JPS62121690A - Method for removing arsenic in geothermal water - Google Patents
Method for removing arsenic in geothermal waterInfo
- Publication number
- JPS62121690A JPS62121690A JP26320485A JP26320485A JPS62121690A JP S62121690 A JPS62121690 A JP S62121690A JP 26320485 A JP26320485 A JP 26320485A JP 26320485 A JP26320485 A JP 26320485A JP S62121690 A JPS62121690 A JP S62121690A
- Authority
- JP
- Japan
- Prior art keywords
- arsenic
- geothermal water
- iron
- iron precipitate
- fine
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Treatment Of Liquids With Adsorbents In General (AREA)
- Removal Of Specific Substances (AREA)
- Water Treatment By Sorption (AREA)
Abstract
Description
【発明の詳細な説明】
(イ)技術分野
本発明は、特に地熱水中の砒素を除去するに際して、細
粒充填物表面に塩基性硫酸鉄、水酸化鉄等の鉄沈殿物を
被覆した細粒充填物層に被処理水を通過させることによ
り、被処理水中の砒素と鉄沈殿物を充分接触反応させ、
被処理水中の砒素を極めて小さな鉄/砒素比で除去する
ことができる地熱水中の砒素の除去方法に関するもので
ある。Detailed Description of the Invention (a) Technical Field The present invention provides a method for removing arsenic from geothermal water, in particular, by using fine particles whose surface is coated with iron precipitates such as basic iron sulfate and iron hydroxide. By passing the water to be treated through the packed layer, the arsenic and iron precipitates in the water to be treated are brought into sufficient contact reaction,
The present invention relates to a method for removing arsenic from geothermal water that can remove arsenic from water to be treated with an extremely small iron/arsenic ratio.
(ロ)背景技術
水溶液特に地熱水中には、1〜10ppmの砒素を含有
することが多い。従って、これを放流又は利用するため
には、0.O5ppm以下の環境基準値にまで除去する
必要がある。(b) Background Art Aqueous solutions, particularly geothermal water, often contain 1 to 10 ppm of arsenic. Therefore, in order to release or use this, 0. It is necessary to remove O to an environmental standard value of 5 ppm or less.
一般に、砒素を除去するには被処理水に鉄基を加えてF
e (OH)aとし、これとAsを化合させ、As5+
はFeAs04*nH2Oとし、As3士はFe As
O2* n)+20としてFe (OH)zと共沈させ
る方法が行なわれている。Generally, to remove arsenic, iron groups are added to the water to be treated.
e (OH)a and combine it with As to form As5+
is FeAs04*nH2O, and As3 is FeAs
A method of co-precipitation with Fe (OH)z as O2*n)+20 has been carried out.
この場合、As3+はAs5+より上記の反応性が惑い
ので、通常はNaC40等の酸化剤を加えてAs3+を
As5+に酸化しテFe (OH)zと共沈させている
。In this case, since As3+ has a lower reactivity than As5+, an oxidizing agent such as NaC40 is usually added to oxidize As3+ to As5+, which is co-precipitated with TeFe(OH)z.
しかし、この方法で被処理水中のAsを環境基準値にま
で除去するにI±、多量の鉄塩や酸化剤が必要となる。However, this method requires a large amount of iron salt and oxidizing agent to remove As from the water to be treated to an environmental standard value.
これは、被処理水に加えた鉄塩がFe (OH)3の沈
殿となって凝集し、砒素と接触する表面積が小さくなり
、また浮遊する沈殿が撹拌によってもなお砒素を含有す
る被処理水と同一速度で流動するので、被処理水中のA
sと接触する機会が少なくて多□量の鉄塩を必要とし、
さらに残留砒素濃度も高いからである。This is because the iron salts added to the treated water coagulate as Fe (OH)3 precipitates, reducing the surface area that comes into contact with arsenic, and the floating precipitates still remain in the treated water containing arsenic even after stirring. A flows at the same speed as A in the water to be treated.
There are few opportunities for contact with s, and a large amount of iron salt is required,
Furthermore, the residual arsenic concentration is also high.
(ハ)発明の開示
本発明法による方法は、予め塩基性硫酸鉄や水酸化鉄等
の鉄沈殿物で被覆した細粒充填物を充填した塔中に、一
定量の空気を含ませた砒素含有地熱水をポンプにより圧
入し、一定流速で通過させることにより、地熱水中の砒
素を除去するものである。(C) Disclosure of the Invention The method of the present invention involves the use of arsenic gas containing a certain amount of air in a column filled with fine particles coated with iron precipitates such as basic iron sulfate or iron hydroxide. The arsenic contained in the geothermal water is removed by pressurizing the geothermal water with a pump and passing it through at a constant flow rate.
これにより、地熱水中の砒素はイオンの移動による鉄沈
殿物との接触だけでなく、流れによる衝突或は乱流によ
る接触により、効率的に細粒充填部の表面を被覆した鉄
沈殿物と反応して残留砒素濃度が微量になるまで除去さ
れる。As a result, arsenic in the geothermal water not only comes into contact with iron precipitates due to the movement of ions, but also efficiently reacts with the iron precipitates that coat the surface of the fine-grained filling area, not only through collisions due to flow or contact due to turbulence. The residual arsenic concentration is removed until it becomes a trace amount.
また、細粒充填物を被覆する鉄沈殿物は薄層でよく、こ
のため鉄/砒素比が極めて小さくて済む。Also, the iron precipitate covering the fine-grained filler can be a thin layer, so that the iron/arsenic ratio can be extremely small.
地熱水を上記の如く予め鉄沈殿物で被覆した細粒充填物
層を長期間通過させて脱砒を継続すると、次第に処理水
中の砒素濃度が一ヒ昇して来るので、充填塔下部より砒
素を含まない水を急速番と送入して逆洗し、砒素と反応
した鉄沈殿物を洗浄除去した後、新しく鉄沈殿物を被覆
させて、継続して脱砒を行なう。If geothermal water continues to be removed for a long period of time by passing through the fine-grained packed bed coated with iron precipitates as described above, the arsenic concentration in the treated water will gradually rise, so the arsenic concentration in the treated water will gradually rise. Arsenic-free water is rapidly pumped in for backwashing to remove iron precipitates that have reacted with arsenic, and then a new coat of iron precipitates is applied to continue removing arsenic.
また、地熱水に細粒充填塔圧入前に第1鉄イオンを加え
、空気と共に細粒充填塔に圧入通過させれば、第1鉄イ
オンは空気中の酸素により徐々番こ酸化され、細粒充填
物表面を被覆して効率的に脱砒を行なうことができる。Furthermore, if ferrous ions are added to the geothermal water before it is injected into the fine-grained packed tower and the water is forced to pass through the fine-grained packed tower together with air, the ferrous ions are gradually oxidized by the oxygen in the air, and the ferrous ions are gradually oxidized by the oxygen in the air. By coating the surface of the grain filler, it is possible to efficiently remove arsenic.
この場合、細粒充填物表面を被覆する鉄沈殿物は、次第
に成長して目詰りを起すので、逆洗して再生するように
する。In this case, the iron precipitate that coats the surface of the fine-grained packing gradually grows and causes clogging, so it is regenerated by backwashing.
なお、細粒充填物の材質は不溶性で水中で崩壊しないよ
うな、例えばアンスラサイト、コークス、砂、軽石2合
成樹脂等がよい。The material for the fine filler is preferably an insoluble material that does not disintegrate in water, such as anthracite, coke, sand, pumice 2 synthetic resin, etc.
以下、実施例により本発明の方法及びその効果を具体的
に説明する。Hereinafter, the method of the present invention and its effects will be specifically explained with reference to Examples.
(ニ)実施例
実施例1
第1図は、予め鉄沈殿物を被覆した細粒充填物層による
脱砒試験装置を示したものである。(d) Examples Example 1 FIG. 1 shows a de-arsenization test apparatus using a fine-grained packed layer coated with iron precipitate in advance.
1は直径271の硬質ガラス管からなる空気弁6を備え
る密閉保温された充填塔2内に高さ100011111
1まで充填された粒度が1.5 mm篩下を0.8 m
m篩で篩別した篩上程度のアンスラサイト細粒で、この
アンスラサイト細粒は鉄沈殿物で被覆されている。1 has a height of 100011111 in a sealed and heat-insulated packed tower 2 equipped with an air valve 6 made of a hard glass tube with a diameter of 271.
Particle size filled up to 1.5 mm, 0.8 m below the sieve
The anthracite fine grains are sieved with an M sieve and are coated with iron precipitates.
3は運搬中に冷えた地熱水貯槽で、この地熱水を定量ポ
ンプ4により加熱装置5を経て充填塔2内に圧入する。Reference numeral 3 denotes a geothermal water storage tank that has cooled down during transportation, and this geothermal water is forced into the packed tower 2 through a heating device 5 by a metering pump 4.
上記の如く加熱された地熱水は流送バイブにより充填塔
2に圧入されるが、その途中で空気ポンプ7により少量
の空気を圧入して地熱水に酸素を供給するようにし、過
剰の空気は充填塔2上部の空気弁6により塔2外に排出
される。The geothermal water heated as described above is pressurized into the packed tower 2 by the flow vibrator, but in the middle of the process, a small amount of air is pressurized by the air pump 7 to supply oxygen to the geothermal water. Air is discharged to the outside of the column 2 by an air valve 6 at the top of the packed column 2.
鉄沈殿物で被覆されたアンスラサイト細粒層lを通過し
た地熱水は温度60℃まで低下するが、地熱水中の砒素
は第1表のように極めて微量にまで除去される。The temperature of the geothermal water that has passed through the fine-grained anthracite layer l covered with iron precipitates drops to 60°C, but the arsenic in the geothermal water is removed to an extremely small amount as shown in Table 1.
なお、地熱水を充填塔2に長期間通水して脱砒処理を行
なっていると、次第に脱砒能力が低下する。Note that if arsenic removal treatment is performed by passing geothermal water through the packed tower 2 for a long period of time, the arsenic removal ability will gradually decrease.
そこで、脱砒能力の低下した鉄沈殿物を被覆した細粒充
填物1は逆洗して、新たに鉄沈殿物を被覆して処理を継
続する。Therefore, the fine grain packing 1 coated with iron precipitates whose arsenic removal ability has decreased is backwashed, and the treatment is continued with the iron precipitates coated anew.
逆洗により回収された鉄沈殿物の分析値は、第1表に示
すように、鉄/砒素比が極めて小さいことが分る。As shown in Table 1, the analytical value of the iron precipitate recovered by backwashing shows that the iron/arsenic ratio is extremely low.
(以下余白)
第2図は、予め細粒充填物に鉄殿物を効率よく被覆する
ための試験装置を示したものである。(The following is a blank space) Fig. 2 shows a test device for efficiently coating fine-grained fillers with iron precipitates.
充填塔2には実施例1と同様にアンスラサイト細粒1が
充填しである。The packed column 2 was filled with anthracite fine particles 1 as in Example 1.
8は栄養剤を添加した硫酸第1鉄溶液貯槽で、該貯槽8
内には鉄酸化バクテリアが添加されていて第1鉄イオン
の酸化を促進させるようにしである。この硫酸第1鉄溶
液はpH4〜5、好ましくは4〜4.5の範囲がよく、
ポンプ9によりアンスラサイト細粒の充填塔2に供給す
る流送管の途中に空気ポンプ10を介在させて少量の空
気を圧入し、硫酸第1鉄溶液に酸素を供給して、過剰の
空気は充填塔2の空気弁6から排出させる。8 is a ferrous sulfate solution storage tank containing nutrients;
Iron-oxidizing bacteria are added inside to promote the oxidation of ferrous ions. This ferrous sulfate solution has a pH of 4 to 5, preferably 4 to 4.5,
An air pump 10 is interposed in the middle of the flow pipe that supplies the anthracite fine particles to the packed column 2 by the pump 9, and a small amount of air is forced in, supplying oxygen to the ferrous sulfate solution, and removing excess air. The air is discharged from the air valve 6 of the packed tower 2.
この装置による処理の結果を第2表に示す。The results of processing with this device are shown in Table 2.
なお、この試験では脱砒能力判定のために予め硫酸第1
鉄溶液中にAs”+イオンを添加しである。
(以下余白)実施例2
第3図は、予め細粒充填物に鉄沈殿物を被覆することな
く地熱水に第1鉄イオンを添加して細粒充填物を通過さ
せることより鉄沈殿物を細粒充填物表面に被覆しながら
脱砒を行う試験装置を示したものである。In addition, in this test, in order to determine the arsenic removal ability, sulfuric acid
As''+ ions are added to the iron solution.
(Margins below) Example 2 Figure 3 shows that ferrous ions were added to geothermal water and allowed to pass through the fine-grained packing, thereby reducing the iron precipitate. This figure shows a test device that performs arsenization while coating the surface of a fine-grained filler.
充填塔2には実施例1と同様にアンスラサイト細粒1が
充填してあり、加熱装置5により加熱された地熱水は充
填塔2に圧スされるが、途中で空気ポンプ6により少量
の空気を圧入して地熱水に酸素を供給する。The packed tower 2 is filled with anthracite fine particles 1 as in Example 1, and the geothermal water heated by the heating device 5 is compressed into the packed tower 2, but a small amount is pumped by the air pump 6 on the way. The air is injected under pressure to supply oxygen to the geothermal water.
また、貯槽8内の硫酸第1鉄溶液を定量ポンプ9により
少量づつ充填塔2に添加する。Further, the ferrous sulfate solution in the storage tank 8 is added little by little to the packed tower 2 using a metering pump 9.
しかして、第3表に示す如く、アンスラサイト細粒に鉄
殿物の被覆が行なわれるまでの当初の数日間は脱砒成績
は充分でなかったが、それ以後は良好な成績を得たこと
が分る。However, as shown in Table 3, although the arsenic removal results were not satisfactory for the first few days until the anthracite fine grains were coated with iron precipitates, good results were obtained after that. I understand.
(以下余白)
(ホ)発明の効果
本発明は以上のように、鉄沈殿物を細粒充填物に被覆す
ることによって鉄沈殿物の比表面積を大きくし、この固
定した鉄沈殿物層中に砒素含有地熱水を通過させるので
、液中の砒素と鉄沈殿物を効率よく接触させることがで
きる。(Left below) (E) Effects of the invention As described above, the present invention increases the specific surface area of the iron precipitate by coating the iron precipitate with a fine-grained filler, and in this fixed iron precipitate layer, Since arsenic-containing geothermal water is passed through, arsenic in the liquid and iron precipitates can be brought into contact efficiently.
従って、これにより砒素除去に要する鉄/砒素比を極め
て小さくし、地熱水中の砒素濃度を極めてl量にまで除
去することができる。Therefore, the iron/arsenic ratio required for arsenic removal can be made extremely small, and the arsenic concentration in geothermal water can be removed to an extremely low level.
さらに、イオン交換樹脂では再生のために薬剤を必要と
するが、本発明法によれば砒素を含まない水で逆洗する
ことによって細粒充填層を再生することができる等種々
の利点を有する。Furthermore, although ion exchange resins require chemicals for regeneration, the method of the present invention has various advantages such as being able to regenerate the fine particle packed bed by backwashing with arsenic-free water. .
第1図は本発明法の実施に使用する装置の一例を示す説
明図、第2図は予め細粒充填物に鉄殿物を被覆するため
の装置の説明図、第3図は鉄沈殿物を細粒充填物表面に
被覆しながら脱砒を行なうようにした本発明を実施する
他の装置の一例を示す説明図である。
符号説明
1−アンスラサイト細粒充填層 2−充填塔3−地熱水
貯槽 4一定量ポンプ 5−カー熱装置6−空気弁 7
−空気ポンプ
8−硫酸第1鉄貯槽 9一定量ポンプ
A−給液 B−排出液
特 許 出 願 人 同和工営株式会社代 理 人
弁理士 浅 賀 −夫 暑;−,1
+1Fig. 1 is an explanatory diagram showing an example of the apparatus used to carry out the method of the present invention, Fig. 2 is an explanatory diagram of an apparatus for pre-coating the fine grain packing with iron precipitates, and Fig. 3 is an explanatory diagram showing an example of the apparatus used to carry out the method of the present invention. FIG. 2 is an explanatory diagram showing an example of another apparatus for carrying out the present invention, which performs arsenization while coating the surface of a fine-grained filler. Symbol explanation 1 - Anthracite fine-grain packed bed 2 - Packed tower 3 - Geothermal water storage tank 4 Constant volume pump 5 - Kerr heating device 6 - Air valve 7
- Air pump 8 - Ferrous sulfate storage tank 9 Constant volume pump A - Liquid supply B - Discharge liquid Patent applicant Dowa Koei Co., Ltd. Agent Patent attorney Asaga - Fuo Hot; -, 1 +1
Claims (3)
物で被覆した細粒の充填物層に通過させることにより砒
素を除去することを特徴とする地熱水中の砒素の除去方
法。(1) Removal of arsenic in geothermal water characterized by removing arsenic by passing the geothermal water through a layer of fine-grained packed material coated with iron precipitates such as basic iron sulfate and iron hydroxide. Method.
気曝気して酸素を供給したのち前記細粒充填物層を循環
通過させることにより行なう特許請求の範囲第1項記載
の地熱水中の砒素の除去方法。(2) The fine particles are coated with the iron precipitate by aerating the iron sulfate solution to supply oxygen, and then circulating the iron sulfate solution through the fine particle packing layer. How to remove arsenic from geothermal water.
されてなる特許請求の範囲第1項記載の地熱水中の砒素
の除去方法。(3) The method for removing arsenic from geothermal water according to claim 1, wherein ferrous ions are contained or added to the geothermal water.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP26320485A JPS62121690A (en) | 1985-11-22 | 1985-11-22 | Method for removing arsenic in geothermal water |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP26320485A JPS62121690A (en) | 1985-11-22 | 1985-11-22 | Method for removing arsenic in geothermal water |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS62121690A true JPS62121690A (en) | 1987-06-02 |
Family
ID=17386224
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP26320485A Pending JPS62121690A (en) | 1985-11-22 | 1985-11-22 | Method for removing arsenic in geothermal water |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS62121690A (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2001062670A1 (en) * | 2000-02-25 | 2001-08-30 | Capital Controls Ltd | Apparatus and method for water treatment by adsorption |
JP2006272260A (en) * | 2005-03-30 | 2006-10-12 | Kobe Steel Ltd | Arsenic remover from contaminated water and its manufacturing method |
CN1292990C (en) * | 2004-11-25 | 2007-01-03 | 上海自来水市北科技有限公司 | Prepn and application of iron-coating aluminium sand capable of eliminating organic matter from water |
US8158006B2 (en) * | 2004-07-23 | 2012-04-17 | Mitsui Mining & Smelting Co., Ltd. | Method for removing fluorine using a fluorine adsorbent/desorbent |
JP2014046245A (en) * | 2012-08-30 | 2014-03-17 | Nagaoka International Corp | Method for removing arsenic in raw water |
JP2017074562A (en) * | 2015-10-16 | 2017-04-20 | 株式会社ナガオカ | Raw water treatment method |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS52133890A (en) * | 1976-05-04 | 1977-11-09 | Kagehira Ueno | Selective removal of arsenic compounds by adsorption |
-
1985
- 1985-11-22 JP JP26320485A patent/JPS62121690A/en active Pending
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS52133890A (en) * | 1976-05-04 | 1977-11-09 | Kagehira Ueno | Selective removal of arsenic compounds by adsorption |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2001062670A1 (en) * | 2000-02-25 | 2001-08-30 | Capital Controls Ltd | Apparatus and method for water treatment by adsorption |
US8158006B2 (en) * | 2004-07-23 | 2012-04-17 | Mitsui Mining & Smelting Co., Ltd. | Method for removing fluorine using a fluorine adsorbent/desorbent |
CN1292990C (en) * | 2004-11-25 | 2007-01-03 | 上海自来水市北科技有限公司 | Prepn and application of iron-coating aluminium sand capable of eliminating organic matter from water |
JP2006272260A (en) * | 2005-03-30 | 2006-10-12 | Kobe Steel Ltd | Arsenic remover from contaminated water and its manufacturing method |
JP4527584B2 (en) * | 2005-03-30 | 2010-08-18 | 株式会社神戸製鋼所 | Preparation of arsenic remover in contaminated water |
JP2014046245A (en) * | 2012-08-30 | 2014-03-17 | Nagaoka International Corp | Method for removing arsenic in raw water |
JP2017074562A (en) * | 2015-10-16 | 2017-04-20 | 株式会社ナガオカ | Raw water treatment method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4011304A (en) | Method for controlling removal of hydrogen sulfide from gases | |
US2019468A (en) | Process for purifying gas | |
US2267841A (en) | Method of and apparatus for treating water | |
JPS62121690A (en) | Method for removing arsenic in geothermal water | |
US3420773A (en) | Treatment of water | |
US2402959A (en) | Removal of boron from boron polluted substances | |
EP0010381B1 (en) | Regeneration of activated carbon | |
US4166141A (en) | Method of chill stabilizing a malt beverage | |
JPS6248539B2 (en) | ||
US2993782A (en) | Hydrometallurgical separation of nickel, copper, and cobalt in ammoniacal solutions | |
Higgins | Continuous Ion Exchange Equipment Adapted to Water and Dilute Waste Treatment | |
US2447511A (en) | Method of treating water | |
JPS61274789A (en) | Method of removing metallic complex from waste liquor | |
US2795482A (en) | Absorption of iodine vapor | |
US4336140A (en) | Water purification process | |
CN109433224A (en) | A kind of Fenton's reaction catalyst and preparation method thereof | |
JPH0248282B2 (en) | SANSOSANNOCHITANSANHENOKYUCHAKUSOKUDONOKOJOHOHO | |
JPS6135136B2 (en) | ||
GB2063094A (en) | Water purification by ion exchange | |
Anderson et al. | Continuous ion exchange using magnetic shell resins. II. Dealkalisation—pilot plant study | |
JPH0292828A (en) | Production of highly pure chromium hydroxide | |
SU973483A1 (en) | Method for recovering rhenium from rhenium-containing materials | |
JPH05500331A (en) | Catalytic decomposition of sulfur-oxygen anions | |
CN108083508A (en) | Stainless steel acid-washing waste liquid handles recovery method | |
JPS58174241A (en) | Method for regenerating boron selective ion exchange resin |