JPS62121610A - Control method of sludge concentration meter in gravity type sludge condenser tank - Google Patents
Control method of sludge concentration meter in gravity type sludge condenser tankInfo
- Publication number
- JPS62121610A JPS62121610A JP26351385A JP26351385A JPS62121610A JP S62121610 A JPS62121610 A JP S62121610A JP 26351385 A JP26351385 A JP 26351385A JP 26351385 A JP26351385 A JP 26351385A JP S62121610 A JPS62121610 A JP S62121610A
- Authority
- JP
- Japan
- Prior art keywords
- sludge
- concentration
- meter
- thickening tank
- tank
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Treatment Of Sludge (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は、下水処理場等で使用される重力式汚泥濃縮槽
に配置された7η泥淵度計の管理方法に関する。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for managing a 7η mud depth meter disposed in a gravity-type sludge thickening tank used in a sewage treatment plant or the like.
下水処理場等で使用される重力式汚泥濃縮槽(以下、単
に濃縮槽という)を適正に稼動するためには、濃縮槽に
供給される汚泥や濃縮槽から排出される汚泥に含まれる
固形物の濃度を汚泥濃度計によって測定し、その測定結
果に基づき濃縮槽の運転を行う必要がある。In order to properly operate gravity-type sludge thickening tanks (hereinafter simply referred to as thickening tanks) used in sewage treatment plants, it is necessary to reduce the solids contained in the sludge supplied to the thickening tank and the sludge discharged from the thickening tank. It is necessary to measure the concentration of sludge using a sludge concentration meter and operate the thickening tank based on the measurement results.
これら測定値は、別に測定されている濃縮槽への供給汚
泥の体積、濃縮槽内に堆積する汚泥の体積等の値と共に
、濃縮槽への汚泥の負荷量や濃縮槽からの汚泥の排出量
或いはfi縮槽内に汚泥が滞留している時間等を管理す
るごとに使われる。ここで使用されるlη泥濃度n1は
、l’j泥中に含まれている固形物の質量と汚泥の質量
の比を直接測定するものではなく、光や音が汚泥中を通
過するときに汚泥中の固形物によって吸収されたり、反
射されたりする量を計測し、予め求められているそれら
吸収量あるいは反射量と汚泥中の固形物濃度の間の関係
式を使って間接的に汚泥中の固形物濃度を知ろうとする
ものである。These measured values include the volume of sludge supplied to the thickening tank and the volume of sludge deposited in the thickening tank, which are measured separately, as well as the amount of sludge loaded into the thickening tank and the amount of sludge discharged from the thickening tank. Alternatively, it is used each time to manage the time that sludge remains in the fibrillation tank. The lη mud concentration n1 used here does not directly measure the ratio of the mass of solids contained in the l'j mud to the mass of the sludge, but rather The amount absorbed or reflected by solids in sludge is measured, and the relationship between the amount of absorption or reflection determined in advance and the concentration of solids in sludge is used to indirectly measure the amount absorbed or reflected by solids in sludge. The objective is to find out the solid concentration of
しかし、下水処理場の濃縮槽の場合、測定対象である汚
泥の性状、たとえば固形物の粒度分布や色相等が一定し
ていないことから、前記関係式を一旦決定しても、汚泥
の性状変動に伴い後日その決定した関係式を使った正確
な固形物濃度の測定ができなくなる場合が多い。However, in the case of thickening tanks in sewage treatment plants, the properties of the sludge that is the object of measurement, such as the particle size distribution and color of the solids, are not constant. In many cases, it becomes impossible to accurately measure the solids concentration using the determined relational expression at a later date.
したがって、上記のように濃縮槽の管理の指標として汚
泥中の固形物濃度の値を使用する場合には、汚泥濃度計
の出力値と、固形物濃度間の関係式を頻繁にチェックし
、修正することが必要とされる。Therefore, when using the solids concentration value in sludge as an index for thickening tank management as described above, the relationship between the output value of the sludge concentration meter and the solids concentration should be checked frequently and corrected. It is necessary to do so.
ところが、汚泥中の固形物濃度を直接測定するには、汚
泥の一定量を採取し、その質量又は体積を計測した後で
、濾過、遠心分離、加熱等の手段により採取汚泥を完全
に固液分離し、分離された固形分の質量を計測して、先
の採取汚泥の計測量との比を求める必要がある。この作
業は、人手と多くの作業時間を要するため、コストがか
かり、あまり額繁に実施できるもので(,1ない。この
直接測定がもつ問題点がゆえに、」1記のような濃縮槽
の正確な管理を実際に行なうことを困難にしている。However, in order to directly measure the concentration of solids in sludge, a certain amount of sludge is collected, its mass or volume is measured, and then the collected sludge is completely reduced to solid and liquid by means such as filtration, centrifugation, or heating. It is necessary to separate, measure the mass of the separated solid content, and calculate the ratio to the previously measured amount of collected sludge. This work requires manpower and a lot of time, so it is expensive and cannot be carried out on a large scale (1).Due to the problems of this direct measurement, This makes it difficult to actually carry out accurate management.
たとえば、濃縮槽内の堆積汚泥をほぼ一定量に維持する
ためには、供給された汚泥中の固形物量と排出された汚
泥中の固形物量が常に等しくなるようにすればよい。従
って、汚泥1)[出量が次式(11で表される量になる
ような制御を行えば、濃縮槽内の堆積汚泥がほぼ−・定
量に糺持されるはずである。For example, in order to maintain a substantially constant amount of accumulated sludge in the thickening tank, the amount of solids in the supplied sludge and the amount of solids in the discharged sludge should always be equal. Therefore, if control is performed so that the sludge 1) output amount becomes the amount expressed by the following formula (11), the accumulated sludge in the thickening tank should be retained in a substantially constant amount.
V、=C,・Vf /C,、・・・−11)但し、濃縮
槽への汚泥供給と濃縮槽からの汚泥排出は共に間欠操作
であり、各記号は次のものを示す。V, = C, ·Vf /C,...-11) However, both the sludge supply to the thickening tank and the sludge discharge from the thickening tank are intermittent operations, and each symbol indicates the following.
Vエ :今回の排出量(nr)
C7:前回の排出から今回の排出までの間に供給された
汚泥の固形物濃度平均値(g/rrr)■、:前回の排
出から今回の排出までの間の汚泥供給量(rrr)
Cu :今回排出の汚泥の固形物濃度の平均値(g/
rd )
しかし、上述した理由によりC,、C,を供給、排出の
度に毎回正確に測定することは困難である。V: Current discharge amount (nr) C7: Average solids concentration of sludge supplied from the previous discharge to the current discharge (g/rrr) ■,: From the previous discharge to the current discharge sludge supply amount (rrr) Cu: Average solids concentration of sludge discharged this time (g/
rd) However, for the reasons mentioned above, it is difficult to accurately measure C, , C, each time it is supplied and discharged.
したがって、このような制御方法はこれまであまり行わ
れていない。Therefore, such a control method has not been widely used so far.
そこで、本発明は、下水処理場等で使用される重力濃縮
槽の運転を汚泥の固形物濃度に基づいて制御するとき、
対象汚泥の固形物濃度と計器出力値との関係が初期の関
係からずれたような場合にあっても、濃縮槽の運転制御
を支障な〈実施することを目的とする。Therefore, the present invention provides a method for controlling the operation of a gravity thickening tank used in a sewage treatment plant based on the solids concentration of sludge.
The purpose is to perform operational control of the thickening tank without any hindrance even if the relationship between the solids concentration of the target sludge and the meter output value deviates from the initial relationship.
本発明の重力式汚泥濃縮槽における汚泥濃度針の管理方
法は、その目的を達成すべく、汚泥濃縮槽に供給される
汚泥中の固形物濃度を間接的に測定する第1の汚泥濃度
d1.汚泥濃縮槽内に堆積する汚泥と上澄液との界面の
位置を測定する汚泥界面計及び汚泥濃縮槽から排出され
る汚泥中の固形物濃度を間接的に測定する第2の汚泥濃
度計を重力式汚泥濃縮槽に配備し、
汚泥界面計の測定イ1αから1111定できる汚泥濃縮
槽内に堆積する汚泥の体積の値+ lli泥湾縮槽から
JJI出される汚泥の体積の値、第2の汚泥濃度計によ
り得られた排出汚泥中の固形物濃度のIII定植及び汚
泥濃縮槽に供給される汚泥の体積の値を用いζ、第1の
汚泥濃度計の指示値を固形物濃度に換算する換算式を常
に更新することを特徴とする。In order to achieve the purpose of the method for managing a sludge concentration needle in a gravity-type sludge thickening tank according to the present invention, the first sludge concentration d1. A sludge interface meter that measures the position of the interface between the sludge and supernatant liquid deposited in the sludge thickening tank, and a second sludge concentration meter that indirectly measures the solid matter concentration in the sludge discharged from the sludge thickening tank. The value of the volume of sludge deposited in the sludge thickening tank, which can be determined from the measurement of the sludge interface meter installed in the gravity-type sludge thickening tank, 1111 + the value of the volume of sludge discharged from the JJI mud bay shrinking tank, 2nd Convert the indicated value of the first sludge concentration meter to the solid concentration using the values of the solid matter concentration in the discharged sludge obtained by the sludge concentration meter III and the volume of the sludge supplied to the sludge thickening tank. It is characterized by constantly updating the conversion formula.
次いで、図面に示した実施例により、本発明を具体的に
説明する。Next, the present invention will be specifically explained with reference to embodiments shown in the drawings.
第1図は、当該実施例におけるフローである。FIG. 1 is a flowchart in this embodiment.
濃縮槽1には、濃縮の対象となる下水汚泥2が汚泥供給
管3を経て、予め設定された時間間隔で間欠的に供給さ
れている。このとき、汚泥供給量は流量計4で、汚泥中
の固形物濃度は超音波式汚泥漆度計5でそれぞれ測定さ
れ、それらの測定結果は記憶演算制御装置6に記憶され
る。濃縮槽1内で供給lη泥から沈降した固形物は、濃
縮汚泥7として槽内に堆積する。その堆積高さは、汚泥
界面計8によって測定される。予め設定された濃縮ll
泥υ1出条件が満足された時(たとえば槽内汚泥量が一
定量を超えた時、排出予定時刻がきた時等)、排出管9
の電動弁10が開き、濃縮汚泥7の一部が排出される。Sewage sludge 2 to be concentrated is intermittently supplied to the thickening tank 1 via a sludge supply pipe 3 at preset time intervals. At this time, the sludge supply amount is measured by the flow meter 4, and the solid matter concentration in the sludge is measured by the ultrasonic sludge lacquer meter 5, and the measurement results are stored in the storage calculation control device 6. Solids settled from the supplied lη mud in the thickening tank 1 are deposited in the tank as thickened sludge 7. The height of the pile is measured by a sludge interface meter 8. Preset concentration
When the sludge υ1 discharge conditions are satisfied (for example, when the amount of sludge in the tank exceeds a certain amount, when the scheduled discharge time has arrived, etc.), the discharge pipe 9
The electric valve 10 opens and a portion of the thickened sludge 7 is discharged.
このとき、排出量及び排出汚泥中の固形物濃度をそれぞ
れ流量計11及び超音波式汚泥濃度計12で計測しなが
ら、濃縮汚泥7の排出が行われる。At this time, the concentrated sludge 7 is discharged while measuring the discharge amount and the solid matter concentration in the discharged sludge using the flow meter 11 and the ultrasonic sludge concentration meter 12, respectively.
本発明の特徴は、以下に述べる手順によって濃縮槽供給
汚泥用の汚泥濃度計5の出力値を、排出汚泥用の汚泥濃
度計12の出力値を基準とする相対定な固形物濃度の値
に変換し、従来技術では困難と考えられていた重力濃縮
槽の管理を容易にするものである。The feature of the present invention is that the output value of the sludge concentration meter 5 for thickening tank supplied sludge is changed to a relative fixed solids concentration value based on the output value of the sludge concentration meter 12 for discharged sludge by the procedure described below. This makes it easier to manage gravity thickeners, which was considered difficult with the prior art.
■ まず、第1図の装置を運転する前に汚泥濃度計5.
12を従来の方法で校正し、汚泥中の固形物濃度と計器
出力値の当面の関係を次式(2)及び(3)のように求
めておく。■ First, before operating the equipment shown in Figure 1, check the sludge concentration meter 5.
12 is calibrated using a conventional method, and the immediate relationship between the solid matter concentration in the sludge and the meter output value is obtained as shown in the following equations (2) and (3).
Cf−a、・xr ・・・・・(2)cu =
au−xl+ ・・・・・(31但し、
Ct、Cu :供給汚泥、 l[ll曽η泥の固形物濃
度X、、X、:供給汚泥用tJt出汚泥川l剪1の用力
af、a、、:変換係数
■ 重力式汚泥濃縮槽1への汚泥供給を開始する。Cf-a, xr...(2) cu =
au-xl+ ... (31 However, Ct, Cu: supply sludge, l ,,: Conversion coefficient■ Start supplying sludge to the gravity type sludge thickening tank 1.
一般の下水処理場におけるfIIl?i槽の場合と同様
に、本実施例においてもtm i1?i槽への汚泥供給
+ fM縮槽からの汚泥排出は間欠的に行われる。汚泥
供給を開始してから初めての汚泥排出が行われるまでの
期間、濃縮槽1内に間欠的に供給された汚泥の体積(流
量計4で計測できる)と式(2)で計算される固形物濃
度との積を、汚泥(1給のたびに求める。更に、記憶演
算制御装置6によりその累積を求め、槽内体積固形物量
Gとして記憶しておく。fIIl in general sewage treatment plants? As in the case of the i-tank, in this embodiment as well, tm i1? Sludge supply to the i tank + sludge discharge from the fM shrinkage tank is performed intermittently. During the period from the start of sludge supply until the first sludge discharge, the volume of sludge intermittently supplied into the thickening tank 1 (which can be measured with the flowmeter 4) and the solids calculated by formula (2) The product of solid matter concentration is determined for each feeding of sludge (sludge).Furthermore, the cumulative value is determined by the storage arithmetic and control device 6 and is stored as the volumetric solid matter amount G in the tank.
すなわち、
G←−G+Cf・び、 ・・・・(4)但し
、
11、:1回の供給操作で供給された汚泥体積−:右辺
の結果を改めて左辺に代入する意味Gの初ルー4fiは
O
■ 排出予定時刻の到来等の予め決めた汚泥排出の実施
条件が整ったとき、濃縮槽1内に堆積している汚泥7の
堆積高さを汚泥界面計8によって測定し、この測定値及
び濃縮槽の内部構造から堆積汚泥7の体積を計算し、そ
の結果を記憶演算制御装置6に記憶させる。That is, G←−G+Cf・・・・(4) However, 11.: Volume of sludge supplied in one supply operation −: Meaning of substituting the result on the right side into the left side The first 4fi of G is O ■ When the predetermined conditions for sludge discharge, such as the arrival of the scheduled discharge time, are met, the height of the sludge 7 accumulated in the thickening tank 1 is measured by the sludge interface meter 8, and this measured value and The volume of the accumulated sludge 7 is calculated from the internal structure of the thickening tank, and the result is stored in the storage calculation control device 6.
■ 次いで、濃縮槽1から汚泥の排出を開始し、濃度計
12の出力値と式(3)により求められる排出汚泥中の
固形物濃度の値及び記憶演算装置6に記憶されている値
を使用して、次式(5)に従い補正係数Kを計算する。■ Next, the discharge of sludge from the thickening tank 1 is started, and the output value of the concentration meter 12, the value of the solid matter concentration in the discharged sludge obtained by equation (3), and the value stored in the storage calculation device 6 are used. Then, the correction coefficient K is calculated according to the following equation (5).
V −C。V-C.
K−□ ・・・・・(5)
但し、
V:汚泥の堆積高さから算出された堆積汚泥の体積
Cu :式(3)で求められた排出?’i泥の固形物濃
度
■ この補正係数Kを、前述のG及び式(2)における
変換係数afに乗じた値、ずなわちに−G及びに−ay
を補正後のG及びafとする。K-□...(5) However, V: Volume of accumulated sludge calculated from the height of sludge accumulation Cu: Discharge determined by equation (3)? 'i Solids concentration of mud ■ The value obtained by multiplying this correction coefficient K by the above-mentioned G and the conversion coefficient af in equation (2), that is, -G and -ay
are G and af after correction.
G←−K・G ・・・・・(6)a、←−に−
al ・・・・・(7)■ 汚泥排出操作が終
了した後、Gはさらに排出汚泥体積とその固形物濃度と
の積を減じることにより、新たなGに置き換える。ずな
わち、G←−G−Cu−V、 ・・・−・+81但
し、
vu:1回の排出操作でII出された汚泥体積■ その
後、次回の排出操作を開始するまでの供給汚泥中の固形
物濃度には、式(7)で求めた新たなa、を式(2)の
変換係数として式(2)で1γ出される値を用い、先程
と同様にして汚泥供給のたびに槽内堆積汚泥の固形物1
1Gの値を前掲の式(4)に従い計算する。G←−K・G・・・・・・(6) a, ←−to−
al...(7)■ After the sludge discharge operation is completed, G is replaced with new G by further subtracting the product of the discharged sludge volume and its solids concentration. That is, G←−G−Cu−V, ...−・+81 However, vu: Volume of sludge discharged in one discharge operation■ After that, the volume of sludge in the supplied sludge until the start of the next discharge operation For the solids concentration of Solids of internally deposited sludge 1
The value of 1G is calculated according to the above equation (4).
■ 以降は、工戊■以下を繰り返す。■ From then on, repeat the steps below.
以上が、本発明の操作手順である。The above is the operating procedure of the present invention.
次いで、本発明の有効性を証明するために、第1図の装
置を使用して行った実験の結果について述べる。Next, in order to prove the effectiveness of the present invention, the results of an experiment conducted using the apparatus shown in FIG. 1 will be described.
一実験1.−
まず、〔発明が解決しようとする問題点〕で例示したN
I41i!槽内の堆積汚泥量をほぼ一定に維持するため
の制御を行った。1 Experiment 1. − First, N
I41i! Control was performed to maintain the amount of accumulated sludge in the tank almost constant.
すなわち、第1図の装置において、濃縮槽1に汚泥2を
供給し続け、その供給汚泥の体積及び固形物濃度をそれ
ぞれ流量計4と濃度計5で測定した。槽1′内に堆積し
た汚泥の高さが濃縮槽1の深さの約2に達した時を起点
として、濃縮槽1内の堆積汚泥量をほぼ一定に維持する
ために、1時間毎に弐(11に従った汚泥排出を実施し
た。That is, in the apparatus shown in FIG. 1, sludge 2 was continuously supplied to the thickening tank 1, and the volume and solids concentration of the supplied sludge were measured using a flow meter 4 and a concentration meter 5, respectively. Starting from when the height of the sludge accumulated in tank 1' reaches about 2 times the depth of thickening tank 1, the water is removed every hour to maintain the amount of accumulated sludge in thickening tank 1 almost constant. 2 (Sludge discharge was carried out in accordance with 11.
このとき、汚泥界面計8によって測定された槽内の堆積
汚泥の位置の経時的変化を第2図に示す。At this time, changes over time in the position of the accumulated sludge in the tank as measured by the sludge interface meter 8 are shown in FIG.
計器による測定値が正しく、且つ分離液13と共に浴出
する固形物量が無視できるものであれば、濃縮槽lから
排出された固形物量は前回の排出以降に供給された固形
物量に等しいはずであり、堆積汚泥の量もほぼ一定のは
ずである。ところが、実際にはそうはなっていない。そ
の原因は、以下に述べるように濃度計出力の固形物濃度
への変換係数a、が変化したためと考えられる。If the measured value by the meter is correct and the amount of solids bathed together with the separated liquid 13 is negligible, the amount of solids discharged from the thickening tank l should be equal to the amount of solids supplied since the previous discharge. , the amount of accumulated sludge should also be approximately constant. However, this is not actually the case. The reason for this is thought to be that the conversion coefficient a, which converts the densitometer output to the solids concentration, has changed as described below.
この変換係数a、の変化は、第3図+a)及び同図(b
lにおいて明確に表されている。すなわち、第3図(a
lは、供給汚泥中の固形物濃度を測定する超音波式濃度
計を使用した場合に4−ンいて1.l−記の制御を実施
する前に作成したl’j泥中の1.’il形物淵度とそ
の汚泥を当該濃度d目こ供したとき乙こItられる電流
出力値との間の回帰式である。制御期間中、式(11の
Cfに相当する値は、この回帰式に基づいて超音波式濃
度計の電流出力値を換算したものである。Changes in this conversion coefficient a are shown in Figures 3+a) and 3(b).
It is clearly expressed in l. That is, Fig. 3 (a
When using an ultrasonic densitometer to measure the solids concentration in the supplied sludge, 1. 1 in l'j mud prepared before implementing the control described in l-. This is a regression equation between the depth of the sludge and the current output value obtained when the sludge is supplied to the dth concentration of sludge. During the control period, the value corresponding to Cf in equation (11) is the current output value of the ultrasonic concentration meter converted based on this regression equation.
また第3図Tblは、上記の制御が終了した後、第3図
(a)と同様にして作成した汚泥中の固形物濃度と濃度
計の電流値との間の回帰式である。この図から明らかな
ように、制御期間中に回帰係数が変化してしまっている
。Further, FIG. 3 Tbl is a regression equation between the solid matter concentration in the sludge and the current value of the densitometer, which was created in the same manner as in FIG. 3(a) after the above control is completed. As is clear from this figure, the regression coefficient has changed during the control period.
一実験2.−
次に、本発明を適用して、実験1.と同じ目的の制御を
行った。すなわち、第1図に示す濃縮槽1に汚泥2を供
給し続け、その供給汚泥の体積及び固形物濃度をそれぞ
れ流量計4及び濃度計5により測定した。更に、槽内に
堆積した汚泥7の堆積高さを汚泥界面計8で測定した。1 Experiment 2. - Next, by applying the present invention, Experiment 1. The same purpose of control was carried out. That is, the sludge 2 was continuously supplied to the thickening tank 1 shown in FIG. 1, and the volume and solids concentration of the supplied sludge were measured using a flow meter 4 and a concentration meter 5, respectively. Further, the height of the sludge 7 deposited in the tank was measured using a sludge interface meter 8.
この槽内に堆積した汚泥の高さが濃縮槽1の深さのほぼ
2に達した時を起点として、1時間毎に過去1時間の間
に供給された汚泥の量と計算上等しい量となるような排
出割合で濃縮槽1から汚泥を排出した。このときの制御
式は、式(1)と全く同じである。ただし、濃縮槽1に
供給した汚泥中の固形物濃度の換算式及び槽内堆積汚泥
の固形物量は、濃縮槽1から汚泥を排出するたびに、本
発明の方法で修正した。Starting from the time when the height of the sludge accumulated in this tank reaches approximately 2 the depth of the thickening tank 1, the amount calculated to be equal to the amount of sludge supplied during the past hour is calculated every hour. Sludge was discharged from thickening tank 1 at a discharge rate such that: The control equation at this time is exactly the same as equation (1). However, the conversion formula for the concentration of solids in the sludge supplied to the thickening tank 1 and the amount of solids in the sludge deposited in the tank were corrected by the method of the present invention each time the sludge was discharged from the thickening tank 1.
第4図で明らかに示されているように、この方法を用い
た場合には、目的とする制御が可能となった。As clearly shown in FIG. 4, when this method was used, the desired control became possible.
以上は、濃縮槽の制御方法の中でも比較的理解しやすい
例である。この外に、これと同じように汚泥濃度の測定
がネックとなって正確な制御を行うことが困難であった
濃縮槽内汚泥滞留時間の制御も、この発明を適用するこ
とにより正確且つ容易に行うことができるようになる。The above is an example that is relatively easy to understand among concentration tank control methods. In addition, by applying this invention, the control of the sludge retention time in the thickening tank, which has been difficult to control accurately due to the measurement of sludge concentration, can be achieved accurately and easily. be able to do it.
以上に説明したように、本発明の管理方法によるとき、
汚泥濃度の測定が正確に目、っ容易に行われる。このた
め、濃縮槽内に滞留する汚泥の管理を正確に行うことが
可能となり、また汚泥滞留時間の制御も精度良く行うこ
とができるようになった。As explained above, when using the management method of the present invention,
Measuring sludge concentration is accurate and easy to see. Therefore, it has become possible to accurately manage the sludge that remains in the thickening tank, and it has also become possible to control the sludge residence time with high precision.
第1図は本発明方法を実施するために使用する装置の一
例を余し、第2図は従来の堆積汚泥の経時的変化を示し
、第3図は固形物濃度と濃度計出力との関係を示し、第
4図は本発明方法により修正した堆積汚泥の経時的変化
を示す。
1:濃縮槽
2:汚泥
3:汚泥供給管
4:流量計
5:汚泥濃度計
6:記憶演算制御装置
7:濃縮汚泥
8:界面計
9:排出管
10:電動弁
11:流量計
12:汚泥濃度計
13:分離液Figure 1 shows an example of the equipment used to carry out the method of the present invention, Figure 2 shows changes over time in conventional accumulated sludge, and Figure 3 shows the relationship between solids concentration and densitometer output. FIG. 4 shows changes over time in accumulated sludge modified by the method of the present invention. 1: Thickening tank 2: Sludge 3: Sludge supply pipe 4: Flow meter 5: Sludge concentration meter 6: Memory calculation control device 7: Thickened sludge 8: Interface meter 9: Discharge pipe 10: Electric valve 11: Flow meter 12: Sludge Concentration meter 13: Separated liquid
Claims (1)
的に測定する第1の汚泥濃度計、汚泥濃縮槽内に堆積す
る汚泥と上澄液との界面の位置を測定する汚泥界面計及
び汚泥濃縮槽から排出される汚泥中の固形物濃度を間接
的に測定する第2の汚泥濃度計を重力式汚泥濃縮槽に配
備し、 汚泥界面計の測定値から推定できる汚泥濃縮槽内に堆積
する汚泥の体積の値、汚泥濃縮槽から排出される汚泥の
体積の値、第2の汚泥濃度計により得られた排出汚泥中
の固形物濃度の推定値及び汚泥濃縮槽に供給される汚泥
の体積の値を用いて、第1の汚泥濃度計の指示値を固形
物濃度に換算する換算式を常に更新することを特徴とす
る重力式汚泥濃縮槽における汚泥濃度計の管理方法。[Claims] 1. A first sludge concentration meter that indirectly measures the concentration of solids in sludge supplied to a sludge thickening tank; A sludge interface meter that measures the position and a second sludge concentration meter that indirectly measures the solids concentration in the sludge discharged from the sludge thickening tank are installed in the gravity sludge thickening tank, and the measured values of the sludge interface meter are installed. Estimated value of volume of sludge deposited in the sludge thickening tank, value of volume of sludge discharged from the sludge thickening tank, estimated value of solids concentration in discharged sludge obtained by the second sludge concentration meter, and sludge Sludge concentration in a gravity type sludge thickening tank, characterized in that a conversion formula for converting the indicated value of the first sludge concentration meter into solid matter concentration is constantly updated using the value of the volume of sludge supplied to the thickening tank. How to manage your meter.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60263513A JPH07121327B2 (en) | 1985-11-22 | 1985-11-22 | Management method of sludge concentration meter in gravity sludge thickener |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60263513A JPH07121327B2 (en) | 1985-11-22 | 1985-11-22 | Management method of sludge concentration meter in gravity sludge thickener |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS62121610A true JPS62121610A (en) | 1987-06-02 |
JPH07121327B2 JPH07121327B2 (en) | 1995-12-25 |
Family
ID=17390573
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP60263513A Expired - Lifetime JPH07121327B2 (en) | 1985-11-22 | 1985-11-22 | Management method of sludge concentration meter in gravity sludge thickener |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH07121327B2 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1586632A1 (en) * | 2004-04-14 | 2005-10-19 | Socrate Hatoum | Anaerobic digester |
FR2940270A1 (en) * | 2008-12-24 | 2010-06-25 | Degremont | RAPID STATIC DECANTER FOR PRE-THICKENING WATER TREATMENT SLUDGE, AND INSTALLATION COMPRISING SUCH DECANTER. |
CN108704343A (en) * | 2018-06-20 | 2018-10-26 | 中国矿业大学(北京) | A kind of thickener rake rotating speed real-time monitoring system and method |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS59102409A (en) * | 1982-11-30 | 1984-06-13 | Fuji Electric Co Ltd | Automatic controlling system for discharging deposit |
JPS60810A (en) * | 1983-06-20 | 1985-01-05 | Yaskawa Electric Mfg Co Ltd | Operating method of gravity settling type concentration tank |
-
1985
- 1985-11-22 JP JP60263513A patent/JPH07121327B2/en not_active Expired - Lifetime
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS59102409A (en) * | 1982-11-30 | 1984-06-13 | Fuji Electric Co Ltd | Automatic controlling system for discharging deposit |
JPS60810A (en) * | 1983-06-20 | 1985-01-05 | Yaskawa Electric Mfg Co Ltd | Operating method of gravity settling type concentration tank |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1586632A1 (en) * | 2004-04-14 | 2005-10-19 | Socrate Hatoum | Anaerobic digester |
FR2940270A1 (en) * | 2008-12-24 | 2010-06-25 | Degremont | RAPID STATIC DECANTER FOR PRE-THICKENING WATER TREATMENT SLUDGE, AND INSTALLATION COMPRISING SUCH DECANTER. |
CN108704343A (en) * | 2018-06-20 | 2018-10-26 | 中国矿业大学(北京) | A kind of thickener rake rotating speed real-time monitoring system and method |
Also Published As
Publication number | Publication date |
---|---|
JPH07121327B2 (en) | 1995-12-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE2547832C2 (en) | Arrangement for measuring the degree of contamination in a pipeline, in particular in a heat exchanger | |
CN109607770A (en) | A kind of more scene self study carbon source Intelligent adding system for powered and method in denitrification pond | |
CN110182924A (en) | Automatically method is ammoniated with ammonia with ammonia ammonification integrative machine and automatically | |
JPS62121610A (en) | Control method of sludge concentration meter in gravity type sludge condenser tank | |
DE60010774T2 (en) | Method and device for determining a two-phase flow | |
US5015436A (en) | Water-cooled direct cycle nuclear power plant | |
DE2729945C2 (en) | Method of operating an electrolytic cell | |
EP1447329A1 (en) | Method and apparatus for dispensing a fluid substance | |
DE59302660D1 (en) | Method for operating a wastewater treatment plant and device for feeding a phosphate precipitant | |
JPS63162007A (en) | Method for controlling chemical feeding in water purification | |
JPS6316901B2 (en) | ||
JPS5845318B2 (en) | Method for controlling the amount of sludge stagnant in a sedimentation tank in activated sludge method | |
JPH0713838Y2 (en) | Wastewater sludge control device | |
JPS5898190A (en) | Method of controlling amount of sludge | |
JPH01177477A (en) | Pump running control device | |
JPS5858189A (en) | Adjusting means for ph | |
JPH04180803A (en) | Sludge extraction control device | |
JPS6377597A (en) | Device for withdrawal of sludge from settling basin | |
JPS57117390A (en) | Apparatus for controlling activated sludge | |
JPS5943414A (en) | Controllng method of concentrating vessel by measurement of oxidation-reduction potential | |
DE2114260C3 (en) | Device for measuring rain intensities | |
Field | On the tests of relativistic time dilation in the CERN muon storage ring | |
JPS6319237B2 (en) | ||
JPS62142265A (en) | Method for measuring concentration of fluorine | |
DD247744A1 (en) | METHOD AND DEVICE FOR OVERRUPTING TREATMENT OF CRYSTALLIZED SOLUTIONS |