウムの量が上記範囲より多い場合には、M
g0−Ai Osの反応物が酸化アルミニウムの結晶粒
界に析出する為か機械的強度、耐食性が低下する。
If the amount of magnesium oxide is greater than the above range, M
Mechanical strength and corrosion resistance deteriorate, probably because the g0-Ai Os reactant precipitates at the grain boundaries of aluminum oxide.

マグネシウム化合物としては、焼成後酸化マグネシウム
に変換し得るものであれば特に限定し得るものではない
が、例えば硝酸マグネシウム、硫酸マグネシウム、酸化
マグネシウム等が挙げられる。
The magnesium compound is not particularly limited as long as it can be converted into magnesium oxide after firing, and examples thereof include magnesium nitrate, magnesium sulfate, magnesium oxide, and the like.

硫黄化合物の添加量が上記範囲未満の場合には透光性が
劣り他方上記範囲を越える場合には、添加量に見合う効
果の発現がないばかりか、反応系内に於いてSO,等を
形成し装置腐食の原因となるので好ましくない。
If the amount of the sulfur compound added is less than the above range, the light transmittance will be poor, while if it exceeds the above range, not only will no effect commensurate with the amount added, but SO, etc. will be formed in the reaction system. This is not desirable because it causes equipment corrosion.

硫黄化合物としては、酸化アルミニウムとマグネシウム
化合物の均一分散を阻害せず、かつ酸化アルミニウム粉
末に添加、混合、成形し、焼結後酸化アルミニウム粉末
の純度低下を招く硫黄化合物(例えばアルミニウムを除
く金属を含む硫黄化合物)を除いた全ての硫黄含有物質
であればよく、例えば硫酸アルミニウム、硫酸マグネシ
ウム、硫酸アンモニウム等が挙げられる。
Sulfur compounds that do not inhibit uniform dispersion of aluminum oxide and magnesium compounds, and that are added, mixed, and molded to aluminum oxide powder and that cause a decrease in the purity of aluminum oxide powder after sintering (for example, sulfur compounds that do not inhibit the uniform dispersion of aluminum oxide and magnesium compounds) are recommended. Any sulfur-containing substance other than sulfur compounds (containing sulfur compounds) may be used, and examples thereof include aluminum sulfate, magnesium sulfate, ammonium sulfate, and the like.

本発明方法に於いて酸化アルミニウムとマグネシア化合
物及び硫黄化合物の混合、成形、焼成は通光性多結晶ア
ルミナを得る公知の方法で実施すれば良く、例えば酸化
アルミニウムにマグネシア化合物と硫黄化合物を均一に
混合し、その後この混合物にポリビニルアルコール等の
有機バインダーを少量添加、混合し、プレス成形した後
、この成形体を一旦空気中で900〜1100℃、1時
間以上、通常2時間〜10時間仮焼して有機バインダー
を除去した後、水素等の還元雰囲気中または真空中で1
700〜1950℃の温度下、1時間以上、通常2時間
〜8時間焼成する事により透光性多結晶アルミナを得る
事が出来る。
In the method of the present invention, mixing, molding, and firing of aluminum oxide, magnesia compound, and sulfur compound may be carried out by a known method for obtaining light-transmitting polycrystalline alumina. After mixing, a small amount of an organic binder such as polyvinyl alcohol is added to this mixture, mixed, press-molded, and then calcined in air at 900-1100°C for 1 hour or more, usually 2 hours-10 hours. After removing the organic binder, it is heated in a reducing atmosphere such as hydrogen or in vacuum for 1
Transparent polycrystalline alumina can be obtained by firing at a temperature of 700 to 1950° C. for 1 hour or more, usually 2 hours to 8 hours.

〈発明の効果〉 以上詳述した本発明方法によれば酸化アルミニウムにマ
グネシウム化合物と硫黄化合物を混合し、成形、焼成す
る事により透光性に優れるのみならず高い機械的強度を
有する透光性多結晶アルミナを得る事を可能ならしめた
もので、その工業的価値は頗る大なるものである。
<Effects of the Invention> According to the method of the present invention detailed above, aluminum oxide is mixed with a magnesium compound and a sulfur compound, and by molding and firing, a translucent property that not only has excellent translucency but also high mechanical strength can be obtained. This made it possible to obtain polycrystalline alumina, and its industrial value is enormous.

〈実施例〉 以下、実施例により、本発明を更に詳細に説明するが本
実施例は本発明方法の一実施形態を示すものであり、こ
れによって本発明が制約されるものではない。
<Example> Hereinafter, the present invention will be explained in more detail with reference to Examples, but this Example shows one embodiment of the method of the present invention, and the present invention is not limited thereby.

実施例l PH20HC1水溶液100重量部に中心粒径0.4.
czmBET比表面積5比表面積5純/アルミナAKP
−3000(体皮化学工業(1聯製)100重量部(純
度99.99%、Si、Na各=5ppm、Ca  l
ppm以下)と硝酸マグネシウムをMgO換算で0.0
5重量%加え充分解こうした。
Example 1 100 parts by weight of PH20HC1 aqueous solution had a center particle size of 0.4.
czmBET specific surface area 5 specific surface area 5 pure/alumina AKP
-3000 (manufactured by Taiha Kagaku Kogyo (1ren)) 100 parts by weight (purity 99.99%, Si, Na each = 5 ppm, Cal
ppm or less) and magnesium nitrate (converted to MgO) 0.0
Add 5% by weight and thoroughly decompose.

解こうしたスラリーに有機質結合材としてポリビニルア
ルコールを1.5重量部更に硫酸アルミニウムをS換算
で600ppmと成る如く添加し、よく撹拌した後スプ
レードライし、顆粒を得た。
To this slurry were added 1.5 parts by weight of polyvinyl alcohol as an organic binder and aluminum sulfate at a concentration of 600 ppm in terms of S, and after thorough stirring, the slurry was spray-dried to obtain granules.

得られた顆粒をラバープレスを用い1.5t。The obtained granules were pressed to 1.5 tons using a rubber press.

n/c+Jで2(inφ×厚さ1.5 tmのペレット
に成形した後、電気炉で空気中約900℃X3Hr仮焼
する事によりポリビニルアルコールを完全に焼失させた
後、水素雰囲気炉で1800℃×6Hr焼成した。
After molding into pellets of 2 (inφ x 1.5 tm thickness) with n/c + J, the polyvinyl alcohol was completely burnt out by calcining in air at about 900°C for 3 hours in an electric furnace, and then 1800°C in a hydrogen atmosphere furnace. It was fired at ℃×6 hours.

得られた焼結体を両面ラッピングした後、波長600 
nmの光を入射した時の直線透過率は15.0%であっ
た。
After wrapping the obtained sintered body on both sides,
The linear transmittance when light of nm wavelength was incident was 15.0%.

実施例2〜8 比較例1〜3 第1表に示す硫黄源を用いた以外は、実施例1と同様の
操作、条件によりアルミナ顆粒を得、透光性を評価した
。結果を第1表に示す。
Examples 2 to 8 Comparative Examples 1 to 3 Alumina granules were obtained by the same operations and conditions as in Example 1, except that the sulfur sources shown in Table 1 were used, and the translucency was evaluated. The results are shown in Table 1.

実施例9及び比較例4 実施例5の方法により得た顆粒をラバープレスを用いて
1ton/cTAで45X5X4uに成形した後、電気
炉で空気巾約900℃XaHr仮焼し、次いで水素雰囲
気炉で1820℃×3Hr焼成した。
Example 9 and Comparative Example 4 The granules obtained by the method of Example 5 were molded into 45 x 5 x 4 u at 1 ton/cTA using a rubber press, and then calcined in an electric furnace with an air width of about 900°C XaHr, and then in a hydrogen atmosphere furnace. It was fired at 1820°C for 3 hours.

得られた焼結体の機械的強度(JIS−R1601に準
拠して測定)は35kg/m”であった。
The mechanical strength (measured according to JIS-R1601) of the obtained sintered body was 35 kg/m''.

尚、比較の為、硫酸アルミニウムの代わりに炭酸カルシ
ウムを0.01重量部添加した他は実施例9と同様の方
法で顆粒を作成し、この顆粒を用いて成形、焼成し、焼
結体を得た。
For comparison, granules were prepared in the same manner as in Example 9 except that 0.01 part by weight of calcium carbonate was added instead of aluminum sulfate, and the granules were molded and fired to form a sintered body. Obtained.

得られた焼結体の機械的強度は27kg/I@”であっ
た。
The mechanical strength of the obtained sintered body was 27 kg/I@''.

Claims (1)

【特許請求の範囲】[Claims] (1)酸化マグネシウムに換算した重量で0.1重量%
未満(0を含まず)のマグネシウム化合物とSに換算し
た重量で0.005重量%〜1重量%の硫黄化合物、残
部が酸化アルミニウムよりなる混合物を成形し、還元雰
囲気中または真空中で1700〜1950℃にて焼成す
ることを特徴とする透光性多結晶アルミナの製造方法。
(1) 0.1% by weight calculated as magnesium oxide
A mixture consisting of a magnesium compound of less than 0 (excluding 0), a sulfur compound of 0.005% to 1% by weight calculated as S, and the remainder aluminum oxide is molded to a temperature of 1,700 to 1,700% in a reducing atmosphere or in vacuum. A method for producing translucent polycrystalline alumina, the method comprising firing at 1950°C.
JP63162111A 1987-08-27 1988-06-28 Method for producing translucent polycrystalline alumina Expired - Lifetime JP2581174B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63162111A JP2581174B2 (en) 1987-08-27 1988-06-28 Method for producing translucent polycrystalline alumina

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP21394987 1987-08-27
JP62-213949 1987-08-27
JP63162111A JP2581174B2 (en) 1987-08-27 1988-06-28 Method for producing translucent polycrystalline alumina

Publications (2)

Publication Number Publication Date
JPH01133973A true JPH01133973A (en) 1989-05-26
JP2581174B2 JP2581174B2 (en) 1997-02-12

Family

ID=26488013

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63162111A Expired - Lifetime JP2581174B2 (en) 1987-08-27 1988-06-28 Method for producing translucent polycrystalline alumina

Country Status (1)

Country Link
JP (1) JP2581174B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6638886B1 (en) * 1995-04-18 2003-10-28 Applied Materials, Inc. Plasma fluorine resistant alumina ceramic material and method of making
WO2010058745A1 (en) 2008-11-18 2010-05-27 東ソー株式会社 Sintered colored alumina of high toughness and high translucency, and manufacturing method and uses therefor

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5679847A (en) * 1979-12-04 1981-06-30 Toshiba Ceramics Co Ltd Light transmittable alumina tube and high pressure sodium vapor discharge lamp
JPS61256962A (en) * 1985-05-02 1986-11-14 東芝セラミツクス株式会社 Light permeable alumina pipe

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5679847A (en) * 1979-12-04 1981-06-30 Toshiba Ceramics Co Ltd Light transmittable alumina tube and high pressure sodium vapor discharge lamp
JPS61256962A (en) * 1985-05-02 1986-11-14 東芝セラミツクス株式会社 Light permeable alumina pipe

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6638886B1 (en) * 1995-04-18 2003-10-28 Applied Materials, Inc. Plasma fluorine resistant alumina ceramic material and method of making
WO2010058745A1 (en) 2008-11-18 2010-05-27 東ソー株式会社 Sintered colored alumina of high toughness and high translucency, and manufacturing method and uses therefor
US8481439B2 (en) 2008-11-18 2013-07-09 Tosoh Corporation Colored alumina sintered body of high toughness and high translucency, and its production method and its uses
EP2808313A2 (en) 2008-11-18 2014-12-03 Tosoh Corporation Colored alumina sintered body of high toughness and high translucency, and its production method and its uses

Also Published As

Publication number Publication date
JP2581174B2 (en) 1997-02-12

Similar Documents

Publication Publication Date Title
Green Calcination of precipitated Mg (OH) 2 to active MgO in the production of refractory and chemical grade MgO
US4147744A (en) Transparent yttria ceramics and method for producing same
EP0040499B1 (en) Polycrystalline translucent alumina sintered body, a method of producing the same, and a high pressure vapour discharge lamp obtained by using such a sintered body
EP0263662B1 (en) Yttrium oxide ceramic body
CA1123019A (en) Ceramic compositions and articles prepared therefrom
US4605542A (en) Process for producing silicon carbide whisker
US4367292A (en) Method for manufacture of powder composition for cordierite
JP2939535B2 (en) Manufacturing method of transparent yttrium oxide sintered body
JP4033451B2 (en) Translucent rare earth oxide sintered body and method for producing the same
US2805167A (en) Synthetic spinel refractory products
US2311228A (en) Bauxite ceramic and method of
WO2020195721A1 (en) Spinel powder
JPH01133973A (en) Manufacture of transparent polycrystalline alumina
US2641529A (en) Production of magnesia
JPH03223156A (en) Production of sintered material of mgo-based beta&#34;-alumina
JP2866891B2 (en) Polycrystalline transparent yttrium aluminum garnet sintered body and method for producing the same
JP3357910B2 (en) Manufacturing method of transparent magnesia sintered body
JPS6365628B2 (en)
KR101052344B1 (en) Method for producing high purity magnesium oxide powder from magnesium chloride
JPS6272556A (en) Manufacture of fine polycrystal mgal2o4 spinel
JPS6212173B2 (en)
JPH0339968B2 (en)
JP2581174C (en)
JPH0426543A (en) Translucent cordierite sintered body and its manufacture
JPS6311516A (en) Production of high purity magnesia powder having anti-hydration property

Legal Events

Date Code Title Description
S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071121

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081121

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081121

Year of fee payment: 12

RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D05

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081121

Year of fee payment: 12